Supplementary figures

a 25

=
w
1

Yield (ug/g tissue)
5

0.5 4

Kaufmann Saleh Loureiro McKeown

M Kaufmann Saleh Loureiro McKeown  gDNA

A A

bp

10 000 -
3000 -

1500 -

1000 -
750 -

500 -

250 -

Figure S1. Assessment of DNA yield from crude nuclei preparations of E. grandis
developing secondary xylem tissue using different buffers [1-4]. (a) Nuclear DNA yield
from crude nuclear pellets. Error bars indicate the range of two extractions. (b) Agarose
gel electrophoresis analysis of nuclear DNA quality. Duplicate extractions were performed
for each buffer. M, GeneRuler 1 kb DNA ladder (Fermentas). gDNA, genomic DNA

extraction from whole developing secondary xylem tissue.
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Figure S2. Agarose gel electrophoresis analysis of micrococcal nuclease-digested
chromatin isolated from developing secondary xylem. Genomic DNA (gDNA) and
chromatin from developing secondary xylem were exposed to increasing units (U) of

micrococcal nuclease. M, GeneRuler 100 bp plus DNA ladder (0.5 pg).



Number of cycles
0 10 20 30 M1

-10kb

-3kb

bp
3000 -

-1kb
1000 -
o - 750 bp

-500 bp 500 -
400 -

300 -

-250 bp 200 -

Figure S3. Agarose gel electrophoresis analysis of sonication conditions. (a)
Developing secondary xylem chromatin sonicated for various ten-second cycles. Asterisks
indicate the average fragment size. M1, GeneRuler 1 kb DNA ladder. (b) Analysis of
residual DNA in the nuclear pellet following twenty cycles of sonication. N, unsonicated
nuclear pellet; P, residual nuclear pellet after sonication (two extractions); C, chromatin
after sonication M2, GeneRuler 100 bp DNA ladder plus.
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Figure S4. Optimization of formaldehyde-mediated crosslinking of E. grandis
developing secondary xylem samples. (a) Agarose gel electrophoresis analysis of DNA
yield from samples crosslinked for 0, 5, 15, 30, 45 or 60 min and subjected to de-
crosslinking (+DC) or no de-crosslinking (-DC). M, GeneRuler 100 bp DNA ladder plus.
(b) Nett yield of DNA between de-crosslinked (+DC) samples and samples without de-
crosslinking treatment (-DC). Samples fixed for 5 and 15 minutes show poor crosslink
retention as measured by the ability to extract DNA without prior de-crosslinking, while

more than 30 minutes of fixation led to compromised DNA yield after de-crosslinking.
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Figure S5. Validation of anti-H3K4me3 antibody specificity. (a) Western blot analysis
of E. grandis developing secondary xylem nuclear protein extracts using anti-H3K4me3
antibody. The 17 kDa target protein (arrows) comprises over 50% of the lane signal and
thus passes ENCODE requirements [5]. (b) Dotblot of synthetic peptides (100 ng,
sequence NH>-MARTKQTAR-COOH) representing non-methylated histone H3K4 [(-
CHa3)o] and mono-, di- or tri-methylated lysine-4 residues [(-CHz3)1, (-CHz3)2 and (-CHa)s,
respectively] using anti-H3K4me3 antibody.
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Figure S6. ChIP-gPCR analysis of two candidate loci using different quantities of
anti-H3K4me3 antibody. Values are expressed relative to input, where an equal quantity
of template was used for qPCR analysis from each sample. Error bars indicate standard
deviation of three technical replicates. The targeted regions are shown relative to gene
models (blue) with a back bar. Primers are listed for each gene in Additional file 3, Table
S7.
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Figure S7. Optimization of ChIP DNA amplification. (a) Fragment length distribution
of concentrated template DNA. (b) Fragment length distribution of amplified DNA (15
cycles) starting from various template quantities. (c) Agarose gel electrophoresis analysis
of amplified DNA fragment length using various pre-amplification and PCR extension
times (seconds). 20 min pre-amplification and 5 s extension times were used for ChIP
DNA amplification (see Methods). M, GeneRuler 100 bp DNA ladder plus marker.
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Figure S8. Scatter plot of number of mapped reads of H3K4me3 libraries at 1 kb

intervals across the genome between biological replicates V5 and V11.
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Figure S9. Strand cross-correlation (cc) analysis [5] of mapped ChIP and input
library reads. (a) H3K4me3 library (left reads) of individual V5 as representative of ChlIP
library samples, showing peaks corresponding to read length and fragment length. (b)
Formulae for calculating normalized strand cross-correlation (NSC) and relative strand
cross-correlation (RSC) values. (c) NSC and RSC values for all ChlP-seq samples,
showing the minimum threshold preferred by ENCODE [5] in parentheses. All H3K4me3
ChIP libraries yielded NSC and RSC values well above 1.05 and 0.8, respectively. Left
and right reads were analyzed separately because paired-end reads yield high RSC values

by default.
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Figure S10. Consistency of peaks identified in pseudoreplicates of pooled reads,
pseudoreplicates of each biological replicate (self pseudoreplicates), and biological
replicates V5 and V11. The relationship between the number of peaks shared between

datasets for an increasing number of identified peaks is shown in the left hand panel; the



right hand panel illustrates the relationship between the irreproducible discovery rate

(IDR) and the number of significant peaks identified.
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Figure S11. MACS diagnostic analysis of H3K4me3 peaks (fold enrichment 5 - 15)
detected for increasing proportions of subsampled mapped sequence tags. The

percentage of peaks detected using all tags (y-axis) as a function of the proportion of the

total tags used for peak detection (x-axis) is shown separately for individual V5 and V11.
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Figure S12. Histogram showing length distribution (bp) of significant H3K4me3
peaks.
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Figure S13. Average H3K4me3 ChlP-seq library per-base read coverage across 5’
gene regions of genes of various lengths. TSS, transcription start site.



o
o
= 1
S T i
) '
N 1
1
1
:
— '
E - 1
X |
o '
1
= :
C o '
s 8 A :
A © :
> - '
D_ 1
x * _—
[\}] '
L '
=2 '
8 '
2 g '
< S - !
o
wn
1 1
o - . [ ]

| T |
H3K4me3 DSX-expressed Unenriched

Figure S14. Boxplot of absolute expression levels for H3K4me3-enriched and
unenriched genes. Median FPKM (fragments per kilobase per million fragments mapped)
values for genes trimethylated at H3K4 (H3K4me3; n = 9,623), genes expressed in
developing secondary xylem (DSX-expressed; n = 27,595), or genes lacking H3K4me3

(Unenriched; n = 23,760) are indicated by the central bar. Outliers are not shown.
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Figure S15 (previous page). H3K4me3-mediated regulation of the phenylpropanoid biosynthetic pathway in E. grandis. Expression values
(developing secondary xylem tissue) [6] of Arabidopsis homologs of E. grandis genes enriched for H3K4me3 are shown by the heat map. Green
boxes denote Arabidopsis enzymes not enriched for H3K4me3 in E. grandis; white boxes indicate automatically assigned Enzyme Commission
(EC) numbers not represented by any known protein in Arabidopsis. Blue shading highlights the principal pathway for monolignol biosynthesis.
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Figure S16. Three examples of H3K4me3 peaks overlapping transcribed regions that have
not been annotated. RNA-seq coverage for developing secondary xylem (here referred to as
“immature xylem”) are indicated by the track “Immature Xylem: Bulk”. H3K4me3 peaks are
indicated by blue bars in the “H3K4me3 peaks V5 V1lexperiment” track. The
“H3K4me3 V5 V11”7 track denotes the ChIP-seq signal. Each window is 20 kb. Results were

visualized in the EucGenlE browser [6].
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