Supplemental Tables 1

2

3 Table E1. Immunoglobulin levels at different ages for patients with RAC2 deficiency

Age (years)	1	4	5	6	7	8	9	10	11	12	14	15	16	19	20
Proband															
IgM (mg/dl)	180	40	95	110	30↓	42	182	n.a.	n.a.	n.a.	73	40	n.a.	50	n.a.
IgG (mg/dl)	1800↑	800	650↓	940	430↓*	380↓	600↓	n.a.	n.a.	n.a.	780	790	n.a.	700	n.a.
IgA (mg/dl)	0↓	20	0↓	0↓	5↓	5↓	0↓	n.a.	n.a.	n.a.	30↓	40↓	n.a.	0↓	n.a.
IgE (IU/ml)	9	n.a.	n.a.	n.a.	<5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Sibling															
IgM (mg/dl)	n.a.	n.a.	n.a.	n.a.	105	190	17↓	28↓	36↓	19↓	0↓	n.a.	21↓	n.a.	58
IgG (mg/dl)	n.a.	n.a.	n.a.	n.a.	900	750	754	640↓*	520↓	600↓	99↓	n.a.	542↓	n.a.	130↓
IgA (mg/dl)	n.a.	n.a.	n.a.	n.a.	0↓	0↓	0↓	19↓	19↓	9↓	0↓	n.a.	0↓	n.a.	10↓
IgE (IU/ml)	n.a.	n.a.	n.a.	n.a.	5.3	n.a.	n.a.	n.a.	n.a.	n.a.	<5	n.a.	n.a.	n.a.	n.a.

Age-matched reference levels: 1-3 years: IgM, 55-210; IgG, 700-1600; IgA, 19-220; IgE, <100. 4-5 years: IgM, 40-230;

IgG, 700-1600; IgA, 48-345. 6-7 years: IgM, 40-230; IgG, 700-1600; IgA, 41-297; IgE, <100. 8-10 years: IgM, 40-230; IgG,

700-1600; IgA, 51-297. 11-13 years: IgM, 40-230; IgG, 700-1600; IgA, 44-395. 14 years and older: IgM, 40-230; IgG, 700-

4 5 6 7 8 1600; IgA, 70-400; IgE, <100. n.a., not analysed. * Treatment of intravenous immunoglobulin started, with controlled kidney

disorder and normal total protein and albumin levels.

ACCEPTED MANUSCRIPT

9 Table E2. IgG subclass levels in the two siblings with RAC2 deficiency

8-	8	
IgG subclass level (mg/dl)	Proband	Sibling
	At age of 4 yrs	At age of 10 yrs
IgG1 (reference values)	405 (253-1019)	50 \ (289-934)
IgG2 (reference values)	73 (54-435)	<15 \ (82-516)
IgG3 (reference values)	172 (9-102)	12 \ (20-103)
IgG4 (reference values)	15 (1-108)	<5 (0.3-111)

10 *yr, year.* **Reference: age-appropriate reference range from healthy Iranian individuals.*

11

12 Table E3. Lymphocyte subpopulations in the sibling with RAC2 deficiency

Laboratory test	Sibling	Reference range
Age at testing	26 yrs	
CD4 ⁺ CD25 ⁺ FOXP3 ⁺ regulatory T-cells (%)	$1.4\downarrow$	3.4-5.66
FOXP3 expression in PBMC (%)	1.5↓	2.7-4.8
Regulatory T-cells suppressor capacity (%)	18↓	30-80
CD45RA ⁺ CD62L ⁺ CD4 ⁺ naïve T-cells (%)	17.4↓	35-54
CD31 ⁺ CD45RA ⁺ CD62L ⁺ CD4 ⁺ recent thymic emigrant T-cells (%)	26.4↓	32-50
Age at testing	28 yrs	
NK-cells (%)	11.7	3-22
CD19 ⁺ (%)	0 ↓	6-23
CD3 ⁺ (%)	87↑	56-84
${ m CD4}^+$ (%)	26↓	31-52
$CD8^{+}(\%)$	57 ↑	18-35
CD4:CD8	0.5↓	1.0-3.6
NKT-cells (%)	7.7	2.1-13.7
CD4 ⁻ CD8 ⁻ T-cells (%)	3.8	3-10.2
CD4 ⁺ CD8 ⁻ T-cells (%)	0.6	0.2-1.4
CD4 ⁺ CD38 ⁺ T-cells (%)	51	50-79
CD4 ⁺ HLA-DR ⁺ T-cells (%)	30 ↑	5-25
CD4 ⁺ CD38 ⁺ HLA-DR ⁺ T-cells (%)	10 ↑	2-6
CD8 ⁺ CD38 ⁺ T-cells (%)	55	33-80
CD8 ⁺ HLA-DR ⁺ T-cells (%)	66 ↑	5-25
CD8 ⁺ CD38 ⁺ HLA-DR ⁺ T-cells (%)	42 ↑	3-18
CCR7 ⁺ CD45RA ⁺ CD45RO ⁻ CD4 ⁺ naïve T-cells (%)	9.8↓	20.2-51.1
Effector memory CD4 ⁺ T-cells (%)	55.2	27.5-56.8
T-helper-1 cells (%)	21.0	4.5-25.5
T-helper-2 cells (%)	3.1	1.5-11.3
Central memory CD4 ⁺ T-cells (%)	10.2	7.7-17.5
T-cells (naïve:effector memory)	$0.2\downarrow$	0.3-3.2
Th17-cells	39.4 ↑	15.1-37.0
Naïve CD8 ⁺ T-cells (%)	1.8↓	28.4-66.7
Effector memory CD8 ⁺ T-cells (%)	67.0 ↑	11.5-42.6
Activated effector memory CD8 ⁺ T-cells (%)	1.9	0-22.4
Activated cytolytic effector CD8 ⁺ T-cells (%)	0.2	<5.9
Effector CD8 ⁺ T-cells (%)	15.9	7.4-24.6
Central memory CD8 ⁺ T-cells (%)	1.0	0.5-5.6

13 yr, year; PBMC, peripheral blood mononuclear cells

Table E4. Comparison of cases with RAC2 deficiency 14

Parameters	Proband	Sibling	Colorado Case ^{7, 8}	Wisconsin case ⁹	
Gender	Female	Male	Male	Male	
Mutation	W56X Hom	W56X Hom	D57N Het	D57N Het	
Effect of mutation	Absent expression	Absent expression	Dominant negative	Dominant negative	
Age at onset of		2		06.1	
clinical symptoms	6 months	2 years	5 weeks	26 days	
Age at genetic	10	22		W/:41-: 5 6 1:6	
diagnosis	19 years	23 years	Within 10 months of life	Within 5 weeks of lif	
-	Recurrent pneumonia,	Recurrent sinopulmonary			
	hypogammaglobulinemia,	infections,			
	PSGN,	hypogammaglobulinemia,	Recurrent perirectal	D 1 111 1	
	factor XI deficiency,	urticaria, PSGN,	abscess, umbilical stump	Periumbilical	
Clinical features	urticaria, allergy,	factor XI deficiency,	involution failure,	erythema, macrocyti anemia, paratrachea abscess	
	bronchiectasis,	lymphadenopathy,	infected urachal cyst,		
	hypothyroidism,	bronchiectasis,	failure of surgical wound		
	hyperparathyroidism,	hypothyroidism,	healing		
	ESRD	GH deficiency			
WBC/mm ³	Normal	Normal	High	High	
Neutrophils (%)	Normal	Normal	High	High	
Lymphocytes (%)	Reduced	Reduced	Low-normal	Reduced/normal	
T-cells (%)	Normal	Normal	Low-normal	Reduced/normal	
B-cells (%)		Normal at age 7 yrs,		511/1	
	Reduced	reduced at age 28 yrs	Low-normal	Reduced/normal	
IgM (mg/dl)	Normal then reduced	Normal then reduced	Normal	Reduced	
IgG (mg/dl)	Normal then reduced	Normal then reduced	Normal	Normal	
IgA (mg/dl)	Reduced	Reduced	Normal	Reduced	
Neutrophil					
chemotaxis	n.a.	Moderately reduced	Markedly reduced	Markedly reduced	
Oxidative burst*	Normal	n.a.	Normal	Normal	
CD18 ⁺ (%)	Normal	n.a.	n.a.	Normal	
$CD11a^{+}(\%)$	Slightly increased	n.a.	n.a.	n.a.	
$CD11b^{+}(\%)$	Slightly increased	n.a.	Normal	Normal	
$CD11c^{+}(\%)$	Increased	n.a.	Normal	n.a.	
C3 (mg/dl)	Slightly reduced	Normal	Reduced/normal**	n.a.	
C4 (mg/dl)	Normal	Normal	n.a.	n.a.	
KRECs	Reduced	Reduced	n.a.	n.a.	
TRECs	Reduced	Reduced	n.a.	Reduced	
			Escherichia coli,		
Organisms	Streptococcus	Streptococcus	Enterococcus species and	Stenotrophamonas	
isolated	pneumoniae	pneumoniae	Pseudomonas aeruginosa	and Prevotella specie	
Treatment	Antibiotics, IVIG,		1 seauomonus ueraginosu	Surgical debridemer	
	immunosuppressive	Antibiotics, IVIG,	Antibiotics, prednisolone,	abscess drainage,	
	therapy, levothyroxine,	immunosuppressive	granulocyte	granulocyte	
	renal transplant	therapy, levothyroxine	transfusion, BMT	transfusion, HSCT	
	Dead at 21 years from				
Outcome	transplant rejection and				
	suspected cerebral	Alive	Cured after BMT	Cured after HSCT	
	*				
	hemorrhage gous; Hom, homozygous; PSC				

blood cells; GH, growth hormone; n.a., not analyzed; KRECs, kappa-deleting recombination excision circles; TRECs, T-cell receptor

excision circles; IVIG, intravenous immunoglobulin; BMT, allogeneic bone-marrow transplantation; HSCT, allogeneic cord-blood hematopoietic stem cell transplantation.

* Oxidative burst tested using phorbol myristate acetate.

** Serum complement is mentioned to be reduced and normal in references 8 and 9, respectively.

15 16 17 18 19 20 21 22 23 N.B. All clinical immunological details of the previously reported cases may be found in references 8 and 9 (Colorado case) and 10 (Wisconsin case).

A Novel *RAC2* Mutation in Two Siblings Associated with Features of Common Variable Immunodeficiency 3

4 Alkhairy et al.

5

Supplemental material

CEPTER MARK

6 Supplemental Methods

7

8 Clinical investigations

9 Informed consent for this study was obtained from the proband and her relatives in
10 accordance with the principles of the ethics committee of the Tehran University of Medical
11 Sciences.

12

13 Immunological analyses

During follow-up, we performed different investigations according to previously published methods including complete blood counts, serum immunoglobulins levels¹, vaccine responses², frequency and/or function of regulatory T-cells (Tregs)³, naïve T-cell⁴ and recent thymic emigrant T-cells⁴. Neutrophil chemotaxis assay was performed using zymosanactivated serum as previously described ⁵.

19

20 Measure the serum level of BAFF

The concentration of BAFF was assessed in stored serum samples using the Human BAFF
(TNFSF13B) SimpleStep ELISATM Kit (Abcam, Cambridge, UK) following the
manufacturer's instructions. Two healthy controls were included. Statistical analysis (nonparametric analysis [Kruskal-Wallis test]) was performed using the Excel software.

25

26 Flow cytometric immunophenotyping

Venous blood was collected in EDTA tubes and the samples were processed within 36 h.
Antibody combinations were used for polychromatic 8-color surface staining panels and were
optimized as previously published⁶.

30

31 Whole exome sequencing (WES) and validation by Sanger sequencing

Alkhairy 3

ACCEPTED MANUSCRIPT

The methods for DNA library preparation, read mapping, variant analysis, and analysis 32 protocol for WES were performed as described previously¹. Sanger sequencing using specific 33 primers (forward GGAATGACATGGAGCTGGAC 34 and reverse AAGATGGGCACATTGAGGAC) was performed to validate the potential disease-causing 35 variant. The PCR reactions were performed as described previously¹. The purified PCR 36 products were sequenced by Macrogen Incorporated (South Korea). 37

38

39 **References**

Abolhassani H, Wang N, Aghamohammadi A, Rezaei N, Lee YN, Frugoni F, et al. A
 hypomorphic recombination-activating gene 1 (RAG1) mutation resulting in a
 phenotype resembling common variable immunodeficiency. J Allergy Clin Immunol
 2014:doi: 10.1016/j.jaci.2014.04.042.

- Rezaei N, Siadat SD, Aghamohammadi A, Moin M, Pourpak Z, Norouzian D, et al.
 Serum bactericidal antibody response 1 year after meningococcal polysaccharide
 vaccination of patients with common variable immunodeficiency. Clin Vaccine
 Immunol 2010; 17:524-8.
- Arandi N, Mirshafiey A, Jeddi-Tehrani M, Abolhassani H, Sadeghi B, Mirminachi B,
 et al. Evaluation of CD4+CD25+FOXP3+ regulatory T cells function in patients with
 common variable immunodeficiency. Cell Immunol 2013; 281:129-33.
- Oraei M, Aghamohammadi A, Rezaei N, Bidad K, Gheflati Z, Amirkhani A, et al.
 Naive CD4+ T cells and recent thymic emigrants in common variable
 immunodeficiency. J Investig Allergol Clin Immunol 2012; 22:160-7.
- 5. Leavey PJ, Sellins KS, Thurman G, Elzi D, Hiester A, Silliman CC, et al. In vivo
 treatment with granulocyte colony-stimulating factor results in divergent effects on
 neutrophil functions measured in vitro. Blood 1998; 92:4366-74.

ACCEPTED MANUSCRIPT

- 57 6. Boldt A, Borte S, Fricke S, Kentouche K, Emmrich F, Borte M, et al. Eight-color
 58 immunophenotyping of T-, B-, and NK-cell subpopulations for characterization of
 59 chronic immunodeficiencies. Cytometry B Clin Cytom 2014; 86:191-206.
- 60 7. Ambruso DR, Knall C, Abell AN, Panepinto J, Kurkchubasche A, Thurman G, et al.
- Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2
 mutation. Proc Natl Acad Sci U S A 2000; 97:4654-9.
- 63 8. Kurkchubasche AG, Panepinto JA, Tracy TF, Jr., Thurman GW, Ambruso DR.
- 64 Clinical features of a human Rac2 mutation: a complex neutrophil dysfunction
 65 disease. J Pediatr 2001; 139:141-7.
- 66 9. Accetta D, Syverson G, Bonacci B, Reddy S, Bengtson C, Surfus J, et al. Human
- 67 phagocyte defect caused by a Rac2 mutation detected by means of neonatal screening
- for T-cell lymphopenia. J Allergy Clin Immunol 2011; 127:535-8 e1-2.