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SI Text
The Data. The public transportation system in Greater London
consists mainly of an interconnected network of railways and
buses. In 2011, public transportation accounted for about 19
billion passenger kilometers representing 43% of total journey
stages, compared with 34% of journey stages by private trans-
portation, 21% walking, and 2% cycling (1). The main railway
networks comprise the London Underground network (also
called “the Tube”), the Overground rail network, and the DLR.*
Fig. S1 shows the map of these railway systems. The London
Underground railway dates back to 1863, when it opened serving
eight stations between Paddington and Farringdon. Since then, it
has grown to 11 lines totaling 402 kilometers of extension serving
270 stations. The London Overground network covers 83 sta-
tions on six lines to provide connections between areas outside of
Central London. The DLR is an automated light rail system with
45 stations in seven lines, which opened in 1987 to serve the
redeveloped Docklands area of London. In 2011, the volume of
passenger traffic was 9.5 billion passenger kilometers in Under-
ground, 645 million passenger kilometers in Overground, and 456
million passenger kilometers in DLR (1). The local government
body responsible for operation, management, and planning of
transportation in London is TfL.
In 2003, TfL introduced an automated fare collection system

called the “Oyster” card. This radiofrequency identification-
based smart card is a form of electronic ticket used on public
transportation system within the London fare zones. Users touch
the card on an electronic reader when entering the transport
system (a “tap-in”) and leaving the system (a “tap-out”) to deduct
the fare. The Oyster card records the time and place of these
transactions. The use of these smart cards is encouraged by the
offering of substantially cheaper fares compared with those in
cash. By June 2012, TfL issued more than 43 million Oyster
cards and their use accounted for more than 80% of all public
transport journeys in London (2).
For this study, we obtained from TfL the data containing each

single journey taken using an Oyster card for a subset of days
between February 14, 2011 and February 9, 2012, a total of 70
weekdays and 25 weekend days. Each Oyster card record (a
“tap”) contains the date of the transaction, anonymized user ID,
and the event time (measured in minutes) and event code. Event
codes represent transactions such as adding more credit to the
card or cancelling previous transactions. In this study, we con-
sider the events of entering or exiting an Underground, Over-
ground, or DLR stations only. Each tap-out record includes the
location of the first entry in the journey, and the corresponding
entry time. For the time period covered by our data, the com-
bined system of Underground, Overground, and DLR consisted
of 374 stations.† From the raw data, we excluded cases where
journeys were not completed, that is, tap-ins without a corre-
sponding tap-out. This was done by considering only records of
tap-out events, using the corresponding fields of time and loca-
tion of first entry as the information about tap-ins. The missing
tap-out events with a recorded tap-in can be safely treated as
missing from a population that is not of interest to this study,

because they are typically due to travelers who attempt to use the
card in an invalid way (as in the case where there is no minimal
sufficient credit while tapping-in) or due to TfL staff members.
After these exclusions, we obtained 210,764,572 journeys by
10,687,141 unique users, with an average of 1.71 journeys per user
per day, 1,756,756 unique IDs per day, and 3,010,922 journeys per
day. For the analyses reported in the main text, we restrict our
study to weekdays only, because the pattern of traffic between
weekdays and weekends are different and the effects of disrup-
tions on weekdays are more relevant. We discuss the differences
between weekdays and weekend days in SI Text, Assumptions
About Weekdays.

Lines of the London Tube and the Tube Graph. The lines for the
Underground and Overground were segmented according to the
official TfL classification, whereas the DLR was treated as a
single line. Stations that lie at two or more lines were treated as
single stations (for instance, King’s Cross), with the exception of
a few stations that have different identifier codes in the Oyster
card system (for instance, Edgware Road at Hammersmith is
distinguished from Edgware Road in the Circle Line). A full list
of stations and lines is available upon request. We call the un-
directed graph formed by the conjunction of 374 stations and
lines the “Tube graph,” where each station is a vertex, with an
edge between each pair of stations physically joined by tracks.

Assumptions About Weekdays. Weekdays are not strictly ex-
changeable. Standard rank tests (we used kstest2 from MAT-
LAB) reject the null hypothesis of pairwise exchangeability at a
0.01 level for any two weekdays using a “bag of minutes” rep-
resentation, where counts for every minute and every station are
pooled together for each particular day of the week, 1,200× 374
data points in each day. For instance, in the raw data there is an
increase on the overall number of journeys in late Friday evenings
compared with the rest of the week.
We nevertheless adopt the assumption of exchangeability of

weekdays (and exclude weekends from our analysis) for simplicity.
A quick visual inspection of the histograms of the bag of minutes
representation reveals no evident visual features separating week-
days during the busiest times (9:00 AM–6:00 PM) and this as-
sumption strongly simplifies the analysis. The difference between
weekdays and weekends, however, is very strong. Fig. S2 depicts a
summary of our data, illustrating what we claim to be three clusters
of days: weekdays, Saturday, and Sunday.

The Model for the Natural Regime. Passengers enter and exit the
system at different time points, where time is an integer from t= 1
(5:00 AM) to t= 1,200 (1:00 AM of the next day). Each value of t
corresponds to a minute. Each day consists of jV j2 × T outcomes;
jV j is the number of stations and T is the number of time points,
374 and 1,200, respectively. If dependence across time is to be
modeled at all, assumptions have to be chosen carefully on how
to decouple such dependencies in a model that is easy to interpret
and that can be fitted without much computational burden.
Patterns at different OD pairs are expected to show degrees of

similarity, particularly in geographically close places. However,
we should differentiate trend similarities from stochastic depen-
dencies. Trend similarity states that model parameters for dif-
ferent stations or OD pairs over time should show some proximity
according to suitable similarity metrics. Stochastic dependencies
are probabilistic associations among random variables modeling
different locations. If we postulate that (i) each passenger decides

*In addition to these main railway systems, there is a tram system (called Tramlink) of
28 km with 39 stops serving the south London boroughs of Croydon and Merton. The
traffic generated by Tramlink in 2011 was only 148 million passenger kilometers. We do
not include Tramlink in our study.

†The Blackfriars London Underground station and the DLR stations of Stratford, Bank,
and Canning Town were mostly closed during this period.
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independently when and where to leave from, and where to ar-
rive at, and (ii) there are no physical constraints on the journey,
then all OD counts will be stochastically independent given time
of the day. The first assumption is approximately true when most
passengers do not enter the system in groups and entrance times
are not jointly affected by stochastic factors (such as delays on a
bus bringing two passengers planning to enter the same station).
The second assumption is false, taking into account that pas-
sengers cannot move independently within the system, and that
variability on train arrivals will associate the times that different
passengers take to arrive at their destinations. Moreover, given
the entrance times of passengers, their exiting times are random
but with a degree of predictability.
Our approach is to propagate stochastic dependencies and

model exit rates through three sets of processes. The first set
describes howmany passengers enter a station to start a journey at
particular times (entrance processes). The second set describes
for how long passengers remain inside the system according to
their origin and time of entrance (negotiation processes).
Stochastic dependence over time is accounted by these two sets.
The third set of processes containsOðjV j2Þmodels for OD counts
conditioned on the state of the negotiation processes, but with-
out any conditional stochastic dependence across time (exiting
processes). We ignore trend similarity in our fitting process, that
is, no regularization is used to penalize differences across models
for different stations or OD pairs. This estimation procedure is
justified by the large amount of data available and the compu-
tational cost of methods such as probabilistic matrix factorization
(3). We describe the three sets of processes as follows.
The model for the entrance processes. Let Lit be the number of
passengers entering station Si at time t. We define Lit ≡ 0 for t< 1
and model the expected values of Lit for t≥ 1 given the entire
past as

E½LitjPAST,Lit > 0�=
 
θLit +

XW
w=1

βLwi
Liðt−wÞ

!
+

, [S1]

where ðxÞ+ means maxðx, 0Þ, and

PðLit > 0jPASTÞ≡ πLit . [S2]

Parameter θLit represents an unconditional time-dependent
mean and explains most of the variation of the data. That is,
given θLit, present behavior is mostly independent of past behavior.
Assuming passengers arrive independently given a particular
time of the day and location, there should be no dependence
on the past at all. Our AR component captures weaker stochastic
associations (e.g., people arriving in batches from buses before en-
tering the station), but the AR coefficients fβLwi

g have little impact.
The model does not account for closed stations or unusual

behavior. Standard autoregressive models (that is, with no θLitÞ
are sensitive to station closures with some delay, as illustrated in
SI Text, Forecasting, the AR Model, and Sensitivity Analysis for the
Natural State Predictive Performance, but they provide no basis
for prediction under a disrupted regime nor are they good models
for the natural regime. Here, we are interested in modeling stan-
dard behavior, because we do not aim at predicting when external
shocks happen (not possible with the data we have), but at deriving
what happens when an external shock affects the system.
Parameters θLit, t= 1,2, . . . , 1,200 are fitted using cubic spline

smoothing. We regress Lit on t, where Lit > 0. MATLAB function
csaps [version 8.0.0.783 (R2012b)] is used with default parame-
ters, which automatically selects the degree of smoothness. To
avoid problems with extrapolation, we set θLit to zero for t∈
½0, kbottom�∪​ ½kupper , 1200�. Position kbottom, typically taking place in
the first few minutes of the day, is defined as the last time point
before some tap-in happened in any day in our data. Position

kupper is the first time point, typically taking place in the last few
minutes of the day, such that no tap-in happened afterward in
any day of our data.
Parameters πLit, 1≤ t≤ 1,200, are fitted using decision trees by

classifying Bernoulli variables fLit > 0g on t using R function
rpart (version 4.1-8).
These estimates are then plugged into a constrained least-

squares regression problem to fit the set fβLwi
g to the residuals Lit −

θ̂Lit, subject to positivity on the expected value of each training
point. We use pcls, a function in the mgcv package (version
1.8-2) for nonparametric generalized additive models in R (4).
The fitted model is dominated by the parameters θLit, with

fitted AR coefficients fβLwi
g having little impact, as expected.

The model for the negotiation processes. For each station Si and time
t, we have a (compressed) representation of the number of
passengers who entered the system via vertex Si and have not left
the system by time t− 1. This representation is called a presence
table. The presence table is the empirical distribution of such
passengers by the amount of time they have been inside in the
system. This empirical distribution is given in seven coarsened
time brackets of ½1,10�min, ½11,20�min, . . ., ½50,60�min, and more
than 60 min. For each station Si and time t, we have the vector
Mit ≡ ðM1

it , . . . ,M
7
itÞ representing counts at these seven levels. For

example, M2
it represents the number of passengers inside the sys-

tem at time t− 1, who have started at station Si, and who have
entered the system during the interval ½t− 20, t− 11�.
The temporal evolution of the entries ofMit is modeled through

a cascade of nonparametric binomial regression models. We as-
sume that, given time t, variation on Mk

it ð1≤ k≤ 7Þ depends only
on Mk

i,t−1 and Mk−1
i,t−1, being conditionally independent from the

more distant past. The model for Mk
it for any given day is

Mk
it jPAST∼Binomial

�
Mk

i,t−1 +Mk−1
i,t−1, p

k
it

�
, [S3]

where we define M0
i,t−1 ≡Li,t−1. Parameter pkit is a different param-

eter for each station Si and time of the day t. The model reflects
the fact that whoever stays in the kth time bracket came from
either the previous cohort of people in the same bracket k, or
from bracket k− 1 (which for k= 0 corresponds to those who
entered the system the minute before). For each station and
bracket k, we fit the 1,200 fpkitg parameters with the mgcv package
for nonparametric binomial regression using t as the covariate.
Although one should expect very weak dependence‡ between en-
trance counts Lit and Lit′, we should expect much stronger (mar-
ginal) dependence within fMk

ikg across time, for the physical
reasons explained above.
The model for the exiting processes. Let Nijt be the number of pas-
sengers exiting (tapping-out) at station Sj at time t, having started
at station Si. Let Rijt be the sum of the number of passengers in
presence table Mit, but only for the brackets within 10 min of the
median commute time from Si to Sj, the median estimate being
the empirical median of the data. For instance, if the median
time is 35 min, the corresponding brackets are f½21,30�, ½31,40�,
½41,50�g and Rijt =M3

it +M4
it +M5

it. The model for Nijt is then

E
�
NijtjPAST

�
=Rijt × qijt. [S4]

Regression is done separately for each of the jV j2 models, by
fitting Nijt=Rijt as a nonparametric function of t and using the
least-squares cost function. MATLAB’s csaps is used again.
Notice that, in principle, the data could allow for Nijt >Rijt,

because measurement error or misuse of cards leads to tap-outs

‡Again, we are speaking of probabilistic dependence here: There is strong evidence that
the means should vary smoothly over time. However, given the model, the Lit counts at
different times should be essentially independent.
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not being matched to some tap-ins. Nevertheless, in practice, this
never happens, because Rijt is usually far larger than Nijt. Rijt
should therefore be considered a convenient summary of the
presence table. Notice also that the dynamic models for the
negotiation processes do not explicitly depend on Nijt. The raw
observed data for all exits is still used to fit the model for Mit.
Mk

i,t+ 1 is a function of the set fLit′g for t′< t and the observable
counts fNt

idt
′ g, the number of passengers leaving the system who

were inside the system for t′ minutes, and who left the system at
time t via exit point Sd. Even though Nt

idt
′ is calculated to derive

the presence tables to fit the negotiation process, we do not
model Nt

idt
′ directly, but only via the aggregates Nidt and Mk

it.
Therefore, part of the observable information in the data are lost
when compressing it into such models. We nevertheless believe
this is a fine enough degree of modeling for our purposes, with
Nt

idt
′ playing no particular role in the sequel.
A model for Nijt automatically gives a model for Njt ≡N · jt

(number of people exiting station Sj at time t) and Ni · t (number
of people leaving at time t who started at station Si). Parameters
such as the presence table evolution pkit (Eq. S3) provide in-
formation about rate of evasion for passengers who started at Si,
and qijt (Eq. S4) can be used to compare destinations by how they
absorb passengers from different origins. Some exploratory
analysis can be done by clustering such curves, which we leave for
future work.
In the next section, we will also use this model to test the

assumption of “clumpiness” in the exiting process: given Rijt, tap-
out count Nijt does not follow a binomial process with parameter
qijt. The predictive coverage of Nijt given Rijt is not good using the
binomial variance. An explanation is the fact that passengers
arrive jointly in trains, so there will be a common source of
variability because of this quantization effect on the time of
departure. This effect is not negligible because we are looking at
individual OD levels. Even if we aggregate OD pairs to predict
the overall exit counts for a particular station, we must take this
into account. For each destination Sj we also introduce the pa-
rameter ϕj, which does not vary over time. The parameter reg-
ulates the covariance of any pair of Bernoulli variables
fX ðmÞ

ijt ,X ðnÞ
ijt g, where X ðmÞ

ijt is the binary indicator that a passenger
m is leaving at Sj at time t, having started at Si. Their correlation
is given by ϕj × qijt × ð1− qijtÞ, with ϕj = 0 in the binomial case. We
estimate ϕj by a method of moments.

Effect of Traffic Stickiness. Another aspect of the model not cap-
tured by the blackbox models is that our model relates entrance
behavior to exit behavior. This is reflected by the station-level
parameter ϕj, which dictates the association level between in-
dividual exit events from the network. Our assumption that
there is a sizeable level of dependence on how people leave
stations can be explained by the fact that people are grouped
within trains. One way of testing the hypothesis that ϕj > 0 is
by the predictive coverage of a model with our estimated fϕjg
parameters.
At any time point t, conditional on the presence table variables

fMk
itg, we generate predictive confidence intervals of three dif-

ferent magnitudes (90, 95, and 99%) and compare them against
the intervals under the assumption fϕj = 0g. We generated ag-
gregated confidence intervals for each Njt by summing the means
and variances of the predicted Nijt, which are all independent in
the model across stations and time once we conditioned on fMk

itg.
We then use a normal approximation to define the (90, 95, and
99%) predictive confidence intervals.
Let X ðmÞ

ijt be the binary event of a particular passenger m
leaving station Sj at time t, given the passenger is counted as
being in the presence table summary Rijt for Njt. Referring to the
model for Nijt, we have

E
h
X ðmÞ
ijt jRijt

i
= qijt,

where the association among passengers is given by

Corr
�
X ðmÞ
ijt ,X ðnÞ

ijt jRijt

�
=ϕj.

This implies

Var
�
NijtjRijt

�
=Rijtqijt

�
1− qijt

��
1+
�
Rijt − 1

�
ϕj

�
. [S5]

To estimate ϕj, we first estimate qijt as before. Then, for a fixed
Sj, we calculate the empirical variance of the corresponding
Bernoulli trials, averaged over all days and time points, and solve
the average of Eq. S5 for ϕj. When the estimate is negative
(which is possible, because qijt was estimated separately), we set
ϕj to zero.
The predictive intervals obtained under the dependent model

averaged over the five folds were ð0.87, 0.91, 0.95Þ. For the (bi-
nomial) model with ϕj = 0, the intervals were severely under-
dispersed, with a coverage of ð0.66, 0.73, 0.83Þ (all SE under
0.0001). This provides strong evidence for a need to include a
dependence structure among the Bernoulli trials, which in our
case has physical explanations.
Conditioning on the internal scale of the system (variables

fMk
itg) helps interpretability, because this conditioning allows

one to separate variability owing to fluctuations in the entrance
numbers at the origin from the degree of dependence between
underlying Bernoulli trials of the exit events. Using the physical
distance between each station and Oxford Circus as a surrogate
to how frequently trains depart a station, we noticed a positive
Spearman rank correlation of 0.32 between our estimates of fϕjg
and the physical distance, for our universe of 374 stations.
Fig. S3 shows the average 99% predictive confidence interval

for a set of 14 test days independent of 56 d used for fitting the
parameters.

Forecasting, the AR Model, and Sensitivity Analysis for the Natural
State Predictive Performance. In the main text, we describe the use
of a plain AR model for blackbox prediction of aggregated exit
counts. The model is simply

E
�
NjtjPAST

�
= βAR0

+
X30
w=1

βARw
Njðt−wÞ. [S6]

The model is analogous to the entrance process in SI Text, The
model for the entrance processes, except that no smoothing pa-
rameter θLit is used. The method of least-squares is used to fit
this model.
For all models, including the plain AR model, step-ahead

forecasts are done by propagating means. This ignores the
truncation at zero from Eq. S1 and similar equations, as positivity
is nearly always satisfied and expected values then become linear
functions of past expected values for all models. For instance,
given tap-out counts observed up to time t0, we forecast Njt for
t= t0 + 1, t0 + 2, . . . , t0 + 30 using the corresponding estimated
AR model as follows:

i. Let Cw =Njðt0+1−wÞ for w= 1,2, . . . , 30
ii. For i in 1,2, . . . , 30
iii. Let N̂jðt0+iÞ = β̂AR0

+
P30

w=1β̂ARw
Cw

iv. For w in 30,29, . . . , 2, let Cw =Cw−1
v. Let C1 = N̂jðt0+iÞ.

This is just an application of iterated expectations to Eq. S6.
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The blackbox spline model used as a competitor is a regression
function from time index t to expected outcome Njt,

E
�
Njt
�
= fjðtÞ,

for some unknown function fjð · Þ, where 1≤ t≤ 1,200. A differ-
ent spline model is fit to each station. MATLAB function csaps
for cubic spline fitting is used, as in SI Text, The Model for the
Natural Regime.
To provide further evidence that our model for the natural

regime is robust to overfitting, despite estimating every single OD
pair traffic, we did further experiments at a coarser resolution of
aggregation.
The task is to predict the aggregated exits for all stations in

zones 1 and 2, the busiest zones in London, for traffic originated
only in zones 3–9. A new blackbox spline model has to be fitted,
because the one in the previous section was exclusively for the
full aggregation. Our model, however, is exactly the same, but
now aggregating different ODs.
With the same fivefold cross-validations setup, the average

RMSEdifference per load amounts to 0.001 (SE 0.002), providing
more evidence that the OD model is robust.
Fig. S4 illustrates a comparison among the proposed tracking

model, the blackbox spline model, and the AR model for Oxford
Circus station on Monday, February 14, 2011. Oxford Circus is
one of the Tube stations with the highest traffic.

The Probabilistic Flow Model. Although more sophisticated net-
work tomography models are available for accurately estimating
traffic volumes from and to pairs of stations (e.g., refs. 5–9), they
are in general computationally infeasible at the scale of our
massive and complex system, and to the best of our knowledge
there is no available software applicable to this study. The ap-
proach we take highly simplifies computation of the estimators
by relying on simple structural features of the network along a
rich source of survey data measuring routes taken by actual
passengers.
The RODS is a survey of passenger destinations and the routes

chosen (10). For each respondent, his or her origin SO and
destination SD are recorded, along with change points taken
during the passenger’s journey. We used the 2012 and 2013
surveys, in which 50,410 and 49,253 distinct routes were ob-
served, respectively, with a total of 8,822,636 journeys.
We need an estimate of πOD

h,i,l, the probability of passing first
through Sh then Si at line l, during a journey from SO to SD. In
our context, given a RODS entry, the most important piece of
route choice information for a SO, SD journey will be the last
point of change.§ From this, given a line closure event that takes
place in the sequence Kl ≡ fSkð1Þ, . . . , Skðn−1Þ, SkðnÞ,Skðn+1Þ, . . . ,
SkðMÞg in line l, we obtain πOD

kðnÞ,v,l, for Sv ∈ fSkðn−1Þ, Skðn+1Þg. Let
the shortest path in line l between two stations be defined as the
shortest of all paths taken with respect to the subgraph of the
Tube graph given by stations from line l only, with the respective
edges. Given the last point of change SX for a trip starting at
some arbitrary SO and ending at some SD ∈Kl, we define

AlignedðX , kðnÞ, v,D, lÞ=8>><
>>:

1, if   SX   is  in  l  and  the  sequence
SX −⋯SkðnÞ − Sv −⋯SD
is  the  shortest  path  in  l  between  SX   and  SD.

0, otherwise.

[S7]

The above definition allows for the cases SX = SkðnÞ and Sv = SD.

The idea is to express πOD
kðnÞ,v,l as a function of πOD

ðX , lÞ, defined as
the probability of some SX at l being the last point of change in a
journey from SO to SD. The relationship is

πOD
kðnÞ,v,l =

X
SX

πOD
ðX , lÞ ×AlignedðX , kðnÞ, v,D, lÞ. [S8]

That is, we sum over the probabilities of all possible last points of
change for the ðSO,SDÞ journey, but including only those SX such
that{ the final leg of the journey is SX →⋯SkðnÞ → Sv →⋯SD in
line l.
To estimate πOD

ðX , lÞ, we assign it a prior and use RODS data to
calculate its posterior, using the posterior expected value as our
estimate. Each RODS record specifies the last point of change
for particular OD pairs, and the number of passengers who made
that choice. Because RODS data do not specify the line of the
last change point SX, which might share multiple lines with SD,
we assume it is the line with the least number of hops between SX
and SD.
The prior for πOD

ðX , lÞ for all possible pairs of stations SX and line
l is a Dirichlet distribution on pairs ðX , lÞ with hyperparameter
entries n× αðπOD

X ,l Þ, where n= 10 is an effective sample size
parameter. Each hyperparameter αðπOD

X ,l Þ quantifies a prior
choice for the corresponding probability of pair ðX , lÞ withP

SX

P
lαðπOD

X ,l Þ= 1, the sum going over all choices of station SX
and line l.
Hyperparameters αðπOD

X ,l Þ are set as follows. Let c1, c2, c3 be
three auxiliary hyperparameters of our prior. Let XL be the set
of triplets (station, line, and cost) defined as follows:

i) If SO shares a line l with SD, add ðSO, l, dÞ to XL where d is
the distance in hops between SO and SD on l.

ii) If SO does not share any line with SD, but one can move from
SO to SD with exactly one line change l′→ l (where SO is on l′
but not l, and SD is on l but not l′), add to XL the triplet
ðSX , l, d+ c2Þ if the distance d for SX (number of hops from
SO to SX along l′ plus hops from SX to SD along l) is the smallest
among all stations on l. In case of ties, add all tied pairs.

iii) If moving from SO to SD requires at least two line changes,
add ðSX , l, d+ c3Þ to XL if (i) SX and SD are on l, (ii) SX
minimizes the sum d≡ h1 + h2, where h1 is the number of
hops between SX and SD on l and h2 is total number of hops
between SO and SX in the Tube subgraph given by the union
of all lines other than l.

iv) If SX fails all three criteria above but it is present in some
RODS entry as being the last point of change between SO and
SD, add ðSX , l,∞Þ to XL for all l containing both SX and SD.

With these criteria, we first set αðπOD
X ,l Þ to zero for any ðX , lÞ not

in XL. Notice that the implied prior is partially empirical, be-
cause the fourth item above looks at RODS data. For all ðX , lÞ
that enters XL via condition iv above, we set (for now, un-
normalized) αðπOD

X ,l Þ= 1=374.
For all ðX , lÞ in XL via i, ii, or iii above, we define

sXl = max
XL

ðcÞ− cðX , lÞ+ 1,

where cðX , lÞ is the corresponding cost entry of ðSX , l, cÞ in XL,
and maxXL ðcÞ is the maximum of all costs in set XL. We set
hyperparameter αðπOD

ðX , lÞÞ to sXl if maxðsXlÞ− sXl ≤ c1, or set it to
baseline value 1=374 otherwise. This thresholding adds an extra

§Notice the last point of change is SO itself if no changes are made.

{This is a simplifying assumption, because it discards the possibility of passengers’ mis-
takes or irrational behavior such as passing through the destination of interest and then
having to come back. However, we do not consider it worthwhile to assign positive
probabilities to these events, because it considerably complicates the problem while
having no obvious advantage.
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penalty to ðX , lÞ choices that are too far from the optimal choice
given by maxðsXlÞ. Finally, we normalize αðπOD

X ,l Þ so that it sums to
1. Hyperparameters ðc1, c2, c3Þ are set as 5,3,7 by trying different
hyperparameter values and checking whether the resulting prob-
abilities fαðπOD

X ,l Þg were plausible according to the background
knowledge of the authors.
For the station closure case, where we observe some station SK

closing but lines around it remaining open, we estimate πOK
h,K

similarly, except that the sum in Eq. S8 is now over all lines.
Notice that we could refine our notion of missing outflow

by ignoring flows that go through some closed segments in Kl.
That is, we would redefine πOD

kðnÞ,v,l for events SO →⋯→ SkðnÞ →
Sv →⋯SD to be nonzero only where SkðnÞ is the first station in Kl
in this route. The definition of ϕOUTðnÞ (Eq. 3 of main text) in-
cludes trajectories that are not possible under disruption (that is, all
those of the type SO →⋯→ Skðn∓1Þ → SkðnÞ → Skðn±1Þ →⋯SD). We
chose not to account for this refinement to avoid complicating
the definitions of inflow and outflow because otherwise we
would need different definitions of πOD

kðnÞ,v,l for each case. In our
sensitivity analyses in SI Text, Sensitivity Analyses we discuss
models for stations only at the endpoints of a disruption, where
this is not an issue.

Extracting Disruption Information from the TfL Logs. For the 70 d
covered by our smart-card data we also obtained logs of recorded
disruption events. Unplanned closures for the line segment events
were selected as the ones labeled as “Part Suspended” or “Sus-
pended” in the logs. For the station closure events, the only
relevant label was “Closed.” This resulted in 3,037 raw entries of
line disruptions and 1,335 raw entries of station events. Each raw
data point is characterized by the line of the disruption event, its
two endpoints (if a line event), the starting and ending time, plus
some extra textual information that records other relevant pieces
of information, such as the cause of the event. Many events are
represented by multiple entries. We merged entries if they had
the same endpoints, happened in the same line, and the end time
of an event was within 10 min from the start time of the next
event. We excluded station events if the corresponding station
participated in a line event at the same time. We also excluded
Overground events, a service which on average is much less
frequent than the Underground and DLR. After merging, we
also excluded events less than 10 min long. This resulted in 180
line events, generating 786 data points corresponding to differ-
ent stations in the ROI of each event. This also resulted in 96
station events, resulting in 191 data points corresponding to the
neighbors of each affected station. Table S1 shows the distri-
bution of line events broken down by line.
We want to filter and classify the entries in the available TfL

logs in two ways: (i) Disruptions that take place in a single di-
rection only are excluded, and (ii) events that have delays hap-
pening elsewhere in the line are marked as such.
To filter line segment closures that took place in only one

direction, we searched for the presence of the substrings “bound”,
“w/b,” and “clock,”meant to detect the presence of the keywords
“west-/east-/north-/south-bound” in the description, or “clockwise”/
“counterclockwise” (used for the Circle Line of the Underground).
For classifying line segment closures as being accompanied or

not by delays, we consider an event as a delay if the word “delay”
was included in the textual description of the event. Many events
were distinguished as “severe delays,” but in our definition of the
delay indicator we do not distinguish between severity levels.

A Note on Data Fitting. It should be noted that the data under the
natural regime and the data under disruptions are not completely
independent. We exclude a day of Ljt, Mjt, and fNijtg records
when fitting the respective entrance, negotiation, and exiting
processes if there is any disruption happening at Sj in the particular

day. However, we do not exclude any records for the other
processes. Recall that the negotiation processes for all stations
are functions of all exit counts, and that there are weak but
nonzero stochastic dependencies between time points within
and time points outside disruptions. As a result, a minor degree
of dependence between the natural regime and disruption data
exists. However, we do not observe any impact of this de-
pendence in our analysis. In particular, we repeated our anal-
ysis without excluding any records from the natural regime and
observed no qualitative difference. To illustrate this, the two
models obtained from fitting the line disruption model without
distance covariates are now

E0

�
N

S½kðnÞ�
t1: tF

	
= 1.14ϕNAT − 1.25ϕIN + 0.16ϕOUT, [S9]

E1

�
N

S½kðnÞ�
t1: tF

	
= 1.24ϕNAT − 1.21ϕIN + 0.08ϕOUT. [S10]

SDs for the no-delay case are 0.02, 0.11, and 0.02. SDs for the
delay case are 0.02, 0.07, and 0.02. Compared with Eqs. 6 and
7 in the main text, it is clear that no significant difference exists.

Visualization of Distance Functions. In Fig. S5A we show a visu-
alization of the quadratic distance functions f0ðϕDISTÞ and
f1ðϕDISTÞ as given by fitting the models for events without delays
ðf0ð · ÞÞ and with delays ðf1ð · ÞÞ for line disruptions, as discussed in
the main text. The functions are evaluated at observed ϕDIST

points present in the data.
However, recall that the quadratic coefficient for f1ð · Þ had no

strong statistical significance. To perform some sensitivity anal-
ysis on how relevant the quadratic term is for both functions, we
added yet another nonlinear transformation of ϕDIST to generate
the functions

gx
�
ϕDIST

�
≡ γ3x + γ4xϕ

DIST + γ5xϕ
DIST2 + γ6x log

�
ϕDIST

�
.

The corresponding plot is shown in Fig. S5B. Whereas the
shape for the no-delay curve has not been dramatically affected,
the curve for the delay case confirms that the nonmononicity of
f1ð · Þ is not strongly supported. Recall that we hypothesize that
distance functions should be decreasing to penalize outflows,
because passengers who are far from their destination are ex-
pected not to tap-out earlier, but to look for an alternative route
inside the system. The estimated function for the events with
delays conforms to this hypothesis. As explained in the main text,
there are explanations of why this is not the case for the events
without delays. For a final perspective, Fig. S5C shows the case
when f0ð · Þ and f1ð · Þ are constrained to be linear. Once more, the
overall conclusion is that the evidence for the no-delay case
points to an increasing function, whereas the delay case points to
a (more intuitive) decreasing function.

Visualization of Raw Data and Predictions. Fig. S6 provides scat-
terplots of the outcome variable and selected covariates under the
two cases of full ROI or endpoints only. Fig. S6Amay suggest that
ϕNAT alone provides a good model for observed exit counts
under disruption. Although the fit is good, including inflows and
outflows in the model improves its predictive abilities compared
with a model with ϕNAT only as shown in Fig. 3 (main text) and
Fig. S7A and discussed in SI Text, Sensitivity Analyses below (in
particular Table S4). Also, models with inflow and outflow co-
variates such as Eqs. 6 and 7 from the main text,
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E0

�
N

S½kðnÞ�
t1: tF

	
= 1.15ϕNAT − 1.28ϕIN + 0.16ϕOUT,

E1

�
N

S½kðnÞ�
t1: tF

	
= 1.24ϕNAT − 1.23ϕIN + 0.09ϕOUT

explain scenarios where the expected outcome might be less than
the expected natural outcome ϕNAT, depending on the magnitude
of ϕIN with respect to ϕNAT and ϕOUT. Without the ability of
explaining decreases in expected outcome under disruption, a
theory of disruption effects is incomplete. Comparing the two
models above against the models with ϕNAT only,

E0

�
N

S½kðnÞ�
t1: tF

	
=−0.29+ 1.10ϕNAT,

E1

�
N

S½kðnÞ�
t1: tF

	
=−0.22+ϕNAT,

it is clear that these do not account for cases where stations can
have fewer than ϕNAT tap-outs under disruptions. Consider the
case of Ealing Broadway station (Fig. 4 in main text; see also
Fig. S1), which has fewer tap-outs if either its neighborhood in
the Central line or its neighborhood in the District line closes
down. A model with ϕNAT only cannot account for this. A theory
of system-wide transportation behavior under shocks should al-
low for this context-sensitive variability, which we achieve using
the fundamental concepts of inflows and outflows. Our frame-
work of inflows and outflows interacting with counterfactual out-
comes (Eq. 1, main text) follows the philosophy of making a
model simple, but no simpler than it should be, unlike the model
with ϕNAT only.
Fig. S7 A and B compare the true outcomes under line dis-

ruption, for each of the affected stations (768 cases), against the
leave-one-out predictions as given by the model combining de-
layed and nondelayed events. Fig. S7 C and D perform the
analogous comparison for single-station disruption events.

Sensitivity Analyses. In SI Text, Delays and endpoint models we
evaluate how delays interact with outcomes and under which
conditions. A more in-depth look at predictive results is dis-
cussed in SI Text, Predictive results. The effect of distance mea-
sures and its evaluations is further explored in SI Text, Distance
model. Finally, in SI Text, Temporally fine-grained predictions we
comment on predictive results for the 1-min resolution setup.
Delays and endpoint models. Consider an alternative model for the
line segment disruption problem, where the effect of delays is
additive, as opposed to having two separate models for each state
of the delay variable:

E


N

S½j�
t1: tF

���PAST�= β0 + β1ϕ
NAT + β2ϕ

IN + β3ϕ
OUT + β4ϕ

DELAY .

The fit of this model is summarized in Table S2. It has a goodR2

fit compared with the individual models for ϕDELAY = 0 and
ϕDELAY = 1, but the linear coefficient of the delay covariate does
not significantly contribute to the model. However, consider the
case where given a disrupted segment K= fSkð1Þ, . . . , SkðMÞg, the
ROI is composed only of the endpoints fSkð1Þ, SkðMÞg (again,
excluding those that are not connected to any station outside
K—which will be the case for stations at the end of a line). A
priori, this particular ROI suggests behavior that differs from the
average station in K, as they receive passengers from line l (as
opposed to midpoints SkðnÞ in K with external connections; in
that case, passengers would be planning to change lines at SkðnÞ).
We fit three other models for this subset of stations, again ig-
noring distance covariates to provide a set of models easier to

interpret. These other three models are shown in Table S2.
These models in general follow the theoretical structure of
having positive outflow and negative inflow contributions, and no
strong evidence for intercepts. There is evidence of different
behavior between the models with and without delays—in par-
ticular, on the contribution of outflows, which is precisely the
flow measure we believe to be most affected by delays. Differ-
ences in the contribution of outflows were also detected for the
model regulated by average distance covariates and all stations,
as discussed in the main text. At the same time, the additive
contribution of the delay indicator is not significant (Table S2).
Predictive results.Fig. 1 in the main text shows predictive results for
number of tap-outs per minute. To give a sense of scale for the
RMSE using Underground stations as examples, the RMSE for
the 30-min step-ahead problem is 24.9± 0.54 for Oxford Circus
(average daily traffic per minute at the order of 60) and
22.35± 1.69 for King’s Cross (average daily traffic per minute at
the order of 50).
Table S3 shows predictive results corresponding to Fig. 3 in the

main text. The table also addresses how the result changes under
different delay conditions. Each of the four panels shows results
for a different model: top left is for our model in Eq. 5 (main text)
applied to all data, as in Fig. 3A (main text); top right and bot-
tom left is our model in Eq. 5 (main text) applied to subsets of
data classified according to ϕDELAY; bottom right is for our
model in Eq. 8 (main text) applied to all data, and corresponds
to the graph in Fig. 3B (main text).
The columns in Table S3 are as follows:

• Filter: indicates which test points are being used in the calcu-
lation of the respective statistics. A value of n for Filter means
that only test points with an outcome variable of size n or
more are used in the calculation of the remaining items in
the respective row (n= 0 being the complete set of test folds);

• Sample: the number of test points that satisfy the filter con-
dition;

• Error: average “absolute error,” which for each test point is
the absolute value of the difference between the test tap-out
and the tap-out predicted by the respective model. This is
averaged over the selected test points. For line disruptions,
the model is the one in Eq. 5 of the main text, whereas for
station disruptions the model is the one in Eq. 8 of the main
text;

• DiffN: difference between the absolute error of the model
with ϕNAT as the only covariate, and the absolute error of
our respective model, averaged over the selected test points;

• pN: P value for the signed paired t test, null hypothesis
DiffN = 0 against the alternative hypothesis DiffN > 0;

• DiffU: difference between the absolute error of the model
with uniform probabilities for the passenger flows, and the
absolute error of our respective model, averaged over the
selected test points;

• pU: P value for the signed paired t test, null hypothesis
DiffU = 0 against the alternative hypothesis DiffU > 0.

Concerning the results for station disruption (bottom right
of Table S3), although there is no statistical difference with
respect to the uniform probability case, overall our model shows a
consistent advantage over this competitor. Flow probabilities
seem to matter less in this problem. In particular, without
distance covariates for simplicity the model for station exitsk is
1.10ϕNAT + 0.21ϕOUT + 0.25ϕOUT′. That is, the contributions
of ϕOUT and ϕOUT′ are approximately the same in this case.

kAll coefficients significant at a 0.01 level, SEs approximately 0.08 for the two outflow
covariates.
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Distance model. The main motivation for including distance cova-
riates in our analysis is to provide some insight of the impact of
outflows as distances to other stations in a disrupted segment
change. However, although the contribution of the distance
covariates to themodel structure is strongly statistically significant,
it provides no predictive gain. Table S4 illustrates this by com-
paring the predictions between our full model with distance
covariates and the simpler model, which uses covariates ϕNAT,
ϕIN,ϕOUT in the ϕDELAY = 1 case. The distance covariates only
give a small but not statistically significant advantage at the
cases with the larger stations.
To assess more complex uses of distance covariates, consider

the case where, instead of averaging over distances with respect to
all stations in the affected line, we weight each flow contribution
by destination before aggregating them. In particular, we down-
weight πOD

kðnÞ,v,l × μ0ODt;t1 by a function guðdistðSD, SkðnÞÞÞ, where
guð · Þ is some nonlinear transform of a normalized Euclidean
distance distð · , · Þ between the stations.** Moreover, we once
more avoid “self-exits” by summing over SO ≠ SD only. There-
fore, for each function guð · Þ, we define the covariate ϕOUT

u ðnÞ as

ϕOUT
u ðn, tÞ≡

X
SD∈KlnSkðnÞ

X
SO≠SD

X
Sv∈NKl

ðnÞ

πOD
kðnÞ,v,l × μ0ODt;t1

gu
�
dist
�
SD, SkðnÞ

��

ϕOUT
u ðnÞ≡

Xt=tF
t=1

ϕOUT
u ðn, tÞ



F.

[S11]

We use a set of four different functions, g1ðxÞ= 1, g2ðxÞ= logðxÞ,
g3ðxÞ= x, and g4ðxÞ= x2, to characterize four distinct covariates.
As shown by results in Table S4 (columns Diff2 and p2), this extra
complication did not provide a measurable payoff, whereas the

model described in the main text provides an easier interpreta-
tion of the role of distance in our outflow measures.
Temporally fine-grained predictions. One final sensitivity analysis
experiment covers the case where our model is not for the average
exit count N

SkðnÞ
t1: tF , but for each individual minute: NSkðnÞ

t . As we
mentioned in the main text, the model and the procedure for
fitting it is directly applicable to any subset of t1 : tF, because it
relies on the same counterfactual exit counts generated for the
entire period. Treating each time point as a separate training
point, we have a sample of 17,844 measurements for the case
without delays and 21,953 for the case with delays. We fit models
without the distance covariates, obtaining

E0

h
N

SkðnÞ
t

i
= 0.49+ 1.13ϕNAT

t ðn, tÞ− 1.23ϕINðn, tÞ
+ 0.14ϕOUTðn, tÞ,

E1

h
N

SkðnÞ
t

i
=−0.03+ 1.19ϕNAT

t ðn, tÞ− 1.02ϕINðn, tÞ
+ 0.10ϕOUTðn, tÞ,

where all parameters are significant ðP< 10−15Þ except the intercept
for the model with delays, assuming independence of the time
points. Table S5 shows cross-validated predictive results for these
two models using the same criteria as in the previous predictive
evaluations. Cross-validation is performed by using as the test set
the whole time series of one station at one disruption event. Errors
are averaged over test folds, each fold averaged over time.
By comparing Table S5 to the results in Table S3, where errors

varied between 3 and 11 persons per minute, it is evident that
prediction at individual minutes is more difficult than averages over
t1 : tF. We also improve the simple baseline based on ϕNATðn, tÞ only
by a small margin (all stations, 0.3–1 in the delayed case, 0.2–3.7 in
the no-delays case) because we lose predictive power at this reso-
lution. We should, however, notice that for the purposes of trans-
portation management and policy making (such as providing timely
alternative transportation under disruption and long-term plan-
ning for expansions) the reliable average prediction over the
disruption period is valuable information.
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Fig. S1. Tube map including Underground, Overground, and DLR. Reproduced by kind permission of Transport for London, © TfL.
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Fig. S2. Cumulative distribution function of exit counts aggregated per day for weekdays and weekends.
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Fig. S3. Comparison between predictive 95% confidence interval and empirical intervals of exits from Oxford Circus station. Average predictive intervals
are given by one-step-ahead predictions, which then are averaged over 14 test days. Empirical intervals are given as the empirical quantiles for the 5%
symmetric tails.

Fig. S4. Thirty-minutes-ahead prediction of the overall number of exits per minute at Oxford Circus station on Monday, February 14, 2011, given past ob-
servations of the day.

Fig. S5. Effect on ϕDIST (horizontal axis) on the weighting of ϕOUT under no delays and under delays using three variations of the distance function. (A) Effect
for quadratic model. (B) Effect for model with quadratic and logarithmic transformations. (C) Effect for linear model.

Silva et al. www.pnas.org/cgi/content/short/1412908112 9 of 13

www.pnas.org/cgi/content/short/1412908112


Fig. S6. Association between observed exit counts in stations affected by line disruptions, and some covariates used in prediction. (A) Association with respect
to the predicted expectations of exits in overall region of interest under the natural regime. (B) Association with respect to the missing outflows ϕOUT.
(C) Association with respect to natural regime at line segment endpoints only. (D) Association with respect to ϕOUT at line segment endpoints only. The lines in
A and C are the fit given by least squares.
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Fig. S7. Visual comparison of predicted and real outcomes for disruptions events. (A) All 768 cases of stations affected by line disruptions. (B) Corresponding
residuals (difference between truth and predicted). (C and D) The analogous information for station disruption events. The lines in A and C are the fit given by
least squares.

Table S1. Distribution of line events

Line name No. of events

DLR 11
Bakerloo 12
Central 9
Circle 3
District 29
Hammersmith and City 6
Jubilee 25
Metropolitan 22
Northern 15
Piccadilly 26
Victoria 12
Waterloo and City 0
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Table S2. Estimates of model for exit counts in affected line segments

Parameter

Linear delay effect (all stations)
(N = 768, R2 = 0.92)

Linear delay effect (endpoint
stations only) (N = 204, R2 = 0.91)

Estimate ± SE P value Estimate ± SE P value

Intercept 0.05 ± 0.44 0.91 1.56 ± 0.87 0.07
ϕNAT 1.21 ± 0.01 <10−15 1.02 ± 0.03 <10−15

ϕIN −1.22 ± 0.06 <10−15 −0.76 ± 0.15 <10−12

ϕOUT 0.10 ± 0.01 <10−3 0.20 ± 0.03 <10−6

ϕDELAY −0.004 ± 0.09 0.96 −0.23 ± 0.16 0.15
ϕDELAY =1 (endpoint stations only)

(N = 96, R2 = 0.85)
ϕDELAY = 0 (endpoint stations only)

(N = 108, R2 = 0.91)
Intercept 1.64 ± 0.90 0.07 0.57 ± 0.53 0.29
ϕNAT 0.99 ± 0.06 <10−15 1.03 ± 0.03 <10−15

ϕIN −0.71 ± 0.21 0.001 −0.81 ± 0.15 <10−12

ϕOUT 0.11 ± 0.03 0.001 0.20 ± 0.03 <10−7

Table S3. Comparison of prediction errors of the full models against the model with ϕNAT only
(DiffN and pN) and the model with flows given by uniform probabilities (DiffU and pU)

Lines, all data Lines, ϕDELAY = 0

Filter Sample Error DiffN pN DiffU pU Sample Error DiffN pN DiffU pU

0 768 3.0 0.4 0.00 0.4 0.00 344 2.7 0.3 0.03 0.2 0.11
5 392 4.6 0.7 0.00 0.6 0.00 153 4.5 0.7 0.02 0.4 0.06
10 272 5.5 0.8 0.00 0.8 0.01 97 5.3 1.1 0.01 0.6 0.05
15 200 6.2 0.9 0.02 0.8 0.02 68 6.2 1.4 0.01 0.7 0.08
20 165 6.9 0.7 0.06 0.8 0.04 51 7.1 1.5 0.03 0.8 0.09
25 130 7.3 0.8 0.07 0.9 0.04 41 7.6 2.1 0.01 1.2 0.01
30 95 8.0 0.8 0.13 1.0 0.07 33 8.2 2.2 0.02 1.4 0.01
35 65 8.7 1.4 0.07 1.8 0.02 24 8.8 2.2 0.07 2.0 0.01
40 49 9.3 2.3 0.02 2.7 0.01 15 10.2 3.7 0.05 2.9 0.01
45 36 9.6 4.4 0.00 4.7 0.00 12 10.8 4.5 0.05 3.5 0.01
50 31 10.1 5.3 0.00 5.5 0.00 10 10.7 6.5 0.01 4.2 0.00
55 27 10.8 5.0 0.00 5.3 0.00 9 11.5 5.7 0.03 3.8 0.01
60 22 11.6 4.4 0.00 4.9 0.00 8 11.9 6.1 0.04 4.3 0.01
65 20 12.1 4.6 0.00 5.3 0.00 8 11.9 6.1 0.04 4.3 0.01
70 16 10.6 4.8 0.01 5.6 0.00 6 10.2 5.5 0.11 3.8 0.03
75 15 11.0 4.9 0.01 6.2 0.00 5 11.9 6.2 0.13 3.7 0.06
80 11 12.2 5.3 0.02 6.1 0.00 4 14.5 7.0 0.17 4.6 0.05
85 11 12.2 5.3 0.02 6.1 0.00 4 14.5 7.0 0.17 4.6 0.05
90 9 10.0 4.4 0.06 5.4 0.00 2 6.3 8.3 0.31 2.3 0.14

Lines, ϕDELAY =1 Stations, all data
0 424 3.4 0.5 0.00 0.5 0.00 191 3.6 0.4 0.02 0.0 0.42
5 239 4.7 0.7 0.01 0.8 0.01 140 4.5 0.5 0.06 0.1 0.41
10 175 5.6 0.9 0.02 1.0 0.01 97 5.4 0.6 0.08 0.0 0.44
15 132 6.2 0.8 0.08 0.8 0.07 76 5.8 1.1 0.02 0.2 0.27
20 114 6.8 0.7 0.13 0.8 0.10 58 6.5 1.2 0.04 0.3 0.23
25 89 7.1 0.6 0.20 0.8 0.14 47 6.7 0.8 0.14 0.1 0.45
30 62 7.9 0.6 0.28 0.8 0.20 43 6.6 1.1 0.07 0.5 0.08
35 41 8.4 1.9 0.07 2.2 0.05 32 7.4 1.6 0.02 0.8 0.04
40 34 8.5 3.0 0.02 3.3 0.01 29 7.5 1.8 0.02 0.9 0.04
45 24 8.5 5.8 0.00 6.2 0.00 25 8.3 1.5 0.06 1.0 0.06
50 21 9.2 6.3 0.00 6.8 0.00 21 8.5 2.1 0.03 1.2 0.05
55 18 9.7 6.2 0.00 6.8 0.00 16 9.3 3.0 0.01 1.5 0.03
60 14 10.6 4.7 0.00 5.5 0.00 11 9.9 2.2 0.08 0.7 0.25
65 12 11.4 4.9 0.01 5.6 0.00 11 9.9 2.2 0.08 0.7 0.25
70 10 10.4 4.6 0.03 5.5 0.01 11 9.9 2.2 0.08 0.7 0.25
75 10 10.4 4.6 0.03 5.5 0.01 10 10.0 2.3 0.10 0.5 0.31
80 7 9.9 6.1 0.02 6.4 0.02 9 11.1 1.6 0.18 −0.1 0.55
85 7 9.9 6.1 0.02 6.4 0.02 9 11.1 1.6 0.18 −0.1 0.55
90 7 9.9 6.1 0.02 6.4 0.02 5 8.4 1.0 0.36 1.5 0.06

See text for details. In particular, absolute errors for our models are shown in the error column.
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Table S4. Comparison of prediction errors of the full model
(Eq. 5, main text) with distance covariates against the model
without distance covariates, for ϕDELAY = 1

Filter Sample Error Diff1 p1 Diff2 p2

0 424 3.4 −0.0 0.75 0.0 0.20
5 239 4.7 0.0 0.45 0.1 0.05
10 175 5.6 −0.0 0.55 0.1 0.25
15 132 6.2 −0.0 0.63 0.0 0.37
20 114 6.8 −0.0 0.56 0.1 0.32
25 89 7.1 −0.0 0.66 0.1 0.29
30 62 7.9 0.0 0.43 −0.1 0.85
35 41 8.4 0.0 0.45 −0.1 0.67
40 34 8.5 0.1 0.28 0.0 0.46
45 24 8.5 0.0 0.41 0.2 0.13
50 21 9.2 −0.1 0.64 0.1 0.29
55 18 9.7 −0.0 0.57 0.1 0.25
60 14 10.6 −0.2 0.78 0.0 0.49
65 12 11.4 −0.3 0.89 −0.0 0.55
70 10 10.4 −0.4 0.91 −0.2 0.81
75 10 10.4 −0.4 0.91 −0.2 0.81
80 7 9.9 −0.3 0.78 −0.1 0.65
85 7 9.9 −0.3 0.78 −0.1 0.65
90 7 9.9 −0.3 0.78 −0.1 0.65
95 6 11.2 −0.2 0.68 −0.0 0.52

Prediction error is defined by the absolute difference between the true
number of tap-outs in an event of interest and the predicted number of tap-
outs, averaged over test points in an LOOCV procedure. Column Diff1 com-
pares the difference in prediction error between the two models, positive
numbers indicating an advantage for the full model. Column p1 is the P
value of a one-sided t test under the alternative hypothesis that our model
(Eq. 5, main text) is better than the competing model. Columns Diff2 and p2

are measured with respect to yet another way of using distance covariates,
as explained in the text.

Table S5. Prediction errors of the models for all cases (with and
without delay) for each individual minute

Filter Error (no delay) Error (delay)

0 6.8 8.1
5 11.6 11.8
10 14.1 13.9
15 16.0 15.4
20 17.4 16.3
25 18.5 17.0
30 20.3 18.9
35 22.8 21.6
40 26.8 23.0
45 28.6 26.0
50 30.3 27.3
55 32.1 28.9
60 32.2 30.4
65 32.2 32.4
70 35.0 34.3
75 36.6 34.3
80 37.7 31.3
85 37.7 31.3
90 43.3 31.3
95 43.3 31.6
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