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Supplementary Methods

Derivation of fBD(τ)

In the following, we derive an analytical expression for fBD(τ). We employ point process
theory (Popovic, 2004; Gernhard, 2008). The population dynamic process of birth and
death events until time T can be represented by an oriented tree (Ford et al., 2009). An
oriented tree on n tips at time T , and all dead lineages being pruned, may be represented
by a vector of n − 1 coalescent events. Now, selecting two tips at random from the n
tips and tracing back until their time of coalescence corresponds to choosing any block
of successive entries from the vector of n − 1 coalescent events uniformly at random,
and the time of coalescence is the maximum of the coalescent events in the chosen block
(Lambert and Stadler, 2013). The first order statistic of i − 1 coalescent events is given
by (Gernhard, 2008, Eq. 6) as

(i− 1)F (τ |T )i−2f(τ |T ),

where f(τ |T ) = µp1(τ)/p0(T ) and F (τ |T ) = p0(τ)/p0(T ). There are
(
n
2

)
possible block

choices in a vector of n−1 entries. For block size i−1, there are n− (i−1) possible ways
to choose two lineages. Furthermore, the probability of obtaining n extant lineages after
time τ is (Kendall, 1948),

pn(τ) = p1(τ)

(
λ

µ
p0(τ)

)n−1
.

Conditioning on obtaining at least two lineages after time τ requires dividing pn(τ) by
1− p0(τ)− p1(τ). Summing over all n and i yields

fBD(τ) =
∞∑
n=2

n∑
i=2

(i− 1)F (τ |T )i−2f(τ |T )
n− (i− 1)(

n
2

) p1(T )

1− p0(T )− p1(T )

(
λ

µ
p0(T )

)n−1
.

With ξ = λ
µ
p0(T ) = λ−λe−(λ−µ)t

λ−µe−(λ−µ)t and noting that |ξ| < 1 and |ξF (τ |T )| = |λ
µ
p0(τ)| < 1, we

obtain for fBD(τ),
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fBD(τ) =
∞∑
n=2

n∑
i=2

(i− 1)F (τ |T )i−2f(τ |T )
n− (i− 1)(

n
2

) p1(T )

1− p0(T )− p1(T )

(
λ

µ
p0(T )

)n−1
=

f(τ |T )p1(T )

F (τ |T )(1− p0(T )− p1(T ))

∞∑
n=2

1(
n
2

) (λ
µ
p0(T )

)n−1 n−1∑
i=1

iF (τ |T )i(n− i)

=
f(τ |T )p1(T )

F (τ |T )(1− p0(T )− p1(T ))

∞∑
n=2

1(
n
2

) (λ
µ
p0(T )

)n−1
×
(
n

(n− 1)F (τ |T )n+1 − nF (τ |T )n + F (τ |T )

(F (τ |T )− 1)2

− 1

(F (τ |T )− 1)3

[
(n− 1)2F (τ |T )n+2 − (2n2 − 2n− 1)F (τ |T )n+1

+n2F (τ |T )n − F (τ |T )2 − F (τ |T )
) ]

=
2f(τ |T )p1(T )

(1− p0(T )− p1(T ))(F (τ |T )− 1)3

×
∞∑
n=2

{
1

n(n− 1)

(
λ

µ
p0(T )

)n−1 (
nF (τ |T )n+1 − nF (τ |T )n + nF (τ |T )

−n− F (τ |T )n+1 − F (τ |T )n + F (τ |T ) + 1
)}

=
2f(τ |T )p1(T )

(1− p0(T )− p1(T ))(F (τ |T )− 1)3

×
[
(F (τ |T ) + 1)

1− ξ
ξ

(ln(1− ξ)− 1)

−F (τ |T )(F (τ |T ) + 1)
1− ξF (τ |T )

ξF (τ |T )
(ln(1− ξF (τ |T ))− 1)

−(F (τ |T )− 1) ln(1− ξ)− F (τ |T )(F (τ |T )− 1) ln(1− ξF (τ |T ))
]

=
2f(τ |T )p1(T )

(1− p0(T )− p1(T ))(1− F (τ |T ))3ξ

×
[
(F (τ |T )2 − 1)ξ + F (τ |T )(2ξ − 1)(ln(1− ξ)− ln(1− ξF (τ |T )))

+ ln(1− ξF (τ |T ))− ln(1− ξ)
]

=
2f(τ |T )p1(T )

(1− p0(T )− p1(T ))(1− F (τ |T ))3

×
(
F (τ |T )2 − 1 +

(
2F (τ |T )− µF (τ |T ) + µ

λp0

)
ln

µ− λp0
µ− λp0F (τ |T )

)
=

2f(τ |T )p1(T )

(1− p0(T )− p1(T ))(1− F (τ |T ))3

×
(
F (τ |T )2 − 1 +

(
2F (τ |T )− µ

λ

F (τ |T ) + 1

p0(T )

)
ln

(
µ− λp0(T )

µ− λp0(τ)

))
.
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We note that here we condition on sampling exactly two out of n tips. In previous work
(Yang and Rannala, 1997; Stadler, 2010, 2013), it was assumed that each tip is sampled
with a probability ρ. Thus the probability of sampling exactly two tips is

(
n
2

)
ρ2(1 −

ρ)n−2. The probability density of sampling two tips with coalescent time τ , now without
conditioning on the process leading at least two extant lineages, is thus

fBD(τ |ρ) = (1− p0(T )− p1(T ))
∞∑
n=2

n∑
i=2

(
n

2

)
ρ2(1− ρ)n−2(i− 1)

× F (τ |T )i−2f(τ |T )
n− (i− 1)(

n
2

) p1(T )

1− p0(T )− p1(T )

(
λ

µ
p0(T )

)n−1
.

This expression for fBD(τ |ρ) simplifies to Equation (1) in (Stadler, 2013).

Link between the BD and CD model

Under the coalescent model, when time is expressed in calendar units, the coalescent rate
at time τ is 1/(N(τ)ρ), with N(τ) being the population size at time τ . This means that
the rate is defined not only by the population size N(τ), but also by a time-scale ρ, which,
for a Wright-Fisher model, simply corresponds to the generation time.

On the other hand, under the birth-death process, the rate with which a single indi-
vidual undergoes a birth event is λ. In a population with N(τ) individuals where each
individual independently undergoes birth events at a rate λ, the total rate at which a birth
event occurs is λN(τ). The probability that a single forward-time birth event corresponds
to the backward-time coalescence of two sampled lineages is 1/

(
N(τ)
2

)
. Thus the rate of co-

alescence of two lineages under the birth-death process is λN(τ)/
(
N(τ)
2

)
= 2λ/(N(τ)−1).

When N(τ) is large, N(τ) − 1 ' N(τ) and the rate of coalescence of the two lineages
simplifies to 2λ/N(τ).

We thus have two independent derivations of the coalescent rate at time τ , one under
the coalescent and one under the birth-death model. For the coalescent to approximate
the birth-death process, the following equality must hold,

1

N(τ)ρ
=

2λ

N(τ)
,

and hence ρ = 1/(2λ). In the particular case where λ = µ, ρ can be interpreted as the
expected length of a branch in the genealogy of a population evolving under a birth-death
process.

Derivation of fCDN(τ)

Given a population size NBD(t) from Equation (2) in main text, the modified coalescent
rate measured in backward time, τ = T − t, is

2λ

NBD(τ)
=

2λr

(λ− µe−rT − µ2

λ−µe−rT e
−2rT )erT e−rτ + µ(λ+µ)

λ−µe−rT e
−rT − λµ

λ−µe−rT e
−rT erτ

. (1)
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Thus, the coalescent time probability density under the coalescent with population size
function NBD(τ) is,

fCDN(τ) =
2λ

NBD(τ)
e
−

∫ τ
0

2λ
NBD(u)

du
.

To derive the explicit form of fCDN(τ), let us denote the coefficients

c0 = (λ− µe−rT − µ2

λ− µe−rT
e−2rT )erT ,

c1 =
µ(λ+ µ)

λ− µe−rT
e−rT ,

c2 = − λµ

λ− µe−rT
e−rT .

The coalescent rate 2λ/NBD(τ) from Equation (1) becomes 2λr/(c2e
rτ + c1 + c0e

−rτ ).
Further, let

g(τ) :=

∫ τ

0

2λ

NBD(τ)
dτ = 2λ

∫ τ

0

rerτdτ

c2(erτ )2 + c1erτ + c0
= 2λ

∫ τ

0

1

c2(erτ )2 + c1erτ + c0
derτ .

The result of integration is,

g(τ) =


2λ√

c21−4c2c0
ln
∣∣∣ (2c2erτ+c1−√c21−4c2c0)(2c2+c1+

√
c21−4c2c0)

(2c2erτ+c1+
√
c21−4c2c0)(2c2+c1−

√
c21−4c2c0)

∣∣∣ if 4c2c0 − c21 < 0,

4λ
2c2+c1

− 4λ
2c2erτ+c1

if 4c2c0 − c21 = 0,
4λ√

4c2c0−c21
(arctan 2c2erτ+c1√

4c2c0−c21
− arctan 2c2+c1√

4c2c0−c21
) if 4c2c0 − c21 > 0,

which establishes

fCDN(τ) =
2λ

NBD(τ)
e−g(τ).
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Supplementary Figures
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Supp. Fig. 1: Cumulative probability distribution function of time to coalescence for
R0 = 1.3 and N = 10, 100, 1000, 10000. For details see caption of Figure 2.
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Supp. Fig. 2: Cumulative probability distribution function of time to coalescence for
R0 = 1.6 and N = 10, 100, 1000, 10000. For details see caption of Figure 2.
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Supp. Fig. 3: Cumulative probability distribution function of time to coalescence for
R0 = 2.0 and N = 10, 100, 1000, 10000. For details see caption of Figure 2.
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Supp. Fig. 4: Cumulative probability distribution function of time to coalescence for
R0 = 1.3 and N = 10, 100, 1000, 10000. For details see caption of Figure 2.
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Supp. Fig. 5: Cumulative probability distribution function of time to coalescence for
R0 = 10 and N = 10, 100, 1000, 10000. For details see caption of Figure 2.
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