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Supplementary Methods

Derivation of fpp(7)

In the following, we derive an analytical expression for fgp(7). We employ point process
theory (Popovic, 2004; Gernhard, 2008). The population dynamic process of birth and
death events until time 7" can be represented by an oriented tree (Ford et al., 2009). An
oriented tree on n tips at time 7', and all dead lineages being pruned, may be represented
by a vector of n — 1 coalescent events. Now, selecting two tips at random from the n
tips and tracing back until their time of coalescence corresponds to choosing any block
of successive entries from the vector of n — 1 coalescent events uniformly at random,
and the time of coalescence is the maximum of the coalescent events in the chosen block
(Lambert and Stadler, 2013). The first order statistic of ¢ — 1 coalescent events is given
by (Gernhard, 2008, Eq. 6) as

(i = DE(FIT) " f(7|T),

where f(7|T) = pp:(7)/po(T) and F(|T) = po(7)/po(T). There are (%) possible block
choices in a vector of n — 1 entries. For block size i — 1, there are n — (i — 1) possible ways
to choose two lineages. Furthermore, the probability of obtaining n extant lineages after

time 7 is (Kendall, 1948),
/\ n—1
pa(7) = p2(7) (;pw)) .

Conditioning on obtaining at least two lineages after time 7 requires dividing p,(7) by

1 — po(7) — p1(7). Summing over all n and i yields
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With € = ﬁpo(T) = A=A and noting that €] < 1 and |[£F(7|T)| = |ﬁp0(7')| <1, we
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We note that here we condition on sampling exactly two out of n tips. In previous work
(Yang and Rannala, 1997; Stadler, 2010, 2013), it was assumed that each tip is sampled

with a probability p. Thus the probability of sampling exactly two tips is (;L) pA(1 —

p)" 2. The probability density of sampling two tips with coalescent time 7, now without
conditioning on the process leading at least two extant lineages, is thus

fe(rle) = (1~ po(T zz( )= o=
A

n—(—1) pi(T) A n—1
() 1—=po(T) —pa(T) (MPO(T>> .

This expression for fgp(7|p) simplifies to Equation (1) in (Stadler, 2013).

F(r|T)=*f(7|T)

Link between the BD and CD model

Under the coalescent model, when time is expressed in calendar units, the coalescent rate
at time 7 is 1/(N(7)p), with N(7) being the population size at time 7. This means that
the rate is defined not only by the population size N(7), but also by a time-scale p, which,
for a Wright-Fisher model, simply corresponds to the generation time.

On the other hand, under the birth-death process, the rate with which a single indi-
vidual undergoes a birth event is A. In a population with N(7) individuals where each
individual independently undergoes birth events at a rate A, the total rate at which a birth
event occurs is AN (7). The probability that a single forward-time birth event corresponds
to the backward-time coalescence of two sampled lineages is 1/ (N (r) ) Thus the rate of co-
alescence of two lineages under the birth-death process is AN (7) /(" gT)) =2\/(N(1)—1).
When N(7) is large, N(7) — 1 ~ N(7) and the rate of coalescence of the two lineages
simplifies to 2\/N(7).

We thus have two independent derivations of the coalescent rate at time 7, one under
the coalescent and one under the birth-death model. For the coalescent to approximate
the birth-death process, the following equality must hold,

1 2
N(r)p  N(r)’

and hence p = 1/(2)). In the particular case where A = i, p can be interpreted as the
expected length of a branch in the genealogy of a population evolving under a birth-death
process.

Derivation of fopn(7)

Given a population size Npp(t) from Equation (2) in main text, the modified coalescent
rate measured in backward time, 7 =T — ¢, is
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Thus, the coalescent time probability density under the coalescent with population size

function Npp(7) is,
— 2)\ _foT
fepn(T) = Nop ()"

To derive the explicit form of fopn(7), let us denote the coefficients
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The coalescent rate 2A\/Npp(7) from Equation (1) becomes 2Ar/(coe™™ + ¢1 + coe™"7).
Further, let
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The result of integration is,
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Supplementary Figures
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Supp. Fig. 1: Cumulative probability distribution function of time to coalescence for
Ry =1.3 and N = 10, 100, 1000, 10000. For details see caption of Figure 2.
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Supp. Fig. 2: Cumulative probability distribution function of time to coalescence for
Ry =1.6 and N = 10,100, 1000, 10000. For details see caption of Figure 2.
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Supp. Fig. 3: Cumulative probability distribution function of time to coalescence for
Ry =2.0 and N = 10,100, 1000, 10000. For details see caption of Figure 2.
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Supp. Fig. 4: Cumulative probability distribution function of time to coalescence for
Ry =1.3 and N = 10,100, 1000, 10000. For details see caption of Figure 2.
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Supp. Fig. 5: Cumulative probability distribution function of time to coalescence for
Ry =10 and N = 10,100, 1000, 10000. For details see caption of Figure 2.
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