Supplementary Information

Targets of drugs are generally, and targets of drugs having side effects are specifically good spreaders of human interactome perturbations

Áron R. Perez-Lopez^{1,*}, Kristóf Z. Szalay¹, Dénes Türei^{2,+}, Dezső Módos^{2,3}, Katalin Lenti³, Tamás Korcsmáros^{2,4,5} and Peter Csermely^{1,#}

1 Department of Medical Chemistry, Semmelweis University, P.O. Box 260, H-1444 Budapest 8, Hungary; 2 Department of Genetics, Eötvös Loránd University, Pázmány P. s. 1C, H-1117 Budapest, Hungary; 3 Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Vas u. 17, H-1088 Budapest, Hungary; 4 TGAC, The Genome Analysis Centre, Norwich, UK; 5 Gut Health and Food Safety Programme, Institute of Food Research, Norwich, UK

*Áron R. Perez Lopez is a high school student of the Apáczai Csere János High School of the Eötvös Loránd University, Papnövelde u. 4-6, H-1053 Budapest, Hungary; +current address: European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge CB10 ISD, UK #Corresponding author, E-mail: <u>csermely.peter@med.semmelweis-univ.hu</u>

Table of Contents

Supplementary]	Figures	3
Figure 1	Cumulative silencing time distribution of drug targets and non-target proteins	
with a star	rting energy of 10,000 and a dissipation value of 5	3
Figure 2	Cumulative silencing time distribution of drug targets and non-target proteins	
with a star	rting energy of 10,000 and a dissipation value of 1	4
Figure 3	Cumulative silencing time distribution of drugs and non-target proteins with	
starting er	nergy of 1,000 and a dissipation value of 5 with distributed starting energy	
among mu	ultiple targets	5
Figure 4	Cumulative silencing time distribution of drug target proteins and non-target	
proteins w	with a starting energy of 1000 and a dissipation value of 5 using a 50% smaller	
interacton		6
Figure 5	Cumulative perturbation reach distribution of drug targets and non-target	
proteins w	with a starting energy of 10,000 and a dissipation value of 5	7
Figure 6	Cumulative perturbation reach distribution of drug targets and non-target	
proteins w	with a starting energy of 10,000 and a dissipation value of 1	8
Figure 7	Cumulative perturbation reach distribution of drugs and non-target proteins	
with starti	ing energy of 10,000 and a dissipation value of 1 with distributed starting	
	nong multiple targets	9
Figure 8	Cumulative silencing time distribution of targets of drugs used in the treatment	ţ
of colorec	tal cancer and type 2 diabetes mellitus 1	0
Figure 9	Human interactome distance between drug targets used in the treatment of	
colorectal	cancer and type 2 diabetes, between proteins related to these diseases and	
randomly	selected proteins	1

Figure 10 Human protein-protein interaction network of the proteins related to colorectal cancer and type 2 diabetes and the drug targets used in the treatment of these
diseases
Supplementary Tables
Table 1 Drugs obtained from the DrugBank database, which have known side effects in
the SIDER database
Table 2 The keywords used in the filtering of the DrugBank database and their
occurrences
Table 3 Drugs obtained from the DrugBank database, which are used in the treatment of
colorectal cancer and have no reported side effects in the SIDER database and their target proteins
Table 4 Drugs obtained from the DrugBank database, which are used in the treatment of
colorectal cancer and have known side effects in the SIDER database and their target
proteins
Table 5 Drugs obtained from the DrugBank database, which are used in the treatment of
type 2 diabetes and have no reported side effects in the SIDER database and their target
proteins
Table 6 Drugs obtained from the DrugBank database, which are used in the treatment of
type 2 diabetes and have known side effects in the SIDER database and their target
proteins
Table 7 Mutated genes in colorectal cancer and their corresponding proteins
Table 8 Mutated genes in type 2 diabetes and their corresponding proteins
Table 9 Average human interactome centralities of target proteins of drugs against
colorectal cancer and type 2 diabetes
Table 10 Average network distance between drug targets without known side effects
used in the treatment of colorectal cancer and colorectal cancer-associated proteins 29
Table 11 Average network distance between drug targets with known side effects used
in the treatment of colorectal cancer and colorectal cancer-associated proteins
Table 12 Average network distance between drug targets without known side effects
used in the treatment of type 2 diabetes and diabetes-associated proteins
Table 13 Average network distance between drug targets with known side effects used
in the treatment of type 2 diabetes and diabetes-associated proteins
Supplementary References 33

Supplementary Figures

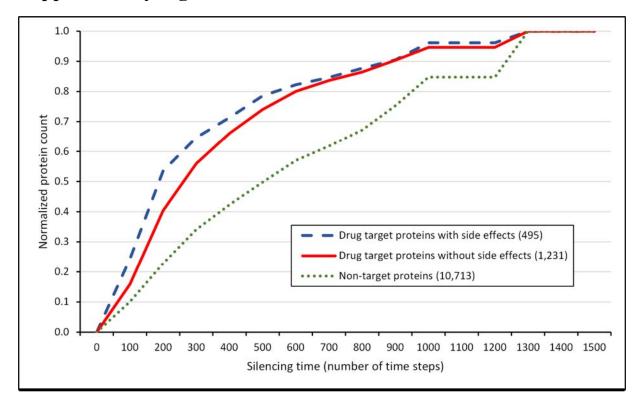


Figure 1 Cumulative silencing time distribution of drug targets and non-target proteins with a starting energy of 10,000 and a dissipation value of 5. The diagram shows the cumulative distribution of the normalized number of proteins with given silencing times, which are drug targets with known side effects (blue dashed line), which are drug targets without known side effects (red solid line) and which are not drug targets (green dotted line). The number of proteins was normalized by dividing the number of proteins in each silencing time range by the total number of proteins allowing a better comparison. The total number of drug targets with and without side effects, and non-target proteins was 495, 1,231 and 10,713, respectively. The figure shows the 99.99% of all proteins (having a silencing time below 1500). The human interactome containing 12,439 proteins and 174,666 edges was built from the STRING database¹, 1,726 human drug targets were obtained from the DrugBank database² and 99,423 drug-side effect pairs were taken from the SIDER database³. Silencing times were calculated separately for every protein with the Turbine program⁴ as described in the Methods section of the main text with a starting energy of 10,000 and a dissipation value of 5 units. Statistical analysis was performed using the Mann-Whitney (Wilcoxon rank sum) test function of the R package⁵. There was a statistically significant difference (p=1.701e-5) between the silencing times of drug targets with known side effects and the silencing times of drug targets without known side effects. The difference between the silencing times of drug targets and nontarget proteins was also statistically significant (p=2.2e-16).

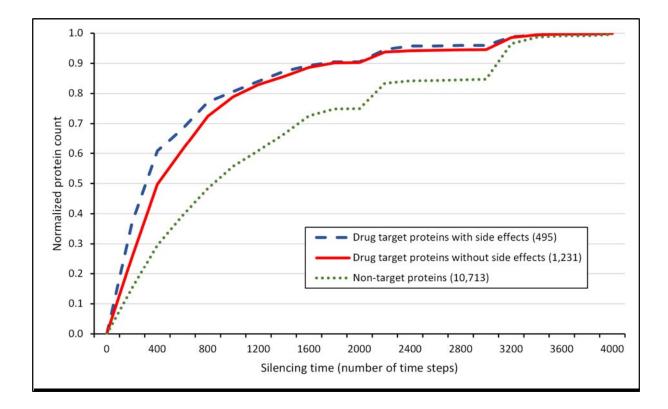


Figure 2 | Cumulative silencing time distribution of drug targets and non-target proteins with a starting energy of 10,000 and a dissipation value of 1. The diagram shows the cumulative distribution of the normalized number of proteins with given silencing times, which are drug targets with known side effects (blue dashed line), which are drug targets without known side effects (red solid line) and which are not drug targets (green dotted line). The number of proteins was normalized by dividing the number of proteins in each silencing time range by the total number of proteins allowing a better comparison. The total number of drug targets with and without side effects, and non-target proteins was 495, 1,231 and 10,713, respectively. The figure shows 99.61% of all proteins (having a silencing time below 4000). The human interactome containing 12,439 proteins and 174,666 edges was built from the STRING database¹, 1,726 human drug targets were obtained from the DrugBank database² and 99,423 drug-side effect pairs were taken from the SIDER database³. Silencing times were calculated separately for every protein with the Turbine program⁴ as described in the Methods section of the main text with a starting energy of 10,000 and a dissipation value of 1 unit. Statistical analysis was performed using the Mann-Whitney (Wilcoxon rank sum) test function of the R package⁵. There was a statistically significant difference (p=9.635e-6) between the silencing times of drug targets with known side effects and the silencing times of drug targets without known side effects. The difference between the silencing times of drug targets and non-target proteins was also statistically significant (p=2.2e-16).

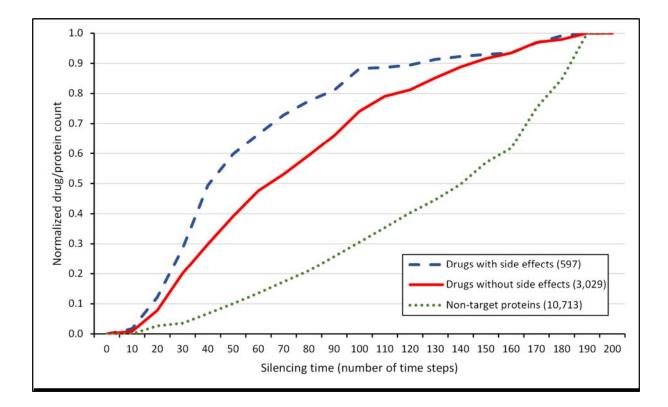


Figure 3 Cumulative silencing time distribution of drugs and non-target proteins with starting energy of 1,000 and a dissipation value of 5 with distributed starting energy among multiple targets. The diagram shows the cumulative silencing time distribution of the normalized number of drugs with known side effects (blue dashed line), drugs without known side effects (red solid line) and non-target proteins (green dotted line). The number of proteins/drugs was normalized by dividing the number of proteins/drugs in each silencing time range by the total number of proteins/drugs allowing a better comparison. The total number of drugs with and without side effects, and non-target proteins was 597, 3,029 and 10,713, respectively. The human interactome containing 12,439 proteins and 174,666 edges was built from the STRING database¹, 3,626 human drugs were obtained from the DrugBank database² and 99,423 drug-side effect pairs were taken from the SIDER database³. Silencing times were calculated separately for every protein/drug with the Turbine program⁴ as described in the Methods section of the main text with a starting energy of 1000 and a dissipation value of 5 units. In case of drugs with multiple targets, the starting energy was distributed evenly among the drug targets. Statistical analysis was performed using the Mann-Whitney (Wilcoxon rank sum) test function of the R package⁵. There was a statistically significant difference (p=2.2e-16) between the silencing times of drugs with known side effects and the silencing times of drugs without known side effects. The difference between the silencing times of drugs and non-target proteins was also statistically significant (p=2.2e-16).

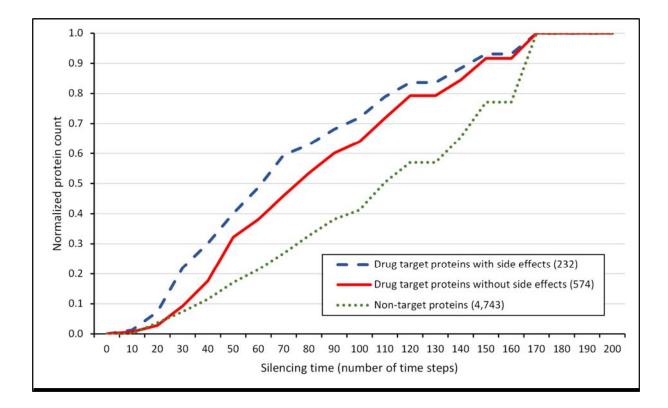


Figure 4 Cumulative silencing time distribution of drug target proteins and non-target proteins with a starting energy of 1000 and a dissipation value of 5 using a 50% smaller interactome. The diagram shows the cumulative distribution of the normalized number of proteins with given silencing times, which are drug targets with known side effects (blue dashed line), which are drug targets without known side effects (red solid line) and which are not drug targets (green dotted line). The number of proteins was normalized by dividing the number of proteins in each silencing time range by the total number of proteins allowing a better comparison. The total number of drug targets with and without side effects, and non-target proteins was 495, 1,231 and 10,713, respectively. The human interactome containing 12,439 proteins and 174,666 edges was built from the STRING database¹, 1,726 human drug targets were obtained from the DrugBank database² and 99,423 drug-side effect pairs were taken from the SIDER database³. 50% of the original interactome proteins were deleted randomly. The giant component of the remaining interactome contained 5,549 proteins (45%), 806 drug target proteins total (47%) and 232 drug targets with known side effects (47%). Silencing times were calculated separately for every protein with the Turbine program⁴ as described in the Methods section of the main text with a starting energy of 1,000 and a dissipation value of 5 units. Statistical analysis was performed using the Mann-Whitney (Wilcoxon rank sum) test function of the R package⁵. There was a statistically significant difference (p=3.368e-4) between the silencing times of drug targets with known side effects and the silencing times of drug targets without known side effects. The difference between the silencing times of drug targets and nontarget proteins was also statistically significant (p=2.2e-16).

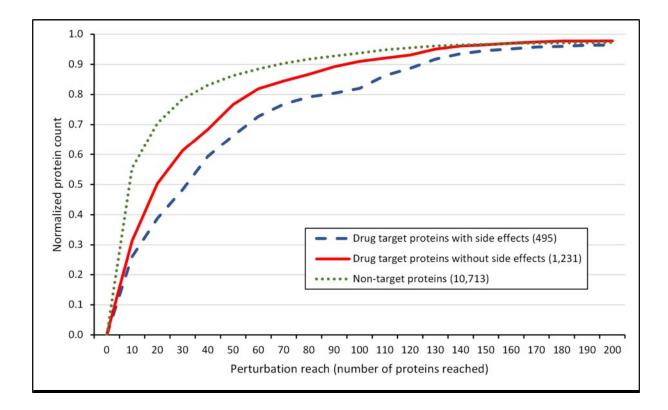


Figure 5 Cumulative perturbation reach distribution of drug targets and non-target proteins with a starting energy of 10,000 and a dissipation value of 5. The diagram shows the cumulative distribution of the normalized number of proteins with given perturbation reach values, which are drug targets with known side effects (blue dashed line), which are drug targets without known side effects (red solid line) and which are not drug targets (green dotted line). The number of proteins was normalized by dividing the number of proteins in each perturbation reach range by the total number of proteins allowing a better comparison. The total number of drug targets with and without side effects, and non-target proteins was 495, 1,231 and 10,713, respectively. The figure shows 97.25% of all proteins (having a perturbation reach below 200 proteins reached). The human interactome containing 12,439 proteins and 174,666 edges was built from the STRING database¹, 1,726 human drug targets were obtained from the DrugBank database² and 99.423 drug-side effect pairs were taken from the SIDER database³. Perturbation reach values were calculated separately for every protein with the Turbine program⁴ as described in the Methods section of the main text with a starting energy of 10,000 and a dissipation value of 5 units. Statistical analysis was performed using the Mann-Whitney (Wilcoxon rank sum) test function of the R package⁵. There was a statistically significant difference (p=1.663e-5) between the perturbation reach values of drug targets with known side effects and the perturbation reach values of drug targets without known side effects. The difference between the perturbation reach values of drug targets and non-target proteins was also statistically significant (p=2.2e-16).

Figure 6 Cumulative perturbation reach distribution of drug targets and non-target proteins with a starting energy of 10,000 and a dissipation value of 1. The diagram shows the cumulative distribution of the normalized number of proteins with given perturbation reach values, which are drug targets with known side effects (blue dashed line), which are drug targets without known side effects (red solid line) and which are not drug targets (green dotted line). The number of proteins was normalized by dividing the number of proteins in each perturbation reach range by the total number of proteins allowing a better comparison. The total number of drug targets with and without side effects, and non-target proteins was 495, 1,231 and 10,713, respectively. The figure shows 97.25% of all proteins (having a perturbation reach below 200 proteins reached). The human interactome containing 12,439 proteins and 174,666 edges was built from the STRING database¹, 1,726 human drug targets were obtained from the DrugBank database² and 99.423 drug-side effect pairs were taken from the SIDER database³. Perturbation reach values were calculated separately for every protein with the Turbine program⁴ as described in the Methods section of the main text with a starting energy of 10,000 and a dissipation value of 1 unit. Statistical analysis was performed using the Mann-Whitney (Wilcoxon rank sum) test function of the R package⁵. There was a statistically significant difference (p=1.49e-5) between the perturbation reach values of drug targets with known side effects and the perturbation reach values of drug targets without known side effects. The difference between the perturbation reach values of drug targets and non-target proteins was also statistically significant (p=2.2e-16).

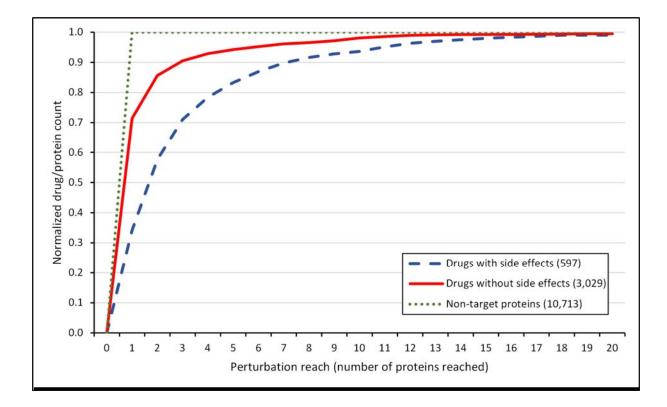


Figure 7 Cumulative perturbation reach distribution of drugs and non-target proteins with starting energy of 10,000 and a dissipation value of 1 with distributed starting energy **among multiple targets.** The diagram shows the cumulative perturbation reach distribution of the normalized number of drugs with known side effects (blue dashed line), drugs without known side effects (red solid line) and non-target proteins (green dotted line). The number of proteins/drugs was normalized by dividing the number of proteins/drugs in each perturbation reach range by the total number of proteins/drugs allowing a better comparison. The total number of drugs with and without side effects, and non-target proteins was 597, 3,029 and 10,713, respectively. The figure shows 99.58% of all proteins/drugs (having a perturbation reach below 400 proteins reached). The human interactome containing 12,439 proteins and 174,666 edges was built from the STRING database¹, 3,626 human drugs were obtained from the DrugBank database² and 99,423 drug-side effect pairs were taken from the SIDER database³. Perturbation reach values were calculated separately for every protein/drug with the Turbine program⁴ as described in the Methods section of the main text with a starting energy of 10,000 and a dissipation value of 1 unit. In case of drugs with multiple targets, the starting energy was distributed evenly among the drug targets. Statistical analysis was performed using the Mann-Whitney (Wilcoxon) test function of the R package⁵. There was a statistically significant difference (p=6.176e-8) between the perturbation reach values of drugs with known side effects and the perturbation reach values of drugs without known side effects. The difference between the perturbation reach values of drugs and non-target proteins was also statistically significant (p=2.2e-16).

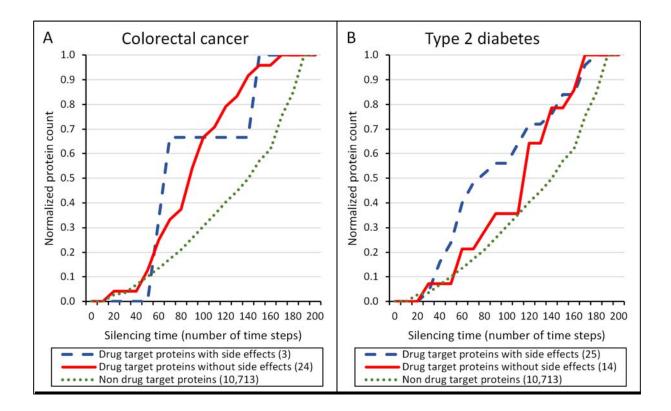


Figure 8 Cumulative silencing time distribution of targets of drugs used in the treatment of colorectal cancer and type 2 diabetes mellitus. The diagram shows the cumulative distribution of the normalized number of proteins with given silencing times, which are drug targets used in the treatment of the disease with known side effects (blue dashed line), which are drug targets used in the treatment of the disease without known side effects (red solid line) and which are not drug targets (green dotted line); for colorectal cancer (Panel A) and type 2 diabetes (Panel B). The number of proteins was normalized by dividing the number of proteins in each silencing time range by the total number of proteins allowing a better comparison. The total number of drug targets used in the treatment of colorectal cancer with and without side effects was 3 and 24, respectively, while for type 2 diabetes the total number of drug targets was 25 and 14, respectively. The human interactome containing 12,439 proteins and 174,666 edges was built from the STRING database¹, 1,726 human drug targets were obtained from the DrugBank database² and 99,423 drug-side effect pairs were taken from the SIDER database³. Silencing times were calculated separately for every protein with the Turbine program⁴ as described in the Methods section of the main text with a starting energy of 1,000 and a dissipation value of 5 units. Statistical analysis was performed using the Mann-Whitney-Wilcoxon test of the R package⁵. No statistically significant difference could be shown between silencing times of targets with known side effects and silencing times of targets without known side effects of drugs used in the treatment of colorectal cancer (p=1) and type 2 diabetes (p=0.2593). However, the difference between the silencing times of drug targets and non-target proteins was statistically significant for drug targets used in the treatment of both colorectal cancer (p=3.367e-5) and type 2 diabetes (p=5.88e-5).

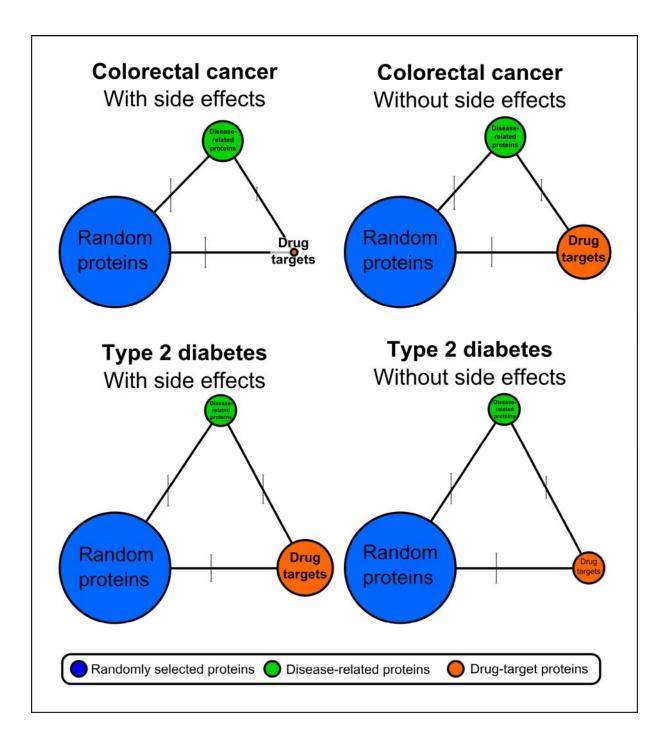
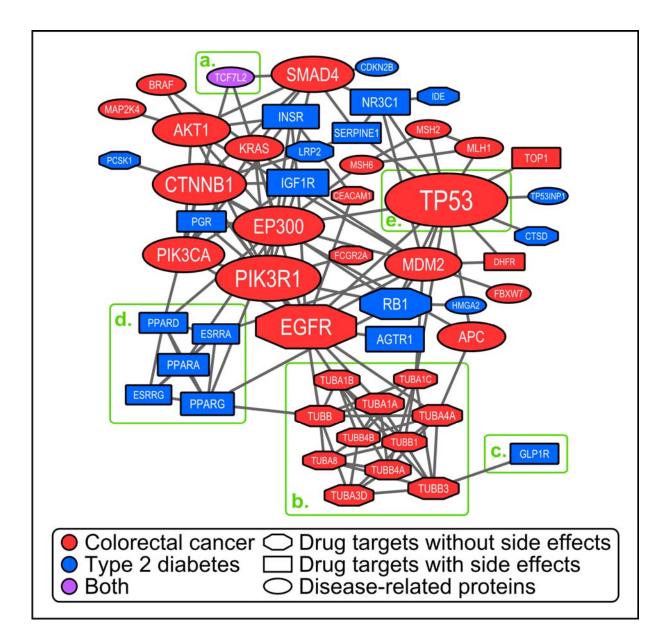



Figure 9 | Human interactome distance between drug targets used in the treatment of colorectal cancer and type 2 diabetes, between proteins related to these diseases and randomly selected proteins. The figure shows the average human interactome distances between the following proteins: drug targets used in the treatment of colorectal cancer and type 2 diabetes with and without side effects (orange circles), proteins related to these diseases (green circles) and randomly selected proteins (blue circles). The sides of the triangles (the distance between the centres of the circles) are proportional to the average number of human interactome

edges between the respective protein groups, while the vertical lines associated with the sides of the triangles correspond to the standard deviation (SD). The average distance between randomly selected proteins and disease-related proteins was 2.82 edges (SD: 0.601) for colorectal cancer and 3.43 edges (SD: 0.557) for type 2 diabetes; between randomly selected proteins and drug targets with side effects was 3.24 edges (SD: 0.551) for colorectal cancer and 3.44 edges (SD: 0.490) for type 2 diabetes; between randomly selected proteins and drug targets without side effects was 3.32 edges (SD: 0.533) for colorectal cancer and 3.41 edges (SD: 0.545) for type 2 diabetes; between disease-related proteins and drug targets with side effects was 2.39 edges (SD: 0.242) for colorectal cancer and 3.23 edges (SD: 0.522) for type 2 diabetes; between diseaserelated proteins and drug targets without side effects was 2.53 edges (SD: 0.388) for colorectal cancer and 3.25 edges (SD: 0.402) for type 2 diabetes. Sizes of the circles are proportional to the number of proteins contained in each group. There were 50 randomly selected proteins; 18 colorectal cancer-related and 14 type 2 diabetes-related proteins; 3 drug targets with and 24 drug targets without side effects used in the treatment of colorectal cancer; 25 drug targets with and 14 drug targets without side effects used in the treatment of type 2 diabetes. The human interactome containing 12.439 proteins and 174.666 edges was built from the STRING database¹, 1.726 human drug targets were obtained from the DrugBank database² and 99,423 drug-side effect pairs were taken from the SIDER database³. Network distances were calculated as shortest paths using the Pajek programme⁶ as described in the Methods section of the main text and are detailed in Tables 10-13. The figure was created using Inkscape⁷.

Figure 10 | **Human protein-protein interaction network of the proteins related to colorectal cancer and type 2 diabetes and the drug targets used in the treatment of these diseases.** The figure shows the giant component of the human protein-protein interaction network containing the proteins related to colorectal cancer and type 2 diabetes mellitus and the drug targets used in the treatment of these diseases. Red nodes represent proteins or drug targets related to colorectal cancer, blue nodes represent those related to type 2 diabetes, while purple nodes represent those related to both. Ellipses, octagons and squares represent proteins related to diseases, drug targets without known side effects and drug targets with known side effects, respectively. Node highlighted by green box (a.) is the TCF7L2 protein related to both diseases, which is the transcription factor 7-like 2 participating in the Wnt signalling pathway and modulating MYC expression. The highly interconnected node cluster highlighted by green box (b.) contains 11 drug targets without known side effects used in the treatment of colorectal cancer, which are all

tubuline chain proteins. Node highlighted by green box (c.) representing protein GLP1R, the glucagon-like peptide 1 receptor, is connected only to node TUBB3 of the tubuline cluster (b.). The highly interconnected node cluster highlighted by green box (d.) contains 5 drug targets with known side effects used in the treatment of type 2 diabetes which are the peroxisome proliferator-activated receptors alpha (PPARA), gamma (PPARG) and delta (PPARD) and the estrogen-related receptors alpha (ESRRA) and gamma (ESSRG). The network hub highlighted by green box (e.) is TP53, the cellular tumour antigen p53. Node sizes are proportional to the degrees of the respective proteins in the full human protein-protein interaction network. All proteins here are referenced by their UniProt ID⁹. The human interactome containing 12,439 proteins and 174,666 edges was built from the STRING database¹, 1,726 human drug targets were obtained from the DrugBank database² and 99,423 drug-side effect pairs were taken from the SIDER database³. Node degrees were calculated with the Pajek programme⁶ as described in the Methods section of the main text. The figure was created using Cytoscape⁸ and Inkscape⁷.

Supplementary Tables

Table 1 Drugs obtained from the DrugBank database, which have known side effects in
the SIDER database

DDID	Dung Nama	DDID	Dung Nama	DDID	Dung Name
DBID	Drug Name	DBID	Drug Name	DBID	Drug Name
DB00001	Lepirudin	DB00210	Adapalene	DB00289	Atomoxetine
DB00006	Bivalirudin	DB00211	Midodrine	DB00292	Etomidate
DB00046	Insulin Lispro	DB00213	Pantoprazole	DB00293	Raltitrexed
DB00047	Insulin Glargine	DB00214	Torasemide	DB00295	Morphine
DB00050	Cetrorelix	DB00215	Citalopram	DB00296	Ropivacaine
DB00063	Eptifibatide	DB00216	Eletriptan	DB00297	Bupivacaine
DB00106	Abarelix	DB00218	Moxifloxacin	DB00302	Tranexamic Acid
DB00115	Cyanocobalamin	DB00222	Glimepiride	DB00307	Bexarotene
DB00125	L-Arginine	DB00227	Lovastatin	DB00308	Ibutilide
DB00152	Thiamine	DB00228	Enflurane	DB00310	Chlorthalidone
DB00162	Vitamin A	DB00231	Temazepam	DB00312	Pentobarbital
DB00175	Pravastatin	DB00240	Alclometasone	DB00313	Valproic Acid
DB00176	Fluvoxamine	DB00242	Cladribine	DB00315	Zolmitriptan
DB00177	Valsartan	DB00243	Ranolazine	DB00316	Acetaminophen
DB00178	Ramipril	DB00246	Ziprasidone	DB00317	Gefitinib
DB00180	Flunisolide	DB00247	Methysergide	DB00318	Codeine
DB00182	Amphetamine	DB00248	Cabergoline	DB00320	Dihydroergotamine
DB00184	Nicotine	DB00252	Phenytoin	DB00321	Amitriptyline
DB00185	Cevimeline	DB00253	Medrysone	DB00323	Tolcapone
DB00186	Lorazepam	DB00257	Clotrimazole	DB00324	Fluorometholone
DB00187	Esmolol	DB00264	Metoprolol	DB00327	Hydromorphone
DB00188	Bortezomib	DB00268	Ropinirole	DB00328	Indomethacin
DB00191	Phentermine	DB00273	Topiramate	DB00331	Metformin
DB00193	Tramadol	DB00276	Amsacrine	DB00332	Ipratropium bromide
DB00195	Betaxolol	DB00277	Theophylline	DB00333	Methadone
DB00197	Troglitazone	DB00278	Argatroban	DB00334	Olanzapine
DB00198	Oseltamivir	DB00280	Disopyramide	DB00335	Atenolol
DB00200	Hydroxocobalamin	DB00281	Lidocaine	DB00337	Pimecrolimus
DB00201	Caffeine	DB00282	Pamidronate	DB00338	Omeprazole
DB00202	Succinylcholine	DB00284	Acarbose	DB00343	Diltiazem
DB00204	Dofetilide	DB00285	Venlafaxine	DB00344	Protriptyline
DB00205	Pyrimethamine	DB00286	Conjugated Estrogens	DB00346	Alfuzosin
DB00206	Reserpine	DB00287	Travoprost	DB00349	Clobazam
DB00208	Ticlopidine	DB00288	Amcinonide	DB00350	Minoxidil

DBID	Drug Name	DBID	Drug Name	DBID	Drug Name
DB00351	Megestrol	DB00431	Lindane	DB00500	Tolmetin
DB00356	Chlorzoxazone	DB00433	Prochlorperazine	DB00501	Cimetidine
DB00357	Aminoglutethimide	DB00434	Cyproheptadine	DB00502	Haloperidol
DB00358	Mefloquine	DB00437	Allopurinol	DB00518	Albendazole
DB00360	Tetrahydrobiopterin	DB00439	Cerivastatin	DB00519	Trandolapril
DB00361	Vinorelbine	DB00440	Trimethoprim	DB00521	Carteolol
DB00363	Clozapine	DB00441	Gemcitabine	DB00530	Erlotinib
DB00364	Sucralfate	DB00444	Teniposide	DB00532	Mephenytoin
DB00367	Levonorgestrel	DB00446	Chloramphenicol	DB00533	Rofecoxib
DB00368	Norepinephrine	DB00448	Lansoprazole	DB00535	Cefdinir
DB00370	Mirtazapine	DB00449	Dipivefrin	DB00537	Ciprofloxacin
DB00371	Meprobamate	DB00450	Droperidol	DB00539	Toremifene
DB00373	Timolol	DB00454	Meperidine	DB00540	Nortriptyline
DB00374	Treprostinil	DB00457	Prazosin	DB00541	Vincristine
DB00376	Trihexyphenidyl	DB00458	Imipramine	DB00542	Benazepril
DB00377	Palonosetron	DB00459	Acitretin	DB00543	Amoxapine
DB00379	Mexiletine	DB00461	Nabumetone	DB00545	Pyridostigmine
DB00380	Dexrazoxane	DB00462	Methylscopolamine	DB00547	Desoximetasone
DB00381	Amlodipine	DB00465	Ketorolac	DB00548	Azelaic Acid
DB00382	Tacrine	DB00471	Montelukast	DB00549	Zafirlukast
DB00384	Triamterene	DB00472	Fluoxetine	DB00550	Propylthiouracil
DB00388	Phenylephrine	DB00474	Methohexital	DB00554	Piroxicam
DB00390	Digoxin	DB00475	Chlordiazepoxide	DB00555	Lamotrigine
DB00393	Nimodipine	DB00476	Duloxetine	DB00558	Zanamivir
DB00396	Progesterone	DB00477	Chlorpromazine	DB00559	Bosentan
DB00398	Sorafenib	DB00480	Lenalidomide	DB00561	Doxapram
DB00401	Nisoldipine	DB00481	Raloxifene	DB00563	Methotrexate
DB00404	Alprazolam	DB00482	Celecoxib	DB00564	Carbamazepine
DB00408	Loxapine	DB00484	Brimonidine	DB00571	Propranolol
DB00411	Carbachol	DB00486	Nabilone	DB00572	Atropine
DB00412	Rosiglitazone	DB00489	Sotalol	DB00573	Fenoprofen
DB00413	Pramipexole	DB00490	Buspirone	DB00575	Clonidine
DB00418	Secobarbital	DB00491	Miglitol	DB00580	Valdecoxib
DB00419	Miglustat	DB00492	Fosinopril	DB00585	Nizatidine
DB00421	Spironolactone	DB00494	Entacapone	DB00586	Diclofenac
DB00422	Methylphenidate	DB00496	Darifenacin	DB00590	Doxazosin
DB00423	Methocarbamol	DB00497	Oxycodone	DB00591	Fluocinolone Acetonide
DB00425	Zolpidem	DB00499	Flutamide	DB00593	Ethosuximide

DBID	Drug Name	DBID	Drug Name	DBID	Drug Name
DB00594	Amiloride	DB00679	Thioridazine	DB00757	Dolasetron
DB00598	Labetalol	DB00680	Moricizine	DB00758	Clopidogrel
DB00602	Ivermectin	DB00683	Midazolam	DB00762	Irinotecan
DB00603	Medroxyprogesterone	DB00685	Trovafloxacin	DB00763	Methimazole
DB00605	Sulindac	DB00687	Fludrocortisone	DB00764	Mometasone
DB00608	Chloroquine	DB00690	Flurazepam	DB00768	Olopatadine
DB00611	Butorphanol	DB00691	Moexipril	DB00772	Malathion
DB00612	Bisoprolol	DB00692	Phentolamine	DB00773	Etoposide
DB00615	Rifabutin	DB00694	Daunorubicin	DB00774	Hydroflumethiazide
DB00619	Imatinib	DB00695	Furosemide	DB00775	Tirofiban
DB00620	Triamcinolone	DB00696	Ergotamine	DB00776	Oxcarbazepine
DB00621	Oxandrolone	DB00697	Tizanidine	DB00780	Phenelzine
DB00622	Nicardipine	DB00700	Eplerenone	DB00782	Propantheline
DB00623	Fluphenazine	DB00703	Methazolamide	DB00783	Estradiol
DB00624	Testosterone	DB00704	Naltrexone	DB00784	Mefenamic acid
DB00630	Alendronate	DB00706	Tamsulosin	DB00788	Naproxen
DB00631	Clofarabine	DB00708	Sufentanil	DB00790	Perindopril
DB00633	Dexmedetomidine	DB00710	Ibandronate	DB00794	Primidone
DB00635	Prednisone	DB00712	Flurbiprofen	DB00795	Sulfasalazine
DB00640	Adenosine	DB00714	Apomorphine	DB00796	Candesartan
DB00641	Simvastatin	DB00715	Paroxetine	DB00798	Gentamicin
DB00642	Pemetrexed	DB00720	Clodronate	DB00799	Tazarotene
DB00647	Propoxyphene	DB00721	Procaine	DB00800	Fenoldopam
DB00650	Leucovorin	DB00724	Imiquimod	DB00802	Alfentanil
DB00651	Dyphylline	DB00727	Nitroglycerin	DB00804	Dicyclomine
DB00652	Pentazocine	DB00728	Rocuronium	DB00806	Pentoxifylline
DB00654	Latanoprost	DB00731	Nateglinide	DB00807	Proparacaine
DB00656	Trazodone	DB00733	Pralidoxime	DB00808	Indapamide
DB00659	Acamprosate	DB00734	Risperidone	DB00809	Tropicamide
DB00661	Verapamil	DB00735	Naftifine	DB00810	Biperiden
DB00665	Nilutamide	DB00740	Riluzole	DB00811	Ribavirin
DB00668	Epinephrine	DB00745	Modafinil	DB00813	Fentanyl
DB00669	Sumatriptan	DB00747	Scopolamine	DB00814	Meloxicam
DB00672	Chlorpropamide	DB00749	Etodolac	DB00818	Propofol
DB00673	Aprepitant	DB00750	Prilocaine	DB00819	Acetazolamide
DB00674	Galantamine	DB00751	Epinastine	DB00822	Disulfiram
DB00675	Tamoxifen	DB00753	Isoflurane	DB00829	Diazepam
DB00678	Losartan	DB00754	Ethotoin	DB00831	Trifluoperazine

DBID	Drug Name	DBID	Drug Name	DBID	Drug Name
DB00834	Mifepristone	DB00908	Quinidine	DB00991	Oxaprozin
DB00835	Brompheniramine	DB00909	Zonisamide	DB00992	Methyl aminolevulinate
DB00836	Loperamide	DB00910	Paricalcitol	DB00993	Azathioprine
DB00838	Clocortolone	DB00912	Repaglinide	DB00996	Gabapentin
DB00839	Tolazamide	DB00915	Amantadine	DB00997	Doxorubicin
DB00841	Dobutamine	DB00918	Almotriptan	DB00998	Frovatriptan
DB00842	Oxazepam	DB00920	Ketotifen	DB00999	Hydrochlorothiazide
DB00843	Donepezil	DB00921	Buprenorphine	DB01001	Salbutamol
DB00844	Nalbuphine	DB00924	Cyclobenzaprine	DB01005	Hydroxyurea
DB00850	Perphenazine	DB00925	Phenoxybenzamine	DB01006	Letrozole
DB00851	Dacarbazine	DB00927	Famotidine	DB01009	Ketoprofen
DB00857	Terbinafine	DB00929	Misoprostol	DB01012	Cinacalcet
DB00860	Prednisolone	DB00933	Mesoridazine	DB01013	Clobetasol
DB00861	Diflunisal	DB00937	Diethylpropion	DB01014	Balsalazide
DB00863	Ranitidine	DB00938	Salmeterol	DB01017	Minocycline
DB00864	Tacrolimus	DB00949	Felbamate	DB01018	Guanfacine
DB00868	Benzonatate	DB00952	Naratriptan	DB01019	Bethanechol
DB00869	Dorzolamide	DB00953	Rizatriptan	DB01023	Felodipine
DB00870	Suprofen	DB00959	Methylprednisolone	DB01024	Mycophenolic acid
DB00871	Terbutaline	DB00960	Pindolol	DB01029	Irbesartan
DB00872	Conivaptan	DB00961	Mepivacaine	DB01030	Topotecan
DB00873	Loteprednol	DB00962	Zaleplon	DB01032	Probenecid
DB00876	Eprosartan	DB00963	Bromfenac	DB01035	Procainamide
DB00881	Quinapril	DB00964	Apraclonidine	DB01036	Tolterodine
DB00883	Isosorbide Dinitrate	DB00966	Telmisartan	DB01037	Selegiline
DB00884	Risedronate	DB00968	Methyldopa	DB01039	Fenofibrate
DB00887	Bumetanide	DB00969	Alosetron	DB01041	Thalidomide
DB00889	Granisetron	DB00973	Ezetimibe	DB01043	Memantine
DB00896	Rimexolone	DB00975	Dipyridamole	DB01047	Fluocinonide
DB00897	Triazolam	DB00978	Lomefloxacin	DB01050	Ibuprofen
DB00898	Ethanol	DB00979	Cyclopentolate	DB01057	Echothiophate
DB00899	Remifentanil	DB00980	Ramelteon	DB01059	Norfloxacin
DB00900	Didanosine	DB00981	Physostigmine	DB01062	Oxybutynin
DB00903	Ethacrynic acid	DB00983	Formoterol	DB01064	Isoproterenol
DB00904	Ondansetron	DB00986	Glycopyrrolate	DB01067	Glipizide
DB00905	Bimatoprost	DB00988	Dopamine	DB01068	Clonazepam
DB00906	Tiagabine	DB00989	Rivastigmine	DB01069	Promethazine
DB00907	Cocaine	DB00990	Exemestane	DB01073	Fludarabine

DBID	Drug Name	DBID	Drug Name	DBID	Drug Name
DB01076	Atorvastatin	DB01158	Bretylium	DB01223	Aminophylline
DB01079	Tegaserod	DB01159	Halothane	DB01224	Quetiapine
DB01083	Orlistat	DB01161	Chloroprocaine	DB01226	Mivacurium
DB01085	Pilocarpine	DB01162	Terazosin	DB01229	Paclitaxel
DB01086	Benzocaine	DB01165	Ofloxacin	DB01233	Metoclopramide
DB01087	Primaquine	DB01167	Itraconazole	DB01234	Dexamethasone
DB01088	Iloprost	DB01169	Arsenic trioxide	DB01236	Sevoflurane
DB01091	Butenafine	DB01173	Orphenadrine	DB01238	Aripiprazole
DB01095	Fluvastatin	DB01174	Phenobarbital	DB01241	Gemfibrozil
DB01097	Leflunomide	DB01177	Idarubicin	DB01242	Clomipramine
DB01098	Rosuvastatin	DB01182	Propafenone	DB01247	Isocarboxazid
DB01100	Pimozide	DB01183	Naloxone	DB01248	Docetaxel
DB01101	Capecitabine	DB01184	Domperidone	DB01250	Olsalazine
DB01104	Sertraline	DB01185	Fluoxymesterone	DB01254	Dasatinib
DB01105	Sibutramine	DB01186	Pergolide	DB01258	Aliskiren
DB01106	Levocabastine	DB01189	Desflurane	DB01260	Desonide
DB01109	Heparin	DB01193	Acebutolol	DB01261	Sitagliptin
DB01110	Miconazole	DB01194	Brinzolamide	DB01267	Paliperidone
DB01114	Chlorpheniramine	DB01195	Flecainide	DB01268	Sunitinib
DB01115	Nifedipine	DB01196	Estramustine	DB01273	Varenicline
DB01118	Amiodarone	DB01197	Captopril	DB01275	Hydralazine
DB01119	Diazoxide	DB01198	Zopiclone	DB01276	Exenatide
DB01120	Gliclazide	DB01200	Bromocriptine	DB01278	Pramlintide
DB01122	Ambenonium	DB01202	Levetiracetam	DB01280	Nelarabine
DB01126	Dutasteride	DB01203	Nadolol	DB01291	Pirbuterol
DB01128	Bicalutamide	DB01204	Mitoxantrone	DB01306	Insulin Aspart
DB01129	Rabeprazole	DB01205	Flumazenil	DB01320	Fosphenytoin
DB01130	Prednicarbate	DB01206	Lomustine	DB01327	Cefazolin
DB01132	Pioglitazone	DB01210	Levobunolol	DB01337	Pancuronium
DB01133	Tiludronate	DB01214	Metipranolol	DB01340	Cilazapril
DB01136	Carvedilol	DB01215	Estazolam	DB01356	Lithium
DB01142	Doxepin	DB01216	Finasteride	DB01364	Ephedrine
DB01143	Amifostine	DB01217	Anastrozole	DB01367	Rasagiline
DB01148	Flavoxate	DB01218	Halofantrine	DB01373	Calcium
DB01149	Nefazodone	DB01219	Dantrolene	DB01378	Magnesium
DB01151	Desipramine	DB01220	Rifaximin	DB01393	Bezafibrate
DB01156	Bupropion	DB01221	Ketamine	DB01394	Colchicine
DB01157	Trimetrexate	DB01222	Budesonide	DB01399	Salsalate

DBID	Drug Name	DBID	Drug Name	DBID	Drug Name
DB01400	Neostigmine	DB01621	Pipotiazine	DB06209	Prasugrel
DB01406	Danazol	DB01623	Thiothixene	DB06228	Rivaroxaban
DB01409	Tiotropium	DB02300	Calcipotriol	DB06274	Alvimopan
DB01410	Ciclesonide	DB04835	Maraviroc	DB06287	Temsirolimus
DB01427	Amrinone	DB04839	Cyproterone	DB06335	Saxagliptin
DB01558	Bromazepam	DB04844	Tetrabenazine	DB06695	Dabigatran etexilate
DB01577	Methamphetamine	DB04845	Ixabepilone	DB06698	Betahistine
DB01586	Ursodeoxycholic acid	DB04861	Nebivolol	DB06699	Degarelix
DB01591	Solifenacin	DB04868	Nilotinib	DB06700	Desvenlafaxine
DB01595	Nitrazepam	DB04896	Milnacipran	DB06702	Fesoterodine
DB01611	Hydroxychloroquine	DB04930	Permethrin	DB06710	Methyltestosterone
DB01612	Amyl Nitrite	DB05246	Methsuximide	DB06711	Naphazoline
DB01618	Molindone	DB05271	Rotigotine	DB06802	Nepafenac

Drugs were obtained from the DrugBank database², and their side effects were collected from the SIDER database³.

Keyword	Mark	Occurrences	
,,cancer"/			
"lymphoma"/			
"carcinoma"/	Anti-cancer	172	
"leukemia"/			
"tumor"			
,,colon"/			
"colorectal"/			
"carcinoma"/	Anti-colorectal cancer	11	
,,cancer''/			
"tumor"			
"diabetes mellitus"	Anti-diabetes	36	

Table 2 $\big|$ The keywords used in the filtering of the DrugBank database and their occurrences

The keywords are listed which were used in the filtering of the DrugBank database² and their occurrences is noted. The plus sign (+) represents the "AND" logical operator, the slash (/) represents the "OR" logical operator.

Table 3 | Drugs obtained from the DrugBank database, which are used in the treatment of colorectal cancer and have no reported side effects in the SIDER database and their target proteins

DrugBank ID	Drug Name	Drug Target Proteins
DB00002	Cetuximab	O75015, P00533, P00736, P02745, P02746, P02747, P09871, P12314, P12318, P31994
DB00112	Bevacizumab	O75015, P00736, P02745, P02746, P02747, P12314, P12318, P31994
DB00113	Arcitumomab	P13688
DB00544	Fluorouracil	P04818
DB00848	Levamisole	P10696, P32297
DB01269	Panitumumab	P00533
DB01873	Epothilone D	P04350, P07437, P68363, P68366, P68371, Q13509, Q13748, Q71U36, Q9BQE3, Q9H4B7, Q9NY65

Drugs and their targets were obtained from the DrugBank database². Only those drugs were selected, which are used in the treatment of colorectal cancer and have no reported side effects in the SIDER database³. Target proteins for each drug were identified by their UniProt ID⁹.

Table 4 | Drugs obtained from the DrugBank database, which are used in the treatment of colorectal cancer and have known side effects in the SIDER database and their target proteins

Drugbank ID	Drug Name	Drug Target Proteins
DB00650	Leucovorin	P04818
DB00762	Irinotecan	P11387
DB01101	Capecitabine	P04818
DB01157	Trimetrexate	P00374

Drugs and their targets were obtained from the DrugBank database². Only those drugs were selected, which are used in the treatment of colorectal cancer and have known side effects in the SIDER database³. Target proteins for each drug were identified by their UniProt ID⁹.

Table 5 | Drugs obtained from the DrugBank database, which are used in the treatment of type 2 diabetes and have no reported side effects in the SIDER database and their target proteins

DrugBank ID	Drug Name	Drug Target Proteins
DB00030	Insulin recombinant	P06213, P06400, P07339, P08069, P14735, P16519, P16870, P29120, P48745, P98164, Q16270, Q96C24
DB00071	Insulin, porcine	P01906, P06213, P06400, P07339, P08069, P14735, P16519, P16870, P29120, P48745, P98164, Q16270, Q96C24
DB00414	Acetohexamide	P48048
DB00722	Lisinopril	P12821, Q9BYF1
DB00914	Phenformin	Q13131, Q15842
DB01124	Tolbutamide	P48048, Q09428
DB01251	Gliquidone	Q09428, Q15842
DB01289	Glisoxepide	Q09428, Q15842
DB01307	Insulin Detemir	P06213
DB01309	Insulin Glulisine	P06213
DB01382	Glycodiazine	P48048, Q09428
DB04876	Vildagliptin	P27487
DB06655	Liraglutide	P43220

Drugs and their targets were obtained from the DrugBank database². Only those drugs were selected, which are used in the treatment of type 2 diabetes and have no reported side effects in the SIDER database³. Target proteins for each drug were identified by their UniProt ID⁹.

Table 6 | Drugs obtained from the DrugBank database, which are used in the treatment of type 2 diabetes and have known side effects in the SIDER database and their target proteins

Drugbank ID	Drug Name	Drug Target Proteins
DB00046	Insulin Lispro	P06213, P08069
DB00047	Insulin Glargine	P06213, P08069
DB00178	Ramipril	P12821
DB00197	Troglitazone	O60488, P05121, P11474, P37231, P62508, Q99808
DB00222	Glimepiride	P48048, Q09428, Q14654
DB00412	Rosiglitazone	O60488, P37231
DB00491	Miglitol	P10253, Q14697, Q8TET4
DB00492	Fosinopril	P12821
DB00519	Trandolapril	P12821
DB00731	Nateglinide	P37231, Q09428
DB00834	Mifepristone	P04150, P06401
DB00839	Tolazamide	P48048
DB00881	Quinapril	P12821
DB00912	Repaglinide	P37231, Q09428
DB00966	Telmisartan	P30556, P37231
DB01067	Glipizide	P37231, Q09428
DB01132	Pioglitazone	P37231
DB01261	Sitagliptin	P27487
DB01276	Exenatide	P43220
DB01278	Pramlintide	O60894, O60895, O60896
DB01306	Insulin Aspart	P06213
DB01393	Bezafibrate	P37231, Q03181, Q07869
DB06335	Saxagliptin	P27487

Drugs and their targets were obtained from the DrugBank database². Only those drugs were selected, which are used in the treatment of type 2 diabetes and have known side effects in the SIDER database³. Target proteins for each drug were identified by their UniProt ID⁹.

Gene name	Protein identifier
AKT1	P31749
APC	P25054
BRAF	P15056
CTNNB1	P35222
EP300	Q09472
FBXW7	Q969H0
KRAS	P01116
MADH4	Q13485
MAP2K4	P45985
MDM2	Q00987
MLH1	P40692
MSH2	P43246
MSH6	P52701
<i>РІКЗСА</i>	P42336
PIK3R1	P27986
TCF7L2	Q9NQB0
<i>TP53</i>	P04637
VTI1A	Q96AJ9

 Table 7 | Mutated genes in colorectal cancer and their corresponding proteins

The 18 mutated genes in colorectal cancer were obtained from the Cancer Gene Census¹⁰ and the proteins coded by them were mapped by PICR¹¹.

Gene name	Protein identifier
ABCC8	Q54P13
CAPN10	Q9HC96
HNF1B	Q91910
GCGR	P30082
TCF7L2	Q9NQB0*
PPARG	O18924
KCNJ11	O02822
WFS1	P56695
HNF1B	Q91910
SLC30A8	Q5I020
HHEX	D2KQB0
CDKAL1	Q5VV42*
IGF2BP2	Q9Y6M1*
CDKN2A	077617
CDKN2B	P42772*
FTO	Q9C0B1*
JAZF1	Q80ZQ5
CDC123	A6R687
CAMK1D	Q8IU85*
TSPAN8	Q2KIS9
LGR5	Q9Z1P4
THADA	A8C752
ADAMTS9	Q9P2N4
NOTCH2	Q04721*

Gene name	Protein identifier
KCNQ1	P51787*
IRS1	Q28224
MTNR1B	Q8CIQ6
PROX1	P48437
GCKR	Q07071
ADCY5	P30803
UBE2E2	Q96LR5*
BCL11A	Q9H165*
GCKR	Q07071
DGKB	Q9Y6T7*
TMEM195	A0JPQ8
C2CD4B	A6NLJ0
KLF14	Q9ESX2
ZBED3	Q96IU2
TP53INP1	Q96A56*
CHCHD9	Q5T1J5
CENTD2	Q4LDD4
HMGA2	P52926*
HNF1A	Q90867
PRC1	Q94JQ6
ZFAND6	Q9DCH6
DUSP9	Q99956*

 Table 8 | Mutated genes in type 2 diabetes and their corresponding proteins

The 46 mutated genes in type 2 diabetes were obtained from the article of Parchwani et al.¹² and the proteins coded by them were mapped by PICR¹⁰. From the 46 proteins listed here only 14 were contained in the human interactome constructed from the STRING database¹; those are marked with an asterisk (*) in the Table.

Table 9 | Average human interactome centralities of target proteins of drugs againstcolorectal cancer and type 2 diabetes

Centrality	Drug targets without side effects			Drug targets with side effects		
type	Colorectal cancer	Type 2 diabetes	Statistical difference	Colorectal cancer	Type 2 diabetes	Statistical difference
Degree (number of neighbours)	24.50	13.00	0.203	40.00	34.00	0.941
Closeness centrality (1/edge)	0.305	0.295	0.330	0.301	0.292	0.572
Betweenness centrality (fraction of shortest paths passing through the node)	1.46E-4	5.76E-4	0.601	3.39E-4	1.28E-4	0.944

The table shows the medians of the centralities of target proteins of drugs against colorectal cancer and type 2 diabetes without or with reported side effects (the results were very similar, if instead of medians we used the arithmetic means; data not shown). Centrality values were calculated with the Pajek programme⁶. The human interactome containing 12,439 proteins and 174,666 edges was built from the STRING database¹, 1,726 human drug targets were obtained from the DrugBank database², and the proteins were labelled by their UniProt ID⁹. 99,423 drugside effect pairs were taken from the SIDER database³. Statistical analysis was performed using the Wilcoxon rank sum (Mann-Whitney) test function of the R package⁵.

UniProt ID of colorectal cancer drug targets without side effects	Average network distance from colorectal cancer-related proteins
075015	(edges)
075015	2.500
P00533	1.722
P00736	2.722
P02745	2.889
P02746	3.000
P02747	3.000
P04350	2.278
P07437	2.167
P09871	3.000
P10696	3.222
P12314	2.722
P12318	2.444
P13688	2.444
P31994	2.500
P32297	3.056
P68363	2.111
P68366	2.000
P68371	2.444
<i>Q13509</i>	2.722
<i>Q13748</i>	2.111
Q71U36	2.111
Q9BQE3	2.389
09H4B7	2.778
<i>Q9NY65</i>	2.333
Mean network distance of drug targets	2.528
Mean network distance of randomly selected protein	

 Table 10 | Average network distance between drug targets without known side effects used in the treatment of colorectal cancer and colorectal cancer-associated proteins

The table shows the average network distance between drug targets without known side effects used in the treatment of colorectal cancer and colorectal cancer-related proteins. The total number of drug targets without known side effects used in the treatment of colorectal cancer was 24; the total number of colorectal cancer-related proteins was 18. Average network distances were calculated as shortest paths using the Pajek programme⁶. Proteins were labelled by their UniProt ID⁹. The human interactome containing 12,439 proteins and 174,666 edges was built from the STRING database¹, 1,726 human drug targets were obtained from the DrugBank database² and 99,423 drug-side effect pairs were taken from the SIDER database³. Colorectal cancer-related proteins were obtained from the Cancer Gene Census database¹⁰. Average network distances between colorectal cancer-related proteins and at least 50 randomly selected samples of 24 proteins each were calculated, and the statistical difference in their mean values compared to the average network distance of the 24 drug targets listed above was tested using the one-way ANOVA (Analysis of Variance) with linear model fit function of the R package⁵. There was no statistically significant difference between the mean values of the drug targets without known side effects and the random samples, F=0.8807, p=0.7078.

UniProt ID of colorectal cancer drug targets with side effects	Average network distance from colorectal cancer-related proteins (edges)
P00374	2.500
P04818	2.556
P11387	2.111
Mean network distance of drug targets	2.389
Mean network distance of randomly selected proteins	3.240

 Table 11 | Average network distance between drug targets with known side effects used in the treatment of colorectal cancer and colorectal cancer-associated proteins

The table shows the average network distance between drug targets with known side effects used in the treatment of colorectal cancer and colorectal cancer-related proteins. The total number of drug targets with known side effects used in the treatment of colorectal cancer was 3; the total number of colorectal cancer-related proteins was 18. Average network distances were calculated as shortest paths using the Pajek programme⁶. Proteins were labelled by their UniProt ID⁹. The human interactome containing 12,439 proteins and 174,666 edges was built from the STRING database¹, 1,726 human drug targets were obtained from the DrugBank database² and 99,423 drug-side effect pairs were taken from the SIDER database³. Colorectal cancer-related proteins were obtained from the Cancer Gene Census database¹⁰. Average network distances between colorectal cancer related proteins and at least 50 randomly selected samples of 3 proteins each were calculated, and the statistical difference in their mean values compared to the average network distance of the 3 drug targets listed above was tested using the one-way ANOVA (Analysis of Variance) with linear model fit function of the R package⁵. There was no statistically significant difference between the mean values of the drug targets with known side effects and the random samples, F=1.223, p=0.1951.

UniProt ID of type 2 diabetes drug targets without side effects	Average network distance from diabetes-related proteins (edges)
P01906	3.786
P06400	2.286
P07339	3.000
P14735	3.214
P16519	3.786
P16870	3.286
P29120	3.143
P48745	3.214
P98164	3.000
Q13131	2.929
<i>Q15842</i>	3.714
<i>Q16270</i>	3.143
Q96C24	3.500
Q9BYF1	3.500
Mean network distance of drug targets	3.250
Mean network distance of randomly selected proteins	3.413

 Table 12 | Average network distance between drug targets without known side effects used in the treatment of type 2 diabetes and diabetes-associated proteins

The table shows the average network distance between drug targets without known side effects used in the treatment of type 2 diabetes and diabetes-related proteins. The total number of drug targets without known side effects used in the treatment of type 2 diabetes was 14; the total number of type 2 diabetes-related proteins contained in the human interactome was 14. Average network distances were calculated as shortest paths using the Pajek programme⁶. Proteins were labelled by their UniProt ID⁹. The human interactome containing 12,439 proteins and 174,666 edges was built from the STRING database¹, 1,726 human drug targets were obtained from the DrugBank database² and 99,423 drug-side effect pairs were taken from the SIDER database³. Type 2 diabetes-related proteins were obtained from the article of Parchwani et al.¹². Average network distances between type-2 diabetes related proteins and at least 50 randomly selected samples of 14 proteins each were calculated, and the statistical difference in their mean values compared to the average network distance of the 14 drug targets listed above was tested using the one-way ANOVA (Analysis of Variance) with linear model fit function of the R package⁵. There was no statistically significant difference between the mean values of the drug targets without known side effects and the random samples, F=0.7867, p=0.8547.

UniProt ID of type 2 diabetes drug targets with side	0
effects	diabetes-related proteins (edges)
060488	3.643
<i>O</i> 60894	3.857
<i>O</i> 60895	3.857
060896	3.429
P04150	2.429
P05121	2.857
P06213	2.643
P06401	2.500
P08069	2.571
P10253	3.786
P11474	3.000
P12821	3.786
P27487	3.500
P30556	3.000
P37231	2.643
P43220	3.071
P48048	3.214
P62508	3.071
Q03181	2.857
Q07869	2.714
Q09428	3.500
Q14654	3.286
Q14697	3.357
Q8TET4	3.929
2 099808	4.357
\widetilde{M} ean network distance of drug targets	3.234
Mean network distance of randomly selected proteins	

 Table 13 | Average network distance between drug targets with known side effects used in the treatment of type 2 diabetes and diabetes-associated proteins

The table shows the average network distance between drug targets with known side effects used in the treatment of type 2 diabetes and diabetes-related proteins. The total number of drug targets with known side effects used in the treatment of type 2 diabetes was 25; the total number of type 2 diabetes-related proteins contained in the human interactome was 14. Average network distances were calculated as shortest paths using the Pajek programme⁶. Proteins were labelled by their UniProt ID⁹. The human interactome containing 12,439 proteins and 174,666 edges was built from the STRING database¹, 1,726 human drug targets were obtained from the DrugBank database² and 99,423 drug-side effect pairs were taken from the SIDER database³. Type 2 diabetes-related proteins were obtained from the article of Parchwani et al.¹². Average network distances between type-2 diabetes related proteins and at least 50 randomly selected samples of 25 proteins each were calculated, and the statistical difference in their mean values compared to the average network distance of the 25 drug targets listed above was tested using the one-way ANOVA (Analysis of Variance) with linear model fit function of the R package⁵. There was no statistically significant difference between the mean values of the drug targets with known side effects and the random samples, F= 0.9021, p= 0.6677.

Supplementary References

- 1. Franceschini, A. *et al.* STRING v9.1: protein-protein interaction networks, with increased coverage and integration. *Nucleic Acids Res.* **41**, D808–D815 (2012).
- 2. Knox, C. *et al.* DrugBank 3.0: a comprehensive resource for 'omics' research on drugs. *Nucleic Acids Res.* **39**, D1035–1041 (2011).
- 3. Kuhn, M., Campillos, M., Letunic, I., Jensen, L. J. & Bork, P. A side effect resource to capture phenotypic effects of drugs. *Mol. Syst. Biol.* **6**, 343 (2010).
- 4. Szalay, K. Z. & Csermely, P. Perturbation centrality and Turbine: A novel centrality measure obtained using a versatile network dynamics tool. *PLoS ONE* **8**, e78059 (2013).
- 5. R Core Team. *R: A language and environment for statistical computing*. (R Foundation for Statistical Computing, 2013). at http://www.R-project.org/
- 6. Vladimir Bagatelj & Andrej Mrvar. in *Graph drawing software* (eds. Jünger, M. & Mutzel, P.) 77–103 (Springer, 2003). at http://pajek.imfm.si/
- 7. The Inkscape Team. Inkscape. (2014). at http://inkscape.org>
- 8. Shannon, P. *et al.* Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome Res.* **13**, 2498–2504 (2003).
- 9. The UniProt Consortium. Reorganizing the protein space at the Universal Protein Resource (UniProt). *Nucleic Acids Res.* **40**, D71–D75 (2012).
- 10. Forbes, S. A. *et al.* COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. *Nucleic Acids Res.* **39**, D945–D950 (2010).
- 11. Wein, S. P. *et al.* Improvements in the Protein Identifier Cross-Reference service. *Nucleic Acids Res.* **40**, W276–280 (2012).
- 12. Parchwani, D., Murthy, S., Upadhyah, A. & Patel, D. Genetic factors in the etiology of type 2 diabetes: linkage analyses, candidate gene association, and genome-wide association still a long way to go! *Natl. J. Physiol. Pharm. Pharmacol.* **3**, 57 (2013).