## Supplementary material



Figure S1. Quantification of Western blot analyses presented in the Figure 1A.

Data are presented as mean  $\pm$  SEM of minimum n=3 independent experiments. \*\*p<0.01 and \*p<0.05, *vs.* the respective control group (vehicle -V- for DZNep and scramble oligo sequence -SCR- for the small interfering RNA used to knock-down EZH2 -siEZH2).



Figure S2. Quantification of Western blot analyses presented in the Figures 1E.

Data are presented as mean  $\pm$  SEM. \*\*p<0.01 and \*p<0.05, *vs.* the respective control group (vehicle –V- for DZNep and scramble oligo sequence -SCR- for the small interfering RNA used to knock-down EZH2 -siEZH2) under normoxia, as mean of n=3 independent experiments.



Figure S3. Binding of YY-1 to the eNOS and BDNF gene promoters.

Quantitative ChIP analysis of YY1 protein was performed in HUVECs to check its occupancy of locus on eNOS (-493/-318 bp) and BDNF (-753/-480 bp) within the promoter region. IgG was used as a negative control. Data were calculated as % bound/input. All data were expressed as mean  $\pm$  SD and are representative of at least n=3 independently performed experiments.



**Figure S4.** DZNep increases the *in vitro* networking and migratory capacities of endothelial cells.

(i-iii): Functional properties of HUVECs treated with DZNep or vehicle (0.1% DMSO) control were assessed using Matrigel (i-iii) and scratch (iv, v) assays. Cells were studied under normoxia or hypoxia and Matrigel (iii) and scratch (v) assay images were taken at 5X magnification. Enhanced HUVEC migration and angiogenic potential were observed under both normoxia and hypoxia in the presence of DZNep. Scale bar: 5  $\mu$ m. For the Matrigel assay, the average total length of tubes (i) and the total number of tubes branching points (ii) have been calculated. For the scratch assay, the % gap closure (iv) was calculated. All measurements are mean ± SEM. #p<0.05 vs. V under normoxia; \*\*p<0.01 and \*p<0.05, vs. V under hypoxia. Experiments were performed in triplicate and repeated at least three times.



**Figure S5.** Overexpression of wild type EZH2 into HUVECs and quantification of Western blot analyses.

HUVECs were initially transduced overnight with Null control adenovirus (Ad Null) or wild type EZH2 (Ad wtEZH2, both at 250 M.O.I) then left in culture for further 48hours before collection of protein for Western Blot analysis (i) and further Western blot quantification (ii). Data are presented as mean  $\pm$  SEM of n=3 independent experiments. \*p<0.05, *vs.* the respective control group (Ad Null for the wt EZH2 adenovirus).



Figure S6. Rescuing the EZH2 protein levels in HUVECs worsens the endothelial cell function.

(i-iii): Functional properties of HUVECs transduced with adenovirus (Ad) wild type EZH2 (Ad wtEZH2) or Null control (Ad Null) were assessed by Matrigel (i-iii) and scratch (iv, v) assays. Upon transfection with scramble control (SCR) or siEZH2 the Matrigel (iii top panel) and scratch (v top panel) assay images were taken at 5X magnification. Cells were further transduced with AdNull or Ad wtEZH2 to rescue the expression of EZH2 protein. Further Matrigel (iii bottom panel) and scratch (v bottom panel) assay images were taken. Enhanced HUVEC migration and angiogenic potential observed under siEZH2 condition were inhibited in the presence of exogenous wtEZH2. Scale bar:  $5 \mu m$ . For the Matrigel assay, the average total length of tubes (i) and the total number of tubes branching points (ii) have been calculated. For the scratch assay, the % gap closure (iv) was calculated. All measurements are mean  $\pm$  SEM. #p<0.05 vs. siEZH2+AdNull; \*p<0.05, vs. SCR+Ad Null. Experiments were performed in triplicate and repeated five times.





Flow cytometry image representation of the total lympho-mononuclear cells from mouse peripheral blood. Forward and side scatter (i) show the total population analyzed (in red; P1). For data analysis, counting beads (green) were identified by their size (in P2 in the forward and side scatter). Identification and quantification of blood CD11b<sup>pos</sup>Sca-1<sup>pos</sup> and Lin<sup>neg</sup>Sca-1<sup>pos</sup> cells by flow cytometry. (ii) Representative graphs show the negative control (isotype control) for CD11b<sup>pos</sup>(P3) and CD11b<sup>pos</sup>Sca-1<sup>pos</sup> cells (P4). (iii) CD11b<sup>pos</sup>Sca-1<sup>pos</sup> cells (in P4, pink) in treatment group with vehicle (V) or DZNep. (iv) Representative graphs show the negative control (isotype control) for Lin<sup>neg</sup>(P3) Lin<sup>neg</sup>Sca-1<sup>pos</sup> c-kit<sup>pos</sup> (P4) (v) Lin<sup>neg</sup>Sca-1<sup>pos</sup> c-kit<sup>pos</sup> (in P4, pink) in treatment group with vehicle (V) or DZNep. An equivalent strategy was used for the bone marrow analyzes.

| Human<br>gene<br>name | Forward:                     | Reverse:                      |
|-----------------------|------------------------------|-------------------------------|
| EZH2                  | CCTGAAGTATGTCGGCATCGAAAGAG   | GGGCAGTGATCTCCTTCTGCAT        |
| SUZ12                 | CTTACATGTCTCATCGAAACTCC      | GGCTGGAAGCTCTTCATTGACA        |
| EED                   | GTGACGAGAACAGCAATCCAG        | TATCAGGGCGTTCAGTGTTTG         |
| eNOS                  | TGATGGCGAAGCGAGTGAAG         | ACTCATCCATACACAGGACCC         |
| BDNF                  | GGCTTGACATCATTGGCTGAC        | CATTGGGCCGAACTTTCTGGT         |
| 18S                   | GTAACCCGTTGAACCCCATT         | CCATCCAATCGGTAGTAGCG          |
| Mouse<br>gene         | Forward:                     | Reverse:                      |
| name                  |                              |                               |
| EZH2                  | TTACTGCTGGCACCGTCTGATGTG     | TGTCTGCTTCATCCTGAGAAATAATCTCC |
| SUZ12                 | GAAGCTGTGGAACCTCCATGTC       | ACAGCATACAGGCATGATTCATTT      |
| EED                   | GCGATGGTTAGGCGATTTGAT        | TTTTGCCAGGTTTCCAGCAT          |
| eNOS                  | GGCTGGGTTTAGGGCTGTG          | CTGAGGGTGTCGTAGGTGATG         |
| BDNF                  | TCATACTTCGGTTGCATGAAGG       | AGACCTCTCGAACCTGCCC           |
|                       | rentitierreddiridentidiitidd |                               |

**Table S1.** Sequence of qPCR primers used in this study.

**Table S2.** Sequence of primer used for chromatin immunoprecipitation (ChIP) qPCR analysis in this study.

| eNOS           |                        |                       |  |
|----------------|------------------------|-----------------------|--|
| promoter       | Forward:               | Reverse:              |  |
| region         |                        |                       |  |
| -496 to -305bp | GGGGAGGTGAAGGAGAGAACC  | GAGCCACCAGGGGGGTCATAA |  |
| -493 to -301bp | CCAGGAGTTCTTGTATGTATGG | GGTCCTTCTGTGATGTGGC   |  |
| -347 to -114bp | GGTGCCACATCACAGAAGGA   | CACAATGGGACAGGAACAAGC |  |
| -318 to -208bp | GGTGCCACATCACAGAAGG    | AGCCCAGGTGTCCAGCA     |  |
| -220 to +19bp  | AGTCCTCACAGCGGAACC     | ACTGTGCGTCCACTCTGC    |  |
| -7 to +171bp   | AGCAGGCAGCAGAGTGGAC    | GGCCCTTACCTGTGTTCTG   |  |
| BDNF           |                        |                       |  |
| promoter       | Forward:               | Reverse:              |  |
| region         |                        |                       |  |
| -814 to -610bp | GCTTTTTAAGGGCGACACAG   | ACAGAGCCAACGGATTTGTC  |  |
| -775 to -581bp | TGCTTTCAGCCAGATGTCTC   | GAGTTGGTTCCCTCTGTTGC  |  |
| -753 to -480bp | CACAGGGAGATGCAAGTTGA   | GAAAGGCACTCCCATTTCAG  |  |
| -510 to -220bp | GCGCTGAATTTTGATTCTGG   | GAAAGTGGGTGGGAGTCCA   |  |
| -260 to -82bp  | AACGCACACACACAGAAAGC   | CCCTCCTCCTGAAATTGTGA  |  |
| -113 to +20bp  | GCTTTTTAAGGGCGACACAG   | ACAGAGCCAACGGATTTGTC  |  |
| Control        |                        |                       |  |
| primers        | Forward:               | Reverse:              |  |
| promoters:     |                        |                       |  |
| MYT-1          | ACAAAGGCAGATACCCAACG   | GCAGTTTCAAAAAGCCATCC  |  |
| Neuogenin D2   | TCACAGGGCCAAGATAAAGC   | AAGAGCGAGCATCTGTTTCC  |  |
| GAPDH          | CGGGATTGTCTGCCCTAATTAT | GCACGGAAGGTCACGATGT   |  |

| Antibody                         | Application | Source                   | Cat No:  |
|----------------------------------|-------------|--------------------------|----------|
| Rb - EZH2                        | WB          | Active Motif             | 39933    |
| Ms - EZH2 (clone AC22)           | ChIP        | Millipore                | 17-662   |
| Rb - SUZ12                       | WB, ChIP    | Abcam                    | ab12073  |
| Rb - EED                         | WB, ChIP    | Santa Cruz Biotechnology | sc-28701 |
| Rb - H3K27me3                    | WB, ChIP    | Millipore                | 07-449   |
| Rb - H3K27me2                    | WB, ChIP    | Millipore                | 07-452   |
| Rb - H3K4me3                     | WB, ChIP    | Millipore                | 07-473   |
| Rb – H3KAc                       | WB, ChIP    | Millipore                | 06-599   |
| Rb - H3 total                    | WB, ChIP    | Active Motif             | 39163    |
| Rb - eNOS                        | WB          | Cell signaling           | 9572     |
| Ms - BDNF                        | WB, ELISA   | Promega                  | G164B    |
| Rb - YY1 (C-20)                  | WB, ChIP    | Santa Cruz Biotechnology | sc-281   |
| Rb - RNA Polymerase II<br>(N-20) | WB, ChIP    | Santa Cruz Biotechnology | sc-899X  |
| Rb - IgG control                 | ChIP        | Millipore                | 06-489   |
| Ms - IgG control                 | ChIP        | Millipore                | 12-371B  |
| Ms - Tubulin                     | WB          | Cell Signaling           | 2148S    |
| Ms - Lamin A/C                   | WB          | Active Motif             | 39287    |

 Table S3. Antibodies used in the study.