
Hongyi Xin et al.

1 SUPPLEMENTARY MATERIALS
1.1 Local Alignment and Filtering in Read Mapping
In read mapping, the Levenshtein-distance (edit-distance) is used to
measure the similarity between read and reference DNA segments
at each potential mapping site. The edit-distance is defined as
the minimum number of edits (i.e. insertions, deletions, or
substitutions) required to make the segments match exactly. If the
edit-distance is greater than the user-defined error threshold e, the
mapping site is rejected.

For most scientific research, small error thresholds (e) are
required, usually less 5% of the read length. In Figure 8,
we computed the exact edit-distance between 100 basepair long
reads (reads are real data from 1000Genome project) and their
corresponding potential locations in the Human reference genome
as determined by the popular seed-and-extend based mapper,
mrFAST Alkan et al. (2009). For e = 0, 1, . . . , 5, more than
98% of the potential locations did not meet the error threshold.
Moreover, over half of all potential locations contained more than
20 errors. Seed-and-extend based mappers that do not filter these
clearly invalid mappings waste much of their time performing
computationally expensive edit-distances calculations.

Many mechanisms have been proposed to efficiently calculate
the edit-distance of strings and filter out incorrect mappings before
computationally expensive methods are applied. These mechanisms
can be divided into five main classes: (i) dynamic programming
(DP) algorithms, (ii) SIMD implementations of DP algorithms,
(iii) bit-vector implementations of DP algorithms, (iv) Hamming
distance calculation, and (v) locality based filtering mechanisms.
We briefly describe each next.

1.1.1 Dynamic-programming algorithms (DP algorithms) Most
mappers rely on dynamic-programming methods to compute
edit-distances. The classical approach, proposed by Smith and
Waterman Smith and Waterman (1981), is to generate a (l + 1) ×
(l + 1) edit-distance matrix, where l is the length of the read and
the reference. The edit-distance matrix is recursively defined in a
top-to-bottom and left-to-right manner. The first row (0th row) and
the first column (0th column) of the matrix are initialized to the
sequences 0, 1, 2, . . . , l and 0, 1, 2, . . . , l respectively. The value of
each element is dependent on its top neighbor, its left neighbor, its
top-left neighbor, and the comparison of basepairs from the read and
the reference. This relationship is formally described by Equation 1:

mi,j = min

mi−1,j + 1,

mi,j−1 + 1,{
mi−1,j−1 read[i] = reference[j]
mi−1,j−1 + 1 otherwise

(1)

The value of the matrix element at row i and column j represents
the number of edits between read[1..i] and reference[1..j]. The
complexity of the Smith-Waterman algorithm is O(l2). However,
in read mapping, computing the precise edit-distance between the
read and the reference sequences would be wasteful, as it is only
necessary to determine if the two sequences differ by more than
e errors. Ukkonen’s algorithm Ukkonen (1985) takes advantage
of this fact and only determines if two sequences differ by more
than the error threshold by calculating a strip of 2e + 1 diagonal

lanes of the matrix, rather than the entire matrix as in the Smith-
Waterman approach. The time complexity of Ukkonen’s improved
DP algorithm is O((2e+ 1)× l).

1.1.2 Bit-vector implementations of DP algorithms Several bit-
vector algorithms Hyyro et al. (2005); Myers (1999) that exploit
bit-parallelism in DP algorithms have been proposed. By making
the observation that elements in the edit-distance matrix of DP
algorithms differ from their top and left neighbors by at most 1 (±1),
the edit-distance matrix can be transformed into two series of bit-
vectors. We choose Gene Myers’ bit-vector implementation Myers
(1999) as a representative algorithm. In Gene Myers’ algorithm,
bit-vectors record differences between consecutive columns of the
edit-distance matrix. Because each element can either be +1, −1,
or 0 away from its left neighbor, two separate bit-vectors are
used for each column: one indicates rows where the elements are
+1 away from their left neighbors while the other indicates rows
where the elements are −1 from their left neighbors. Gene Myers
further proves that the differences between each pair of cells in
two consecutive columns can be computed in parallel. A minimum
edit-distance score for each column is computed as part of this
process.

Although the complexity of the algorithm is O(l2), the runtime
of Gene Myers’ algorithm is much faster than basic DP algorithms.
Each bit-vector is mapped to a few computer registers; therefore,
applying an operation to the register is equivalent to applying the
same operation to many elements in the edit-distance matrix. If
each register has w bits, theoretically Gene Myers’ algorithm can
provide a (w/|S|)× speedup over the basic Smith-Waterman DP
algorithm, where S is the cardinality of some set of symbols
(S of |{A, C, T, G}| = 4 in DNA). Nonetheless, even if the
registers are wide enough to store an entire bit-vector (w ≥ l + 1),
Gene Myers’ algorithm still requires O(l) bit-wise operations to
cascade the computation for l total bit-vectors.

1.1.3 SIMD implementations of dynamic-programming algorithms
Another approach to speed up the basic DP algorithm is to
efficiently map the DP algorithm to SIMD units Manavski and
Valle (2008); Szalkowski et al. (2008); Farrar (2007). Many modern
computers have SIMD units, such as GPUs and vector units in
CPUs. These vector units pack multiple data elements into a single,
wide register and apply the same instruction to all of the packed data
elements simultaneously. SIMD implementations of DP algorithms,
such as swps3, exploit the data parallelism between elements in the
edit-distance matrix. In swps3, elements in the edit-distance matrix
are mapped to SIMD registers in a striped manner. Data is placed
such that within a single register there are no dependencies bewteen
elements. Also, elements within a register share dependencies on
other registers. Therefore, elements within a SIMD register are
synchronized for SIMD operations (either all of them are ready or
none of them are ready).

Similar to bit-vector implementations of DP algorithms, SIMD
implementations do not reduce the complexity of the algorithm, but
speedup the process by exploiting parallelism within the algorithm.
Theoretically, a SIMD platform that packs p elements into a single
register, can provide up to p× speedup over basic Smith-Waterman
implementation. In practice, however, due to extra computation
spent on data mapping and other auxiliary processing, the speedup
of SIMD implementations is generally smaller than p. For example,

10

Shifted Hamming Distance

Fig. 8: Figure (a) shows the edit-distance breakdown and Figure (b) shows the edit-distance distribution of all potential mappings evaluated
by mrFAST. Both plots show that a vast majority of the potential mappings have far more errors than the threshold e.

swps3 uses Intel SSE, which packs 16 elements into a single register,
while providing a maximum speedup of only 8×.

1.1.4 Hamming distance Another method to measure the
similarity between the read and the reference is Hamming distance.
The Hamming distance between a pair of strings is defined as
the number of positions at which the corresponding symbols are
different. As such, the Hamming distance measures the pure
letter-wise differences between strings. Hence, it can only find
substitutions.

Hamming distance can be calculated in a bit-parallel fashion.
Consider a set of symbols, S ({A, C, T, G} for DNA), which can
be represented in s = log2(|S|) bits (s = 2 for DNA). A
string of m symbols is decomposed into s bit-vectors, each with
m bits. Each bit-vector contains one bit per symbol: the first bit-
vector represents the first bit of all symbols; the second bit-vector
represents the second bit of all symbols; etc. The Hamming mask
of two strings is simply a bit-vector representing matches and
mismatches between them. In this Hamming mask, a ‘0’ represents
a basepair match between the read and the reference while a ‘1’
represents a mismatch. The Hamming distance of two strings is
simply to the number of ‘1’s in the Hamming mask. Algorithm 2
provides the pseudocode for calculating the Hamming mask of two
strings A and B. In the pseudocode, both strings, A and B, are
represented as two sets of s bit-vectors, A[0]...A[s-1] and B[0]...B[s-
1]. The Hamming mask of A and B can be calculated using s
bit-wise XOR and bit-wise OR operations.

Hamming distance cannot correctly distinguish insertions or
deletions from substitutions. Each insertion and deletion can shift

Algorithm 2: ComputeHammingMask
Inputs: A[0]...A[s − 1],B [0]...B [s − 1] (bit-vectors of string
A and B)
Outputs: HMask (the Hamming mask of string A and B)
HMask = 0;
for i = 0 to s− 1 do

TempMask = A[i] ˆ B [i];
HMask = HMask |TempMask ;

return HMask

multiple trailing symbols in a string and create multiple mismatches
in the Hamming mask (as bits of ‘1’s). Therefore, Hamming
distance is either strictly greater than or equal to the edit-distance
of two strings.

1.1.5 Filtering algorithms exploiting locality among k-mers It
is not always necessary to calculate the edit-distance between two
strings to verify a potential mapping. Incorrect mappings can also
be filtered out with simple searches. Several works Ahmadi et al.
(2011); Xin et al. (2013) have shown that the potential mappings
of a read can be verified by checking (searching) relative distances
between its k-mers (small subsequences of the read that are used to
generate potential mappings). We select Adjacency Filtering (AF)
from FastHASH Xin et al. (2013) as a representative example. In
AF, if a read can be divided into m non-overlapping k-mers, then
with e allowed errors, at least m − e k-mers should be located
near the mapping site in the reference for correct mapping. For

11

Hongyi Xin et al.

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000 0001 0010 0011 0100 0111 0110 0111 1000 1111 1110 1111 1100 1111 1110 1111
Reg B:

(Lookup table)

Reg A: 001101111 101 111111111001001111 101 111 11111111 10011111000011 10011001101111

: pshuff

001101111 101 111111111001001111 101 111 11111111 10011111000011 10011001101111
Reg A after

pshuff :

Keys

Values

: Changed bits before and after pshuff11 111: Vector elements

(a)

(b)

Fig. 9: Figure (a) shows the lookup table that is used to replace short streaks of ‘0’s with amended ‘1’s. In this table, ‘0’s that are bounded by
‘1’s in a binary key are replaced by amended ‘1’s in the value.
Figure (b) shows an example of amending short streaks of ‘0’s using packed shuffle (pshuff) operations.

0011 1111 1 1 111111111 1 1111 1 1 111 11111111 1 11111000011 1 11 11 11111

0011 1111 1 1 111111111 1 1111 1 1 111 11111111 1 11111000011 1 11 11 11111

0011 1111 1 1 111111111 1 1111 1 1 111 11111111 1 11111000011 1 11 11 11111

0011 1111 1 1 111111111 1 1111 1 1 111 11111111 1 11111000011 1 11 11 11111

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000 0001 0010 0011 0100 0111 0110 0111 1000 1111 1110 1111 1100 1111 1110 1111

0011 1111 1 1 111111111 1 1111 1 1 111 11111111 1 11111000011 1 11 11 11111

Lookup table:

Hamming mask:

After overwrite:

: �✁✂✄☎ ✆☎✄✝✞✟✆ ✂✠ ✡☛☞✆ : ✌✍✝✎✏✝✏ ✡✑☞✆11 111: Vector elements : pshuff

(a)

(b)

Fig. 10: Figure (a) shows the lookup table that is used to replace short streaks of ‘0’s with amended ‘1’s.
Figure (b) shows the workflow of SRS amend, according to Algorithm 3. SRS replaces all short streaks of ‘0’s in a Hamming mask using
four right shifts and pshuff s.

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 1 1 1 1 2 2 1 1 2 2 2 1 2 1 1

000000000000000100011111110000001111100010000011111111000000000010001000011110000

Lookup table:

Hamming mask:

: pshuff

0 0 0 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 0

No. of errors: 14

: hadd00111111: Vector elements

(a)

(b)

Fig. 11: Figure (a) shows the lookup table that is used to count the number of errors in the final bit-vector of SHM. The value of a key is the
minimum number of errors that the key can cover.
Figure (b) shows the workflow of SRS count, according to Algorithm 4. The minimum number of errors is calculated with a pshuff s
followed by a hadd (horizontal add to sum up all errors).

12

Shifted Hamming Distance

example, a potential mapping location, loc, is valid for the ith k-
mer of the read if there exists a location within the expected range
of [loc + i · k − e, loc + i · k + e] in the location list of the k-mer
(there is a range of±e because of possible insertions/deletions from
other k-mers). A potential mapping location passes AF only if more
than m− e k-mers pass the locality check.

Filters that are similar to AF work well only when e is very
small (e.g., below 1/3rd of m). When e gets larger, their accuracy
decreases drastically. There are two reasons for this. First, with a
larger e, the range of expected locations ([loc+i·k−e, loc+i·k+e])
expands, which causes more potential locations to pass locality
checking. Second, the required minimum number of k-mers that
exhibit locality around loc, m − e, is largely reduced, since m
is typically a smaller number of 10 or less. As a result, filtering
mechanisms exploiting locality among k-mers are not favorable for
large e (e.g., e ≥ 3).

1.1.6 Conclusion Identifying incorrect mappings quickly is
crucial to seed-and-extend based mappers. Previous works are
either slow or inaccurate. Calculating the edit-distance of a
potential mapping using DP algorithm (Section 1.1.1) or its SIMD
(Section 1.1.3) or bit-vector (Section 1.1.2) variations is slow,
while Hamming distance (Section 1.1.4) and locality-based filters
(Section 1.1.5) are fast but have many false positives (they allow
many incorrect mappings to pass). A high speed, low false positive,
and zero false negative filter that is effective under moderate error
thresholds (e.g., up to 8% of read length) is needed to further
improve the performance of seed-and-extend based mappers. In this
article, we introduce such a filter.

1.2 SRS SIMD Implementation
In this section, we provide implementation details of SRS amend
and SRS count, which are essential functions of SHD, as
Algorithm 1 shows.

To achieve high efficiency, we implemented both functions using
Intel SSE instructions. Specifically, we used the packed shuffle
operation, a SIMD parallel-table-lookup instruction provided by the
Intel SSE instruction set.

Packed shuffle (pshuff) takes two vectors of integers A =
[a0 a1 a2 ...] and B = [b0 b1 b2 ...] and replaces integers
in vector A with integers in vector B with the result A =
[B[a0] B[a1] B[a2]...]. Figure 9 gives an example of applying
pshuff on a single bit-vector. Notice that the values of the integers in
vector A must not exceed the maximum size of vector B, otherwise
an incorrect result is returned. On Intel platforms, the maximum
size of an SSE vector is 16 (with single-byte integers). Therefore,
on Intel platforms, the value of the elements in either vectors must
not exceed 16 (1111 in binary, four bits).

1.2.1 Implementation of SRS amend Algorithm 3 shows the
pseudocode of SRS amend. We use packed shuffle to efficiently
replace all short streaks of ‘0’s with ‘1’s in parallel. According
to SRS (Section 3.2), all streaks of ‘0’s shorter than three
(and are bounded by ‘1’s) are turned into streaks of ‘1’s. As
a result, bit streams such as 101, 1001 are replaced with 111
and 1111, respectively. Packed shuffle can drastically speed up
this replacement process by storing the pre-processed replacement
patterns in a lookup table and replacing target bit streams in parallel

at runtime. Specifically, the lookup table stores replacement bit
streams for binary keys ranging from 0000 to 1111 (16 keys in total),
as shown in Figure 9 (a). Among all keys, for those that have ‘0’s
in the middle of ‘1’s, such as 0101 or 1010, their values replace the
middle ‘0’s with ‘1’s (0101→ 0111 and 1010→ 1110); for all other
keys, their values are simply the keys themselves (hence packed
shuffle does not change them). Figure 9 (a) presents the entire
lookup table for SRS amend. Figure 9 (b) presents an example
of amending short streaks of ‘0’s using a single packed shuffle
operation.

To successfully amend all short streaks of ‘0’s into ‘1’s, however,
a single packed shuffle operation is not enough. Short streaks of ‘0’s
that span two neighboring keys in the lookup table stays unchanged
after the packed shuffle operation (e.g., 0010 0100→ 0010 0100).
To solve this problem, we incrementally shift the bits in the vector
to the right (as shown in Figure 10 (b)) which eventually brings the
short streak of ‘0’s into one key (0010 0100 >> 001 0010 0 >>
00 1001 00→ 00 1111 00). Figure 10 (b) illustrates SRS amend
(Algorithm 3) amending all short streaks of ‘0’s in a Hamming mask
through four pshuff operations and shifts.

Algorithm 3: SRS amend
Inputs: HMask (Hamming mask), LTable (lookup table)
SIMD Registers: r1, r2 and r3

Outputs: SRS HMask (SRS amended Hamming mask)
r1 = HMask;
r2 = LTable;
r3 = pshuff (r2);
r1 = r1 |r3;
for i = 1 to n− 1 do

r3 = r1>>i;
r3 = pshuff (r2);
r3 = r1<<i;
r1 = r1 | r3;

SRS HMask = R1 ;
return SRS HMask;

Note that to amend a short streak of ‘0’s using packed shuffle,
the entire short streak of ‘0’s and the bounding ‘1’s must fit into the
space of a single key at once (e.g., 1001 but not 1000 1). Since
the packed shuffle operation on Intel platforms only supports a key
length of four bits at maximum, it cannot amend any short streak
of ‘0’s longer than two. As a result, we choose an SRS threshold of
three bps in this paper. A study of the effect of other SRS thresholds
on the false positive rate is provided in Section 3.3.

1.2.2 Implementation of SRS count Similar to SRS amend,
SRS count is implemented using packed shuffle as well. According
to SRS (Section 3.2), a streak of ‘1’s in the final bit-vector of SHM
is always assumed to be amended from back-to-back short streaks
of ‘0’s. Therefore, the number of errors of a short streak of ‘1’s must
be counted as the minimum errors that this streak can cover.

Using packed shuffle, we can quickly provide a lower bound of
the number of errors that the final bit-vector contains. In this case,
the lookup table of packed shuffle stores the minimum number of
errors that each key covers. For example, key 0100 clearly covers

13

Hongyi Xin et al.

only a single error hence, stores a “1” in the table while key 0110
clearly covers two errors hence, stores a “2” in the table. However,
for keys such as 1100 or 1111, it is unclear what bits are next to
them hence the minimum number of errors that they cover is hard to
determine (e.g., in bit-stream [0000 1100] 1100 covers two errors,
but in bit-stream [0001 1100] 1100 covers only one error). In order
to preserve correctness (such that we do not not over-estimate errors
under for any input) while maintaining speed, a lower bound of
errors is (always) assumed for such keys. A complete lookup table
for SRS count is provided in Figure 11 (a).

Algorithm 4: SRS count
Inputs: Final BV (the final bit-vector of the SHM), LTable
(lookup Table)
SIMD Registers: r1 and r2

Outputs: errorNum (minimum number of errors in the
bit-vector)
r1 = Final BV;
r2 = LTable;
r1 = pshuff (r2);
errorNum = hadd(r1);
return errorNum;

Algorithm 4 provides the pseudocode of SRS count. As the
pseudocode shows, we first load the pre-processed lookup table into
a SIMD register. Then, we count the minimum number of errors of
each key in the final bit-vector using packed shuffle. Finally, we sum
up all minimum numbers of errors of all keys using a horizontal add
(hadd). The final sum is a lower bound of the minimum number of
errors of the final bit-vector (and the potential mapping). Figure 11
(b) visualizes the entire workflow of Algorithm 4. In this figure, a
minimum of 14 errors is counted from the final bit-vector, which
indicates that the potential mapping must be erroneous hence must
be rejected.

1.2.3 Code Availability Note that we have made the described
implementation of SHD available at:
https://github.com/xhongyi/SHD code.

1.3 Comparison against Hamming Distance Filter
For completeness, we also compared SHD against our homegrown
Hamming distance filter. To provide a fair comparison, our
homegrown Hamming distance filter also converts both the read
and the reference strings into bit-vectors (the same way as SHD
does) before calculating the Hamming distance. We also used Intel
SSE in our homegrown Hamming distance filter implementation,
which includes a vector XOR followed by a popcount (counting
the number of ‘1’s). Both SHD and the Hamming distance filter
are benchmarked with the mrFAST front-end. Table 2 presents the
average time each program (SHD and Hamming distance filter)
spends on verifying 1 million string pairs.

As shown in Table 2, SHD consumes more time on average to
verify 1 million string pairs than our homegrown Hamming distance
filter. This is because SHD computes multiple Hamming masks
in SHM while each Hamming mask is further processed by SRS.
As a result, SHD is much more complex than just calculating the

Error Threshold (bps) Hamming Distance Filter (s) SHD (s)
e=0 0.212 0.28
e=1 0.211 0.30
e=2 0.211 0.32
e=3 0.211 0.35
e=4 0.212 0.375
e=5 0.211 0.384

Table 2. The average time SHD and our homegrown Hamming distance
filter spend on verifying 1 million string pairs, with error thresholds 0-5.

Hamming distance. In return, SHD supports handling insertions and
deletions whereas Hamming distance does not. Supporting indels is
a key feature of SHD.

SHD always spends more time to verify 1 million string pairs
when the error threshold increases. This is expected because the
complexity of SHD increases linearly with a larger error threshold.

On the contrary, our homegrown Hamming distance filter spends
a similar amount of time to verify 1 million string pairs regardless of
how large the error threshold is. This is expected as the complexity
of the Hamming distance filter remains the same for all error
thresholds as Hamming distance has no ability to handle indels (This
ability is a key feature of SHD).

Note that both SHD and our homegrown Hamming distance filter
have to convert each string pair into bit-vectors before calculating
the edit-distance (or Hamming distance). This conversion overhead
is included in the execution time of both implementations in Table 2.
To measure the overhead of bit-vector conversion, we benchmarked
converting 1 million string pairs into bit-vectors. It takes on average
0.209 seconds to convert 1 million string pairs into bit-vectors. This
conversion overhead can be drastically reduced in a mapper by pre-
calculating the reference genome into bit-vectors and converting
each read only once (Note that each read can produce many string
pairs to be verified). However, such optimization is mapper-specific
and will be explored in our future research.

Importantly, even though our homegrown Hamming distance
implementation is faster than SHD, it does not support indels as
SHD does. Table 3 shows the false negative rate (percentage of
incorrectly rejected string pairs, which have edit-distances below
the error threshold) of SHD and our homegrown Hamming distance
filter.

Error Threshold (bps) Hamming Distance Filter (%) SHD (%)
e=0 0 0
e=1 0.98 0
e=2 2.12 0
e=3 3.65 0
e=4 5.47 0
e=5 7.53 0

Table 3. The false negative rate of SHD and our homegrown Hamming
distance filter, with error thresholds 0-5.

Compared to SHD, which always has 0% false negative rate, the
Hamming distance filter has an increasing false negative rate under a
greater error threshold. This is because a larger portion of the correct
mappings contains indels under a larger error threshold while most

14

Shifted Hamming Distance

of these correct mappings with indels are inaccurately rejected by
the Hamming distance filter.

To conclude, although SHD is slower than the Hamming distance
filter, as it is more complex, it can handle indels. For applications

where tolerating indels is essential, only SHD, but not the Hamming
distance filter, provides correct functionality.

15

