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S.1 Effects of Different Thresholds for Protein and GO Term Annotation

Filtering

As described in the main manuscript, we apply two filters on the input datasets of our analysis: (1) we

exclude proteins with degree less than 4, and (2) we exclude GO terms that annotate less than 5 proteins

or more than 5% of the proteins in the protein-protein interaction network (PIN). It is a common practice

to exclude low degree proteins from systematic analyses of PINs, because the low degree proteins are likely

to correspond to incomplete parts of the PINs (Wang and Wu, 2013). We set the degree threshold to 4,

so that all 2- to 5-node graphlet orbits can appear on the considered nodes. The reason for excluding the

GO terms that annotate less than 5 nodes is that, such GO terms do not provide enough variance for

CCA to identify significant topology-function relationships. The topological patterns identified for such

GO terms are not generic and their topological patterns are not stable, as they may change a lot if a

single additional protein is annotated with the GO term. The effects of choosing different thresholds for

these filters are discussed in detail below.

To understand the effects of different degree thresholds, we perform our experiments with degree

thresholds of 2, 3, 4 and 5. Table S.3 presents the number of proteins that are considered for each of these

degree thresholds and Table S.5 presents the number of identified topology-function relationships together

with the comparison of these results with those obtained with degree threshold 4. As shown in the tables,

different degree thresholds cause a trade-off between the count and the level of confidence on the identified

topology-function relationships: with lower degree thresholds, we obtain higher number of topology-

function relationships but the confidence in these relationships is lower, since they are obtained from more
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noisy interaction datasets. When higher degree thresholds are used, the number of identified topology-

function relationships are lower, but the confidence in these relationships is higher since they are obtained

from high confidence interactions in the PINs. Interestingly, the topology-function relationships that are

identified in the high confidence part of the PIN are also identified when the incomplete part of the PIN

is considered (i.e., when low degree nodes are included into the analysis) – see the “Intersection/Total”

columns of Table S.5. In the manuscript, we decided to report the results on the degree threshold of

4, since it captures all the high confidence topology-function relationships without including too many

lower confidence topology-function relationships. Degree threshold 4 also guarantees that all 2- to 5-node

graphlet patterns can be observed.

Similarly, to understand the effects of different GO term annotation thresholds, we perform our

experiments with GO annotation thresholds of 3, 5, 10, 15 (while keeping the degree threshold fixed

at 4). The number of considered GO terms with each threshold is summarized in Table S.4 and the

number of topology-function relationships identified with each threshold together with the comparison of

these results with those obtained with GO term threshold 5 are provided in Table S.6. With increasing

thresholds of GO term filtering, more biological process terms are identified to have significant topology-

function relationships, while the number of identified relationships are slightly less for cellular component

terms. This is due to fact that when GO terms with low variance (i.e., terms annotating a smaller number

of proteins) are filtered out, CCA can identify the topological patterns of the higher variance GO terms

more accurately without noising the identified weights with the estimates including the low variance GO

terms. It should also be noted that the identified topology-function relationships are consistent at different

GO term annotation thresholds. Therefore, the value for this parameter should be decided considering

the trade-off between the higher number of GO terms analysed and higher number of topology-function

relationships obtained. With the aim of covering as many GO terms as possible in our analysis, we

decided to use the threshold of 5 rather than higher thresholds.

S.2 Computation of the Association Matrix

The association matrix aims to encode all the topology-function relationships that are identified by the

canonical correlation analysis (CCA) and transforms the graphlet degree vectors of proteins to functional

annotations based on a least-squares fit model. The first variable set of the CCA, Rt, describes the
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topological characteristics of the proteins based on the graphlet degree vectors. For each protein, the

graphlet degree vector is a 73-dimensional vector (t = 73), where each element corresponds to the graphlet

degree of one orbit from 2- to 5-node graphlets. The second variable set of CCA, Rf , describes the

functions of proteins based on their GO term annotations. CCA is performed separately for the three

GO annotation categories, i.e., biological process (BP), molecular function (MF) and cellular component

(CC). The sizes of the GO annotation vectors (i.e., the numbers of GO terms) that are considered for

each run of the CCA are summarized in Table S.1, as indicated by the total number of GO terms. For

example, the number of functional annotation features, f , that are considered for the biological process

terms of human is equal to 1, 439.

Applying CCA on these feature sets, the association matrix is computed as W1 × S × W+
2 , where

W1 is the matrix of canonical weights for the topological variables, S is a diagonal matrix of canonical

correlations and W+
2 is the Moore-Penrose pseudoinverse matrix of canonical weights for the functional

annotation variables. By multiplying the graphlet degree vectors with W1, the graphlet degree variates

are computed. Since the canonical weights that are identified by the CCA guarantees that the graphlet

degree variates are maximally correlated with the GO Term variates, multiplying the graphlet degree

variates with the diagonal matrix of canonical correlations, S, estimates the GO term variates based

on a least-squares fit model. In other words, multiplication of the graphlet degree vectors with W1 × S

produces GO term variates that are approximated based on a linear model. Finally, multiplying the

estimated GO Term variates with W+
2 , the estimated GO term variates are transformed back into GO

term annotations of proteins and topology-based GO annotations are obtained.

S.3 Defining the Orbit Contribution Strength Measure

We identify the orbits that are statistically significantly linked with the wiring patterns of a GO term

by computing the orbit contribution strengths, i.e., Pearson’s correlations between the graphlet degrees

and the topology-based GO Annotations (Fig. 2.B). For this task, we choose to use the topology-based

annotations rather than observed GO annotations due to the two following reasons:

1. The protein-protein interaction and GO term annotation datasets are highly noisy and incomplete.

Assuming that a GO term is linked with certain wiring patterns (i.e., orbits) and these patterns are

consistent for all proteins that are annotated with the GO term, the noise in the protein interaction
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and GO term annotation datasets would make their wiring patterns heterogeneous. For this reason,

due to the incompleteness and noisiness of the datasets, it is not always possible to observe similar

topological characteristics for the proteins annotated with a given GO term. This makes it harder to

characterize the topology-function relationships of a given GO term. Instead of directly extracting

these topological characteristics from the data, we first estimate the most likely topological profile

of a GO term using canonical correlation analysis. Then, without referring to the data, we aim

to understand the estimated topological profile by defining the orbit contribution strength profiles.

This approach filters out the heterogeneous wiring characteristics caused by the noise in the datasets

and links the most likely topological characteristics of the GO terms.

2. The observed GO annotations are binary (i.e., 1 when the protein is annotated with the GO term,

and 0 otherwise), while the topology-based GO annotations are real-valued (each value correspond-

ing to the strength of the association between an orbit and a GO term). The variance in the

topology-based GO annotations makes them a better choice for quantifying the linear dependencies

using Pearson’s correlation.

S.4 Significance Testing

We use permutation tests to examine whether the two strength measures and cross-species similarities

of topology-function associations are higher than expected by chance. We apply our methodology for

10, 000 permutations, randomly re-assigning graphlet degree vectors to proteins in each permutation. The

permutations make any topology-function association a matter of random chance, while preserving the

distribution of graphlet degrees and GO annotations. We estimate the p-values for each of the measures

(i.e., structure association strengths, orbit contribution strengths, multi-species structure association

strengths, and orbit contribution similarities) as the proportion of permutations where the obtained

values exceed the observed values. The permutation tests avoid imposing the assumption that the data are

normally distributed. We adjust the estimated p-values using Benjamini-Hochberg correction (Benjamini

and Hochberg, 1995) for the statistical errors caused by multiple testing.
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S.5 Predicting GO Term Annotations from Graphlet Degrees

We analyse the linear dependencies between graphlet degree vectors and GO term annotations using

CCA. Fig. S.1 summarizes the results of our CCA by providing the canonical correlations for the first

set of canonical variates and illustrating the variables with highest and lowest ranked cross-loadings (i.e.,

Pearson’s correlations of variables and the canonical variates of the other set of attributes) for each

experiment. As shown in Fig. S.1, the highest canonical correlations range between 0.239 and 0.433

depending on the experiment type. These canonical correlations are not identified to be statistically

significant as the p-values approximated by both Wilks’ theorem and Hotelling’s T-squared distribution

tests are greater than 0.05. There could be two reasons for CCA to fail maximizing the canonical

correlations further: (1) There exist many GO terms that are annotated with small number of proteins,

and therefore, there are many GO term features for which the variance is extremely low, and (2) As the

GO term features are binary-valued (being 1 when the protein is annotated with the GO term and being

0 otherwise), the GO term features are bound to have low variance.

Even though no statistically significant canonical correlations are identified by CCA, this only shows

that CCA is not able to find strong linear dependencies between the weighted sum of all variables; i.e.,

canonical covariates. If the CCA results are carefully mined by looking into the pairwise relations between

each biological function and graphlet orbit pair, we can still obtain the most prominent topological

characteristics of the proteins associated with a given GO term from the CCA. The second step of our

methodology is designed exactly for this purpose, and it identifies the statistically significant graphlet

orbit and GO term relationships by mining the association matrix produced by CCA.

The transformation defined by the association matrix could be further used for predicting the GO

term annotations of the proteins. However, the canonical correlations and the cross-loadings indicate that

these predictions would not be promising at the current state of the methodology. Enriching the graphlet

degree statistics with other types of biological properties such as protein sequence or protein structure,

we could define a better GO term annotation prediction algorithm based on CCA. We leave this task

for future work since we focus on characterizing wiring patterns of biological functions and identifying

orthologous topological patterns in the scope of this study.
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Figure S.1. The 10 highest and lowest ranked topology-function relationships as identified by the first set of
canonical weights. The variables on the left side correspond to different GO terms and the variables on the right side
correspond to the graphlet degrees of different orbits. The connection points of the variables to the color bar corresponds to their
cross-loadings (i.e., the Pearson’s correlation between the variable and the weighted sum of the variables on the other side).
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S.6 On the Significance of Link between Topology and Function

We identify 15 biological process and 9 cellular component terms to have significantly preserved topology-

function relationships for yeast and human (Section 3.1 of the main manuscript). We tested the statistical

significance of these relationships with the permutation experiments, as explained in Supp. Section S.4.

In those experiments, the link between topology and function are broken by randomly perturbing the

graphlet degree vector and GO term annotation vector matches. The permutation experiments success-

fully test the statistical significance of the identified topology-function association of a GO term.

Here, we provide a further evaluation of the significance of the number of GO terms that are identified

to have significant topology-function relationships. In order to further show that the 15+9 = 24 GO terms

are not identified to have significant topology-function relationships by chance, we perform randomization

experiments with a different perturbation scheme than in Supplementary Section S.4.

In these randomization experiments, we perturb the features of yeast and human datasets (i.e., the

annotations of each GO term and the graphlet degrees of each orbit) considering each feature indepen-

dently, and we analyse the resulting randomized datasets in the same way as we analyse the unperturbed

yeast and human PIN data. We perform 500 such randomization experiments for the PINs of yeast

and human, and count the number of statistically significant topology-function relationships identified

from each of these experiments. Figure S.2 summarizes the number of statistically significant topology-

function relationships identified from these 500 randomization experiments. The results show that it is

very unlikely to identify significant topology-function relationships on randomized datasets.

In particular, on a single species, we observe the following patterns:

• For randomized dataset of yeast (Figure S.2–A),

– For biological process terms, 76.35% of the randomizations lead to no significant topology-

function relationship, 21.64% of the randomizations identify 1 significant topology-function

relationship, 1.80% of the randomizations identify 2 significant topology-function relationships

and 0.20% of the randomizations identify 3 significant topology-function relationships.

– For molecular function terms, 93.99% of the randomizations lead to no significant topology-

function relationship, 5.81% of the randomizations identify 1 significant topology-function

relationships and 0.20% of the randomizations identify 2 significant topology-function rela-

tionships.
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– For cellular component terms, 97.40% of the randomizations lead to no significant topology-

function relationship, 2.41% of the randomizations identify 1 significant topology-function

relationships and 0.20% of the randomizations identify 2 significant topology-function rela-

tionships.

• For randomized dataset of human (Figure S.2–B),

– For biological process terms, 85.57% of the randomizations lead to no significant topology-

function relationship, 13.63% of the randomizations identify 1 significant topology-function

relationship and 0.80% of the randomizations identify 2 significant topology-function relation-

ships.

– For molecular function terms, 93.99% of the randomizations lead to no significant topology-

function relationship, 5.61% of the randomizations identify 1 significant topology-function

relationships and 0.40% of the randomizations identify 2 significant topology-function rela-

tionships.

– For cellular component terms, 96.59% of the randomizations lead to no significant topology-

function relationship, 3.21% of the randomizations identify 1 significant topology-function

relationships and 0.20% of the randomizations identify 2 significant topology-function rela-

tionships..

Then, between the two species, no statistically significant conserved topology-function relationship are

identified on any of the randomized datasets (Figure S.2–C).

Comparing these with what we observed on the experiments performed with real yeast and human

datasets, we find support that neither the topologically orthologous functions nor the single-species

topology functions are identified by chance. These results once more prove that the wiring patterns of

proteins in protein-protein interaction networks are linked with their biological functions.
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Figure S.2. The number of statistically significant topology-function relationships
identified from randomized datasets. The number of statistically significant topology-function
relationships identified from the real datasets are presented with the red circles. The lines at the value
of 0 on y-axis are boxplots representing the first quartile, median and third quartile of the
randomization experiments; these statistics are all 0 for the randomized experiments.Panel A presents
the significant topology-function relationships for yeast. Panel B presents the significant
topology-function relationships for human. Panel C presents the number of conserved
topology-function relationships for yeast and human.

S.7 Redundancies among GO Terms with Conserved Topology-Function As-

sociation

We say that two GO terms are “redundant” if they annotate similar sets of proteins and have similar

meanings. We do not apply any filtering on the analysed GO terms based on their redundancies before

performing the canonical correlation analysis to identify all topology-function relationships. We identify

15 biological process terms and 9 cellular component terms that are linked with statistically significant

topology-function relationships with our analysis. For simplicity, we group the patterns of these GO

terms into non-redundant functional groups based on the redundancies defined above and we summarize

our results in Fig. 3. In this section, we list the GO terms that form these non-redundant functional

groups. We also provide the number of proteins that are commonly annotated with the GO terms in the

non-redundant functional groups (Fig. S.3 – S.9). Finally, we present an extended version of Fig. 3 in

Fig. S.10, where we present the topology-function relationships separately for each GO term.

Among the 15 biological process terms that we observe to have significantly conserved topology-

function relationships, we identify 7 non-redundant functional groups of GO terms. The first non-

redundant functional group contains two GO terms that are linked with “Localization” (Fig. S.3). “Cel-

lular Localization” term is a child of “Localization” term in GO hierarchy, and so, all of its proteins are
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also annotated with “Localization”. The second non-redundant functional group consists of three GO

terms that are linked with “Regulation of Cellular Organization” (Fig. S.4). The third non-redundant

functional group consists of four GO terms that are linked with “Acetylation” (Fig. S.5). The number

of proteins that are commonly annotated with these four Acetylation-related terms is very high, making

these four terms almost identical. Two other non-redundant functional groups consist of four GO terms

(two terms for each group) that are linked with “Transcription” (Fig. S.6). We separately consider the

“Transcription Initiation” and “Transcription Elongation” terms in Fig. 3, because the intersection be-

tween these two sets is small and the topological patterns that we identify for these two groups are slightly

different. The last two non-redundant functional groups consist of single GO terms, one containing only

the “Proteasome Assembly” term and the other containing only “Protein Modification By Small Protein

Removal” term.

205 17

Localization

Cellular Localization

283 91

Localization

Cellular Localization

(A) Yeast (B) Human

Figure S.3. GO Terms related with Localization: Venn Diagrams illustrating the number of
proteins that are commonly annotated by “Localization” (GO:0051179) and “Cellular Localization”
(GO:0051641).

10



0
40

5

0

19
0

33

Negative Regulation Of
Organelle Organization

Negative Regulation Of 
Cellular Component Organization

Regulation of Cytoskeleton 
Organization

164 19 14977 97

Regulation of Cytoskeleton
Organization

Negative Regulation Of
Cellular Component Organization

Negative Regulation of 
Organelle Organization

(A) Yeast (B) Human

Figure S.4. GO Terms related with Regulation of Cellular Organization: Venn Diagrams
illustrating the number of proteins that are commonly annotated by “Negative Regulation Of Organelle
Organization” (GO:0010639), “Negative Regulation Of Cellular Component Organization”
(GO:0051129) and “Regulation Of Cytoskeleton Organization” (GO:0051493).
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Figure S.5. GO Terms related with Acetylation: Venn Diagrams illustrating the number of
proteins that are commonly annotated by “Internal Protein Amino Acid Acetylation” (GO:0006475),
“Histone Acetylation” (GO:0016573), “Internal Peptidyl-Lysine Acetylation” (GO:0018393) and
“Peptidyl-Lysine Acetylation” (GO:0018394).
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Figure S.6. GO Terms related with Transcription: Venn Diagrams illustrating the number of
proteins that are commonly annotated by “DNA-Dependent Transcription, Initiation” (GO:0006352),
“DNA-Dependent Transcription, Elongation” (GO:0006354), “Transcription Initiation from RNA
Polymerase II Promoter” (GO:0006367) and “Transcription Elongation from RNA Polymerase II
Promoter” (GO:0006368).

Among the 9 cellular component terms that we identify to have significantly conserved topology-

function relationships, we observe 2 non-redundant functional groups. The first functional group consists

of two GO terms that are linked with “Cytosolic Part” (Fig. S.7). “Cytosolic Part” is the ancestor

of “Cytosolic Large Ribosomal Subunit” in GO hierarchy, and hence, it annotates all of the “Cytoso-

lic Large Ribosomal Subunit” annotated proteins. The second functional group contains seven protein

complexes, namely, “Proteasome Complex,” “Proteasome Core Complex,” “Proteasome Core Complex,

Alpha-Subunit Complex,” “Swi/Snf Complex,” “Swi/Snf Superfamily-type Complex,” “Mediator Com-

plex” and “Baf-Type Complex”. Three of these protein complexes are linked with proteasome (Fig. S.8).

The “Proteasome Complex” term annotates almost all of the proteins that are annotated with “Protea-

some Core Complex” and “Proteasome Core Complex, Alpha-Subunit Complex”. Two of the remaining

protein complexes are linked with “Swi/Snf Complex” (Fig. S.7). This redundancy is caused by an “is-a”

relation, “Swi/Snf Complex” being a descendant of “Swi/Snf Superfamily-Type Complex” in GO hierar-

chy. We combine all these protein complexes into a single functional group, since the topological patterns

of these terms are all similar and the reason for this pattern is the simple fact that these proteins appear

as protein complexes which are mostly identified by mass spectrometry experiments that produce dense

subgraph patterns.
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Figure S.7. GO Terms related with Cytosolic Part : Venn Diagrams illustrating the number of
proteins that are commonly annotated by “Cytosolic Part” (GO:0044445) and “Cytosolic Large
Ribosomal Subunit” (GO:0022625).
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Figure S.8. GO Terms related with Proteasome: Venn Diagrams illustrating the number of
proteins that are commonly annotated by “Proteasome Complex” (GO:0000502), “Proteasome Core
Complex” (GO:0005839) and “Proteasome Core Complex, Alpha-Subunit Complex” (GO:0019773).
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Figure S.9. GO Terms related with Swi/Snf Complex : Venn Diagrams illustrating the number
of proteins that are commonly annotated by “Swi/Snf Complex” (GO:0016514) and “Swi/Snf
Superfamily-Type Complex” (GO:0070603).

For completeness, we present an expanded version of Fig. 3 in Fig. S.10, in which we present the orbit

contribution strength profile of each GO term separately. In Fig. S.10, the names of the GO terms that

represent the functional groups in Fig. 3 are written in bold and the functional groups are separated by

horizontal lines. Note that we manually chose the most general, or the most representative GO term

from each functional group when deciding on the group representatives.
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Figure S.10. The orbit contribution strength profiles of the GO terms that have
significantly conserved topology-function relationships. Each row of the heatmap corresponds
to the average orbit contribution strength profile of a GO term. The heatmap extends Fig. 3 by
presenting the orbit contribution strength profiles of each GO term within the functional groups
separately. The functional groups are separated by the horizontal lines on the left. The bold GO terms
are the representative GO terms of each functional group, which are used for illustrating the orbit
contribution strength profiles of the functional groups in Fig. 3. As in Fig. 3, graphlet orbits are
grouped based on the similarity of their graphlet degrees (see Fig. 1). Each cell of the heatmap
represents the maximum orbit correlation strength in the relevant orbit group. When an orbit group
does not have any significant orbit contribution strengths, they are plotted semi-transparently. This is
done to highlight the orbit groups that have significant relationships with the GO terms. Note that,
cells plotted with solid colors do not mean that all orbits in the relevant group have significant
relationships with the GO term, but it means that at least one of the orbits has a significant
relationship (for the list of all significant orbits, see Supp. Data 1.)

S.8 Grouping Similar Orbits

Yaveroğlu et al. (2014) quantify the similarity between two orbits using Spearman’s correlation coefficient

between their graphlet degrees and show that the structure of a network can be described using the

interplay between a small number of orbits. The orbit pairs that are highly correlated can be grouped

together since they describe similar topological characteristics over the nodes. Although we do not
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apply this simplification at any experimental step of our method, we utilize it for grouping similar

orbits to simplify the illustration in Fig. 3. To identify similar orbit groups, we compute the graphlet

degree vectors of all nodes in yeast and human protein-protein interaction networks and compute the

pairwise Spearman’s correlations between each pair of orbits. We apply single-linkage clustering to

uncover the most similar orbit groups. We choose the orbit groups by manually cutting the hierarchical

tree considering the similarities of the roles described by orbits. This simplification enables us to easily

capture the relationships between GO terms and orbits in Fig. 3. Note that the orbits that are identified

to be linked with GO terms are reported individually in Supp. Data 1 to prevent misinterpretation that

may be caused by this illustration.

S.9 Additional Case Studies

Case Study 3: Proteasome Complex Proteasome Complex (GO:0000502) term annotates the set

of proteins that form a large multisubunit complex that catalyses protein degradation. This complex can

be found in the nucleus and cytoplasm of eukaryotes, archaea and some bacteria (Peters et al., 1994).

Our analysis on this cellular component shows that the proteins involved in this complex appear in dense

regions of the PINs, mostly as cliques (fully connected networks) and mediators connecting other nodes

to cliques.

Since this GO term describes a protein complex, it is expected that we observe clique-like patterns

associated with this term. This pattern is also verified by (Zhang et al., 2006): their clique searching

based functional module identification algorithm finds the proteasome complex as the third highest ranked

functional module when applied to the yeast PIN. It is known that the eukaryotic proteasome complex

has evolved from a simpler archaebacterial form, being similar in structure and containing only three

different peptides (Wollenberg and Swaffield, 2001). Therefore, our results show that the proteasome

complex is not only conserved in terms of its sequence, but also it forms similar patterns of interactions

that is conserved through evolution from yeast to human.
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S.10 Supplementary Tables

Table S.1. The number of GO terms with significant topology-function relationships identified by the
structure association strengths and orbit contribution strenghts of yeast and human datasets.

Bio. Process Mol. Func. Cell. Comp.
Organism (Sign. / Total) (Sign. / Total) (Sign. / Total)
Human 264 / 1,439 114 / 483 63 / 312
Yeast 111 / 1,439 22 / 483 42 / 312

Table S.2. Densities and average clustering coefficients of subnetworks that are induced on the proteins
annotated with different cellular component GO terms. We support our claims on the differences in the
wiring patterns of different cellular components by computing the densities and the average clustering
coefficients of the subnetworks that are induced on the proteins annotated with different cellular
component GO terms. The density of a network (Dens.) is the proportion of the node pairs in a network
that are connected with edges. The clustering coefficient of a node is the proportion of the node pairs
within its neighbourhood that are connected with each other. The average clustering coefficient (C.C.)
of a network is then computed by averaging the clustering coefficients of all nodes in the network.

GO Term GO Term Human Human Yeast Yeast
ID Name Dens. (%) C.C. Dens. (%) C.C.
GO:0005634 Nucleus 0.379 0.149 1.175 0.250
GO:0005737 Cytoplasm 0.345 0.135 0.823 0.230
GO:0016020 Membrane 0.192 0.110 0.555 0.222

Table S.3. The numbers of proteins that are analysed for different protein degree thresholds for
human (column 2) and yeast (column 3). Percentages are computed with respect to the 13,410 human
and the 5,831 yeast proteins in the complete PINs.

Degree Threshold Human Yeast

2 10,786 (80.4%) 5,457 (93.6%)
3 9,251 (69.0%) 5,081 (87.1%)
4 8,192 (61.1%) 4,740 (81.3%)
5 7,369 (55.0%) 4,435 (76.1%)

Table S.4. The numbers of considered GO terms (columns 2-4) for different annotation count
thresholds (column 1). Percentages are computed with respect to the 3,211 biological process, 1,797
molecular function and 585 cellular component GO terms that annotate both yeast and human
proteins.

Annotation Threshold Biological Process Molecular Function Cellular Component

3 1,927 (60.0%) 703 (39.1%) 417 (71.3%)
5 1,439 (44.8%) 483 (26.9%) 312 (53.3%)
10 1,068 (33.3%) 356 (19.8%) 212 (36.2%)
15 862 (26.9%) 280 (15.6%) 173 (29.6%)
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Table S.5. Topologically orthologous GO terms identified with protein degree
threshold = 4 are also consistently identified with other protein degree threshold values.
For each of the experiments performed on biological process (column 2), molecular function (column 3)
and cellular component (column 4) terms, we report the number of topologically orthologous GO terms
that our method identifies (“# of Identified” columns) when using different degree threshold values
(rows). We also report the ratio of the orthologous GO terms that are identified for degree threshold 4
that are consistently identified at these different thresholds (“Consistent / Total” columns).

Biological Process Molecular Function Cellular Component

Degree # of Consistent / # of Consistent / # of Consistent /
Threshold Identified Total Identified Total Identified Total

2 37 14 / 15 0 0 / 0 29 9 / 9
3 29 14 / 15 0 0 / 0 18 9 / 9
5 10 9 / 15 0 0 / 0 2 2 / 9

Table S.6. Topologically orthologous GO terms identified with GO term annotation
threshold = 5 are also consistently identified with other GO term annotation threshold
values. For each of the experiments performed on biological process (column 2), molecular function
(column 3) and cellular component (column 4) terms, we report the number of topologically
orthologous GO terms that our method identifies (“# of Identified” columns) when using different GO
term annotation thresholds (rows). We also report the ratio of the orthologous GO terms that are
identified for GO term annotation threshold 5 that are consistently identified with these different
thresholds (“Consistent / Total” columns).

Biological Process Molecular Function Cellular Component

Degree # of Consistent / # of Consistent / # of Consistent /
Threshold Identified Total Identified Total Identified Total

3 16 15 / 15 0 0 / 0 8 8 / 9
10 23 14 / 15 0 0 / 0 8 8 / 9
15 25 14 / 15 0 0 / 0 6 5 / 9

S.11 Supplementary Data

Supplementary Data 1 can be downloaded from:

http://bio-nets.doc.ic.ac.uk/conservedPPI/supplementary_Data_1.xlsx
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