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Web Appendix A: Theoretical properties of score test screening

Theoretical justifications can be easier to derive for score test-based screening compared to Wald
test-based screening. The main task is to find a finite-sample bound for P{|UMj (0)| ≥ γn}, which
can often be done by applying Bernstein-type inequalities. In contrast, Wald test-based screening
requires deriving non-asymptotic tail bounds for the marginal estimators, which can be considerably
more involved. We will give a sufficient condition that, under certain assumptions, will guarantee
sure screening and false positive control.

We assume throughout that the covariates have mean 0 and variance 1. Let uMj (βj) be the

limiting marginal estimating equation, such that UMj (βj)→ uMj (βj).

Assumption 1 There exists some constant c1 > 0 such that minj∈M |uMj (0)| ≥ c1n
−κ with 0 <

κ < 1/2.

Assumption 2 ‖u(0)‖22 =
√∑

j u
M
j (0)2.

Assumption 3 The negative Jacobian i(β) = −∂u/∂β exists.

Assumption 4 There exists some constant c3 > 0 such that ‖β0‖2 ≤ c3.

Assumption 1 ensures that the limiting numerator of the marginal score test for H0 : β0j = 0,
is still large enough to detect. For example, for generalized linear models when Ki = 1, uMj (βj) =

n−1
∑

i E{Xij(Yi − g−1(Xijβj)} with g equal to the canonical link function, so Assumption 1 is
equivalent to assuming that |cov{g−1(XT

i β0), Xij}| ≥ c1n
−κ. Fan and Song (2010) make exactly

this assumption to prove the sure screening property in their Theorem 4(ii). Assumption 2 relates
the marginal expected estimating equations to the full expected estimating equation. This is a
mild assumption, because frequently uj{(0)} = uMj (0), where uj is the jth component of u. This
holds, for example, for generalized estimating equations when E(Yi | Xi) = µ(Xiβ0) for some mean
function µ (Zeger et al., 1988). Assumption 3 can hold even if the sample estimating equation U
is nondifferentiable. Assumption 4 merely requires that there exist an upper bound on the size of
the true β0 that does not grow with n, which is a reasonable condition

Next we give a sufficient condition which will ensure good screening properties.

Condition 1 For κ from Assumption 1 and any constant c2 > 0, pnP(|UMj (0)−uMj (0)| ≥ c2n−κ)→
0.
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Condition 1 requires that that the probability that UMj (0) is not close to uMj (0) approaches 0

faster than pn approaches ∞, so that we can use UMj (0) for screening in high dimensions. This
condition must be separately verified for different regression models. Condition 1 will often hold
even when pn grows exponentially in n.

For many estimating equations, to verify Condition 1 we need additional assumptions on the
tails of Xi and Yi and on the rate of pn, such as the following:

Assumption 5 There exist constants l0, l1, η > 0 such that for all j, P(|Xij | > s) ≤ l0 exp(−l1sη)
for sufficiently large s.

Tail conditions of this type were also assumed in Fan and Song (2010) and Gorst-Rasmussen and
Scheike (2013). When UMj (0) is a sum of independent random variables, we can appeal to the usual

Bernstein’s inequality. A similar approach applies when UMj (0) is a U-statistic (Hoeffding, 1963).

Establishing this condition for more complicated UMj (0), such as the marginal score equations for
the Cox model, is more involved (Gorst-Rasmussen and Scheike, 2013).

Under these assumptions, and given the sufficient condition, score test screening has the follow-
ing theoretical guarantees:

Theorem 1 (Sure screening) Let γn = c1n
−κ/2. Under Assumption 1, if Condition 1 is satis-

fied, then P(M⊆ M̂)→ 1.

Theorem 2 (False positive control) Let γn = c1n
−κ/2. Under Assumptions 1–4, if Condi-

tion 1 is satisfied, then P(|M̂| ≤ 16c23σ
∗2
max/c

2
1n
−2κ) → 1, where σmax(A) is the largest singular

value of the matrix A and σ∗max = sup0<t<1 σmax{i(tβ0)}.

Theorem 1 shows that marginal score testing maintains the sure screening property, and is thus
an attractive alternative to marginal Wald testing. Theorem 2 shows that the number of selected
covariates is not too large, with high probability. For example, if σ∗max increased only polynomially
in n, |M̂| would increase polynomially. At the same time, pn can frequently be allowed to increase
exponentially in n. Thus the false positive rate would decrease quickly to zero.

The presence of σ∗max in Theorem 2 reflects the dependence of |M̂| on the degree of collinearity
of our data. The collinearity of estimating equations not only depends on the design matrix, but
also varies across the parameter space. For example, Mackinnon and Puterman (1989) and Lesaffre
and Marx (1993) showed that generalized linear models can be collinear even if their design matrices
are not, and vice versa. In our situation, we are concerned with collinearity along the line segment
between β0 and 0.

Proof of Theorem 1

The event {M ⊆ M̂} equals {minj∈M |UMj (0)| ≥ γn}, so it is easy to see that

P(M⊆ M̂) ≥ 1−
∑
j∈M

P(|UMj (0)| < γn).

By the triangle inequality, we know that for all j, |uMj (0)| ≤ |UMj (0) − uMj (0)| + |UMj (0)|, and

by Assumption 1 we see that c1n
−κ − |UMj (0)| ≤ |UMj (0) − uMj (0)| for all j ∈ M. Therefore,

|UMj (0)| < γn for j ∈M implies |UMj (0)− uMj (0)| ≥ c1n−κ/2, so that

P(M⊆ M̂) ≥ 1− snP(|UMj (0)− uMj (0)| ≥ c1n−κ/2).

The right-hand side goes to 1 if Condition 1 is satisfied. �
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Proof of Theorem 2

If Condition 1 is satisfied, then

P{max
j
|UMj (0)− uMj (0)| ≥ c1n−κ/4} ≥ 1− pnP{|UMj (0)− uMj (0)| ≥ c1n−κ/4} → 1.

On the event maxj |Uj(0)−uj(0)| ≤ c1[n/m]−κ/4, |Uj(0)| ≥ γn implies that |uj(0)| ≥ c1[n/m]−κ/4.
This means that

|M̂| = |{j : |Uj(0)| ≥ γn}| ≤ |{j : |uj(0)| ≥ c1[n/m]−κ/4}|

≤
∑
j

uMj (0)2/(c1n
−κ/4)2 = ‖u(0)‖2216/c21n

−2κ,

where the last equality follows from Assumption 2. Using the generalization of the mean value
theorem to vector-valued functions (Hall and Newell, 1979) and Assumptions 3 and 4,

‖u(0)‖2 = ‖u(β0)− u(0)‖2 ≤ sup
0<t<1

‖i(tβ0)‖2‖β0‖2 ≤ c3 sup
0<t<1

σmax{i(tβ0)} = c3σ
∗
max,

which implies that |M̂| ≤ 16c23σ
∗2
max/c

2
1n
−2κ. �

Verifying Condition 1 for censored quantile regression

Define

Z
(1)
i = Xij

[
τI{h(Yi) > βint} − (1− τ)

I{h(Yi) ≤ βint}δi
Sh(C){h(Yi)}

Sh(C)(βint)

]
− uMj (0)

and

Z
(2)
i = Xij(1− τ)I{h(Yi) ≤ βint}δi

[
Sh(C)(βint)

Sh(C){h(Yi)}
−

Ŝh(C)(βint)

Ŝh(C){h(Yi)}

]
.

We assume that βint is either known or has been estimated from an independent dataset, so that
in the remainder of the proof we can treat it as a constant. Then

P(|UMj (0)− uMj (0)| ≥ 2t) ≤ P(n−1|
∑
i

Z
(1)
i | ≥ t) + P(n−1|

∑
i

Z
(2)
i | ≥ t).

To bound the term containing Z
(1)
i we first note that E(Z

(1)
i ) = 0 by the definition of uMj (0).

Also, by assumption Sh(C)(βint) > 0, so the term I{h(Yi) ≤ βint}δi/Sh(C){h(Yi)}, which is nonzero
only when h(Yi) ≤ βint, can be at most Sh(C)(βint)

−1. Therefore when |Xij | ≤ M for all i, j,

where M > 0, |Z(1)
i | ≤ 2M . Using Bernstein’s inequality van der Vaart and Wellner (1996) and

Assumption 5,

P(n−1|Z(1)
1 + . . .+ Z(1)

n | ≥ t) ≤ 2 exp

(
−1

2

t2n

4M2 + 2Mt/3

)
+ nl0 exp(−l1Mη).

To bound the term containing Z
(2)
i , we first note that

P(n−1|Z(2)
1 + . . .+ Z(2)

n | ≥ t) ≤ P(max
i
|Z(2)
i | ≥ t) ≤ nP(|Z(2)

i | ≥ t).
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Since Z
(2)
i = 0 when h(Yi) > βint, P(|Z(2)

i | ≥ t) = P{|Z(2)
i | ≥ t ∩ h(Yi) ≤ βint}. For notational

convenience let Sint = Sh(C)(βint), Ŝint = Ŝh(C)(βint), SY = Sh(C){h(Yi)}, and ŜY = Ŝh(C){h(Yi)}.
Then

P(|Z(2)
i | ≥ t) ≤ P

{∣∣∣∣∣SintSY
− Ŝint

ŜY

∣∣∣∣∣ ≥ t

M(1− τ)
∩ h(Yi) ≤ βint

}

≤ P

{
|SintŜY − ŜintSY | ≥

tSY ŜY
M(1− τ)

∩ h(Yi) ≤ βint

}
.

Now let εint = |Ŝint − Sint| and εY = |ŜY − SY |. Then

P(|Z(2)
i | ≥ t) ≤P

{
SintεY + SY εint ≥

tSY (SY − εY )

M(1− τ)
∩ h(Yi) ≤ βint

}
≤P

[{
Sint +

tSY
M(1− τ)

}
εY + SY εint ≥

tS2
Y

M(1− τ)
∩ h(Yi) ≤ βint

]
≤P

[
εY ≥

tS2
Y

2M(1− τ)

{
Sint +

tSY
M(1− τ)

}−1
∩ h(Yi) ≤ βint

]
+

P

[
εint ≥

tSY
2M(1− τ)

∩ h(Yi) ≤ βint
]

≤P

[
εY ≥

tS2
int

2M(1− τ)

{
Sint +

t

M(1− τ)

}−1]
+

P

{
εint ≥

tSint
2M(1− τ)

}
,

where the last inequality follows because h(Yi) ≤ βint implies that SY ≥ Sint. Now by the theorem
of Bitouzé et al. (1999), there exists some constant C such that

P(n1/2‖Sh(T )(Ŝh(C) − Sh(C))‖∞ ≥ λ) ≤ 2.5 exp(−2λ2 + Cλ),

where Sh(T ) is the survival function of the h(Ti). When h(Yi) ≤ βint, Sh(T ){h(Yi)} ≥ Sh(T )(βint),
so we can apply this theorem to

P

[
n1/2Sh(T ){h(Yi)}εY ≥

tn1/2S2
int

2M(1− τ)

{
Sint +

tSh(T ){βint}
M(1− τ)

}−1]
and

P

{
n1/2Sh(T )(βint)εint ≥

tn1/2SintSh(T )(βint)

M(1− τ)

}
to bound P(n−1|Z(2)

1 + . . .+ Z
(2)
n | ≥ t).

By setting t = c2n
−κ/2 and M = n(1−2κ)/(η+2) and combining the previous tail bounds, we can

conclude that P(|UMj (0)− uMj (0)| ≥ 2t) ≤ O{exp(−n(1−2κ)η/(η+2))}. �
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