Supplemental Material

Low-cost photodynamic therapy devices for global health settings: Characterization of battery-powered LED performance and smartphone imaging in 3D tumor models

Joshua Hempstead,^{a*} Dustin P. Jones,^{a*} Abdelali Ziouche,^b Gwendolyn M. Cramer,^a Imran Rizvi,^c Stephen Arnason,^a Tayyaba Hasan,^c Jonathan P. Celli^a ^aDepartment of Physics, University of Massachusetts, Boston, MA 02125, USA ^bLaboratoire de Physique des Lasers, Université Paris 13, 93430 Villetaneuse, France ^cWellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA

*Equal contribution

Address correspondence to: Jonathan Celli (jonathan.celli@umb.edu)

Supplemental Figure 1

Supplemental Figure 1: LED irradiation device photographs and schematic.

Photographs of the exterior **(A)** and interior **(B)** of the device used. The battery-powered circuit showing the battery source (B1), LED (D1), power resistor (R1), voltage regulator (LM317) and switch (S2.1) is depicted in **(C)**.

Supplemental Figure 2

Supplemental Figure 2: Depth resolved cytotoxic response in 3D tumour models stained with calcein AM (green) and ethidium bromide (red) imaged via confocal microscopy. Large spatial fields showing XY (max intensity Z projection) and XZ views

of untreated cultures (A) and cultures treated with 80J/cm² ALA-PDT with light delivered via battery-powered device (B). 3D nodules are approximately spherical as previously characterized in other cell lines and have mean diameter (and equivalent depth) of 101 +/- 27 um with nearly complete cytotoxic destruction throughout. A zoomed in view of a representative 3D nodule in (C) shows depth resolved cytotoxic response in each optical section.