#### SUPPLEMENTARY MATERIALS

### Fig. S1. CTCF consensus motifs underlie chromatin boundary elements.

**A.** Schematic depiction of differentiation protocol to generate cervical motor neurons from ESCs. Terminally differentiated motor neurons (MN) form after 4 days of RA/SAG treatment. RA: retinoic acid, SAG: Smoothened agonist.

**B,C.** PhyloP conservation and sequence tracks for the indicated species. CTCF 15bp core motif underlying C5|6 (**B**) and C6|7 (**C**) is highlighted in red. Positive PhyloP scores signify conservation at base-pair resolution.

# Fig. S2. CTCF demarcates a chromatin boundary at the HoxC and HoxD clusters.

**A,B.** Normalized ChIP-seq read densities for the indicated proteins/modifications across the *HoxD* (**A**) and *HoxC* (**B**) clusters in ESCs and in MNs from two biological replicates. Dashed line highlights the boundary. CTCF motifs are highlighted in red.

### Fig. S3. $\Delta 5|6$ ESCs appropriately differentiate into motor neurons.

Stainings of MNs three days after exposure to RA/SAG. Hb9, Lhx3 and Isl1/2 are markers of spinal motor neurons. Class III b-tubulin is a marker of neurons.

### Fig. S4. Dynamics of *HoxA* gene expression during differentiation.

RT-qPCR signal is normalized against GAPDH expression levels. Fold change in expression at the indicated time-points after RA/SAG treatment is calculated relative to

baseline expression in ESCs. Error bars represent the standard deviation across two technical replicates.

### Fig. S5. CTCF plays a boundary function within the *HoxC* cluster

A. Normalized ChIP-seq read densities across the *HoxC* cluster for the indicated proteins/modifications in ESCs and MNs in WT and  $\Delta 5|6_{HoxC}$  motor neurons. **B.** Sequencing chromatogram of  $\Delta 5|6_{HoxC}$  line depicts a 13bp deletion overlapping the CTCF core motif. **C.** RT-qPCR signal is normalized against GAPDH expression levels. Fold change in expression versus WT MNs is depicted. Error bars represent the standard deviation across two biological replicates.

### Fig. S6. Chromatin boundary is disrupted in $\Delta 5|6$ mutant.

**A,B.** WT vs.  $\Delta 5|6$  ratio of normalized ChIP-seq signal mapping to 1kb windows tiled across the indicated portion of the *HoxA* cluster for H3K27me3 (**A**) and H3K4me3 (**B**) **C,D.** ChIP-qPCR at the loci diagrammed in **A,B** for H3K27me3 (**C**) and H3K4me3 (**D**). Error bars represent the standard deviation across two biological replicates. The "HoxD" primer probes a region within the repressed segment of the *HoxD* cluster in MNs. This region is immediately caudal to the CTCF-demarcated chromatin boundary.

**E.** Normalized ChIP-seq tracks for the indicated protein/modifications along the *HoxC* cluster in MNs (4 days after RA/SAG).

# Fig. S7. Topological organization of the HoxA cluster in ESCs

**A,B.** Normalized ChIP-seq read densities for CTCF and 4C contact profiles in WT,  $\Delta 5|6$ , and  $\Delta 5|6:7|9$  ESCs using a viewpoint (red) in the rostral (**A**, 4C.Hoxa5-A) and caudal (**B**, 4C.Hoxa10) segment of the cluster. The median and 20th/80th percentile of sliding 5kb windows determine the main trendline. Color scale represents enrichment relative to the maximum attainable 12-kb median value.

## Fig. S8. Loss of CTCF alters topological structure of the HoxA locus

**A,B,C.** Normalized ChIP-seq read densities for CTCF and 4C contact profiles in WT,  $\Delta 5|6$ , and  $\Delta 5|6:7|9$  MNs using the 4C.HOXA5-A (A), 4C.HOXA10 (B), or 4C.HOXA5-B (C) viewpoints. Normalized interaction frequency of individual biological replicates across 2.5kb tiled windows is depicted on the left. Mean and standard deviation of replicates are plotted on the right.

# Fig. S9. Generation of $\Delta 5|6:7|9$ mutant via CRISPR genome-editing

Guide-RNA targeting the CTCF core motif, C7|9 (orange) is depicted below the WT sequence. Sequence and chromatogram of mutant alleles in the  $\Delta$ 5|6:7|9 line are presented above and below. One allele (deletion allele) contains a 21bp deletion overlapping the CTCF core motif. The other allele ("insertion allele") contains a 20bp insertion that disrupts the CTCF core motif.

# Fig. S10. Mutation of an adjacent YY1 binding site does not phenocopy CTCF ablation

A. Normalized ChIP-seq read densities across the HoxA cluster for the indicated proteins/modifications in MNs from two merged biological replicates. YY1 ChIP-seq was performed in ESCs, and taken from GSE31786. Genes that are activated in  $\Delta 5|6$  cells during differentiation are annotated in green; repressed in red. Genetic mutants of the YY1, CTCF, or both binding sites are depicted. **B.** Sequencing chromatogram of YY1<sub> $\Delta 5|6:7|9$ </sub> and YY1-CTCF<sub> $\Delta 5|6:7|9$ </sub> lines depicts a 13bp and 49bp deletion overlapping the highlighted CTCF and YY1 binding motifs. The CTCF<sub> $\Delta 5|6:7|9$ </sub> chromatogram is depicted in Fig. S9. **C.** RT-qPCR signal is normalized against GAPDH expression levels. Fold change in expression versus WT MNs is depicted. Standard deviations are calculated across two technical replicates.

### **MATERIALS AND METHODS**

### Cell culture and motor neuron differentiation

ESCs were trypsinized and seeded at  $2.5 \times 10^4$  cells/ml in ANDFK medium (Advanced DMEM/F12 : Neurobasal (1:1) Medium, 15% Knockout Serum Replacement, Pen/Strep, 2 mM L-Glutamine, and 0.1 mM 2-mercaptoethanol) to initiate formation of embryoid bodies (Day 0). Medium was exchanged on Day 2 of differentiation. Patterning of embryoid bodies was induced by supplementing the media on Day 2 with 1  $\mu$ M all-*trans*-Retinoic acid (RA, Sigma) and 0.5  $\mu$ M smoothened agonist (SAG, Calbiochem). For ChIP experiments, the same conditions were used but scaled up to seed  $3 \times 10^7$  cells on Day 0. Biological replicates represent differentiations performed on different days.

### **CRISPR** genome editing

An optimal gRNA target sequence closest to the genomic target site was chosen using the http://crispr.mit.edu/ design tool. The gRNA (Table S3) was cloned into the SpCas9-2A-GFP vector (Addgene: PX458) via BbsI digestion and insertion (18). ES cells were seeded into 12-well plates at 100,000 cells per well, and transfected with 0.5ug of the appropriate guide RNA (Table S3) and Cas9 endonuclease using Lipofectamine 2000 (Life Technologies). The transfection was performed according to the manufacturer's recommended protocol, using a 3:1 ratio of Lipofectamine:DNA. After transfection, GFP positive cells were sorted using the Sony SY3200 cell sorter, and 20,000 cells were plated on a 15cm dish. 7-10 days later, single ESC clones were picked, trypsinized in 0.25% Trypsin-EDTA for 5', and plated into individual wells of a 96-well plate for genotyping. Genomic DNA was harvested via QuickExtract (Epicentre) DNA extraction, and genotyping PCRs were performed using primers surrounding the target site (Table S3). The resulting PCR products were purified and sequenced to determine the presence of an insertion or deletion event. When necessary, the PCR product was subject to TOPO cloning and sequencing in order to distinguish the amplified products of distinct alleles. Sequencing chromatograms were aligned in Benchling.

# **Expression analysis**

RNA was purified from cells with TRIzol (Invitrogen), and RT-qPCRs were performed in replicate on 5ng of total RNA using the QuantiTect SYBR Green RT-PCR kit.

## Immunocytochemistry

Embryoid bodies were fixed with 4% paraformaldehyde in PBS, embedded in OCT (Tissue-Tek) and sectioned for staining: 16 hours at 4C for primary antibodies and 4 hours at RT for secondary antibodies. After staining, samples were mounted with Fluoroshield with DAPI (Sigma-Aldrich). Images were acquired with a Leica SP5 confocal microscope. Antibodies used in this study include: mouse anti-Isl1, mouse anti-Lhx3, mouse anti-Hb9 (Developmental Studies Hybridoma Bank, 1:100), anti- $\beta$ -III-tubulin (Sigma T2200, 1:4,000,). Conjugated secondary antibodies from Invitrogen used 1:2,000; Alexa 488 (A11029, A11034), Alexa 568 (A11036, A11031); Alexa 647 (A21245, A21236).

## Chromatin immunoprecipitation

EBs were trypsinized and fixed in 10 mM Hepes, pH 7.6, 1% formaldehyde, 15 mM NaCl, 0.15 mM EDTA and 0.075 mM EGTA, for 15 min at room temperature. The reaction was quenched with 0.125M glycine at room temperature. After washing with PBS, cells were collected, and the pellet was lysed in 50 mM Hepes, 140 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% Igepal CA630, and 0.25% Triton X-100. After centrifugation, isolated nuclei were washed once in 10 mM Tris pH 8.0, 200 mM NaCl, 1 mM EDTA and 0.5 mM EGTA, then resuspended in 10 mM Tris pH 8.0, 1 mM EDTA, 0.5 mM EGTA, then resuspended in 10 mM Tris pH 8.0, 1 mM EDTA, 0.5 mM EGTA and 0.5% N-Lauryl Sarcosine, and sonicated using a Diagenode Bioruptor to an average chromatin size of 200 bp. Chromatin was diluted with 2X IP buffer (2% NP-40, 200mM NaCl in 10mM Tris-HCl pH8, 1mM EDTA), to which antibodies were added to each IP (Table S3). IPs were performed overnight, after which Dynabeads (Life Technologies) were incubated for an additional 2 hours. The beads were

washed 5 times with 1mL of 25 mM Hepes pH 7.6, 1 mM EDTA, 0.1% N-Lauryl Sarcosine, 1% NP-40, and 0.5 M LiCl. After a final wash with 750 µl of 10 mM Tris pH 8.0, 1 mM EDTA and 50 mM NaCl, the beads were resuspended in 100 mM sodium bicarbonate, 200 mM NaCl, and 1% SDS. The chromatin was incubated 15 min at room temperature and the cross-linking was reversed at 65°C for 16 hr. After reversal, a Proteinase K digest was performed for 2hrs at 55°C, and DNA was extracted using a PCR purification kit (Qiagen). 10% of the input was treated in parallel.

### **Preparation of 4C template**

Cells were processed for 4C-seq as described previously by van de Werken et al (28). Cells were trypsinized and counted.  $1 \times 10^7$  cells were crosslinked with 2% formaldehyde and 10% FBS in PBS for 10 min at room temperature. The reaction was quenched with glycine. Cells were lysed on ice with 1ml lysis buffer (50mM Tris pH 7.3, 150mM NaCl, 5mM EDTA, 0.5% NP-40, 1% Triton X-100) for 15 min. Nuclei were spun down and resuspended in 360ul H2O (or frozen). 60ul of 10X DpnII restriction buffer was added along with 15ul 10% SDS, and left shaking for 1hr at 37C. 150ul of 10% Triton X-100 was added, and nuclei were again incubated for 1hr at 37C. 5ul undigested control was stored, and nuclei were incubated overnight with 200U of DpnII (NEB, R0543M) restriction enzyme. A fresh 200U of DpnII was added the following morning for 6hrs. DpnII was inactivated with 80ul 10% SDS, and a proximity ligation reaction was performed in a 7ml volume using 4000U T4 DNA Ligase (Roche M0202M). Crosslinks were reversed at 65C O/N after adding 300ug Proteinase K. Samples were then treated with 300ug RNAse A for 45 min at 37C, and DNA was ethanol precipitated. A 2<sup>nd</sup> restriction digest was performed overnight in a 500ul reaction with 50U Csp6l (Fermentas, ER0211). The enzyme was inactivated at 65C for 25 min, and a proximity ligation reaction was performed in a 14ml volume with 6000U T4 DNA Ligase. Sample DNA was ethanol precipitated, and purified using the QIAquick PCR purification kit.

## Library construction

Libraries for ChIP-seq were prepared according to manufacturer's instructions (Illumina). Briefly, IP'ed DNA (~5 ng) was end-repaired using End-It Repair Kit (Epicenter), tailed with deoxyadenine using Klenow exo- (New England Biolabs), and ligated to custom adapters with T4 Rapid DNA Ligase (Enzymatics). Fragments of 200-400bp were sizeselected using Agencourt AMPure XP beads, and subjected to PCR amplification using Q5 DNA polymerase (New England Biolabs). Libraries were quantified by qPCR using primers annealing to the adapter sequence and sequenced at a concentration of 12 pM on an Illumina HiSeq. Barcodes were utilized for multiplexing. For RNA-seq libraries, polyA+ RNA was isolated using Dynabeads Oligo(dT)25 (Invitrogen) and constructed into strand-specific libraries using the dUTP method *(29)*. Once dUTP-marked doublestranded cDNA was obtained, the remaining library construction steps followed the same protocol as described above for ChIP-seq libraries.

Libraries for 4C-seq were constructed by adding barcoded illumina adapters to the 5' end of each primer (Table S3). PCR reactions were performed using the Expand Long Template PCR System (Roche), and 100-700bp DNA was gel purified and quantified before sequencing.

# Data analysis

Sequenced reads from experiments were mapped with Bowtie using parameters -v2 -m4 (ChIP-seq), or -v2 -m40 (RNA-seq). Normalized ChIP-seq read densities were visualized on the UCSC genome browser (http://genome.ucsc.edu). RNA-seq reads were assigned to genes using DEGseq (R package) and the ENSEMBL annotation. Normalized differential gene expression was calculated with DEseq (R package), which bases differential expression calls on an underlying negative binomial distribution of read counts. Relevant expression and p-values are listed in Table S1. Heatmaps were generated in R. 4C-seq data was analyzed either using the 4cseq\_pipeline (28), or manually by mapping reads to a reduced genome composed of windows surrounding DpnII sites. Reads mapping to individual restriction sites were counted and normalized by the total number of reads mapping to chr6. UCSC tracks represent read density across a 2.5kb sliding window run across the *HoxA* cluster.

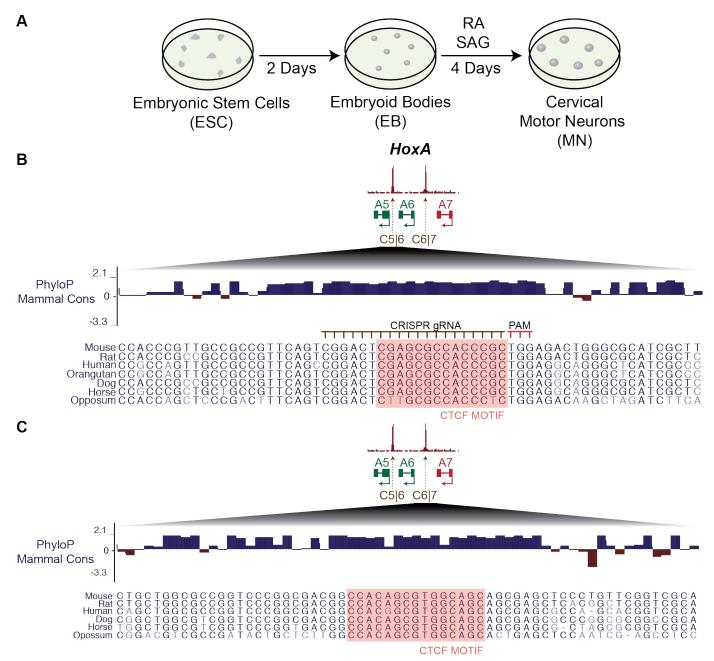



Figure S1 | CTCF consensus motifs underlie chromatin boundary elements

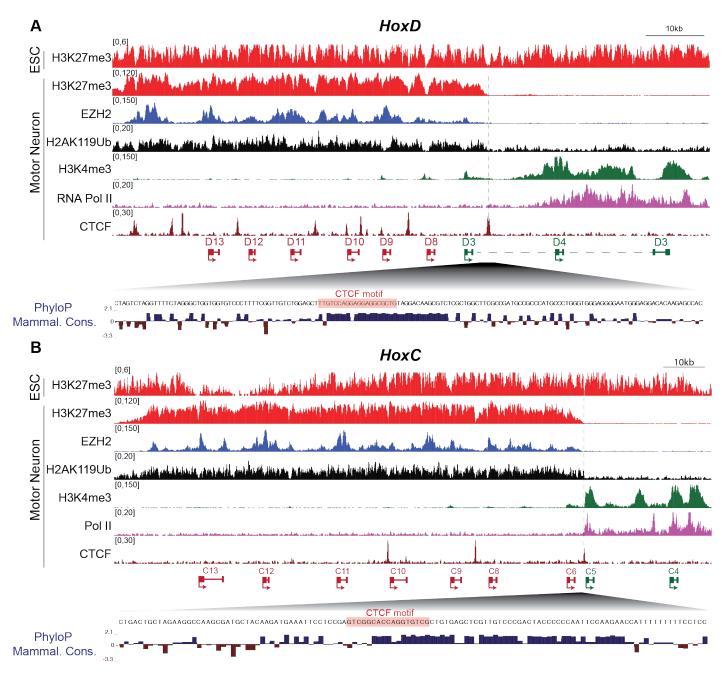



Figure S2 | CTCF demarcates a chromatin boundary at the HoxC and HoxD clusters

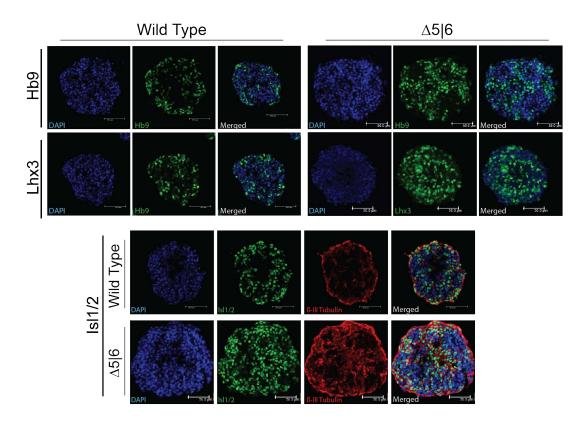



Figure S3 |  $\Delta$ 5|6 ESCs appropriately differentiate into motor neurons

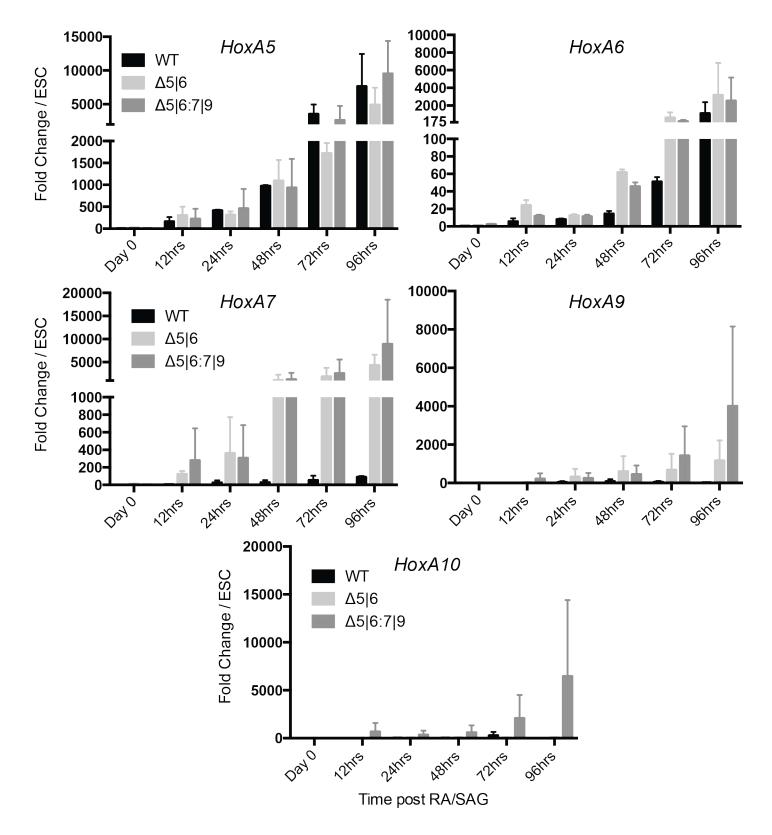



Figure S4 | Dynamics of HoxA gene expression during differentiation

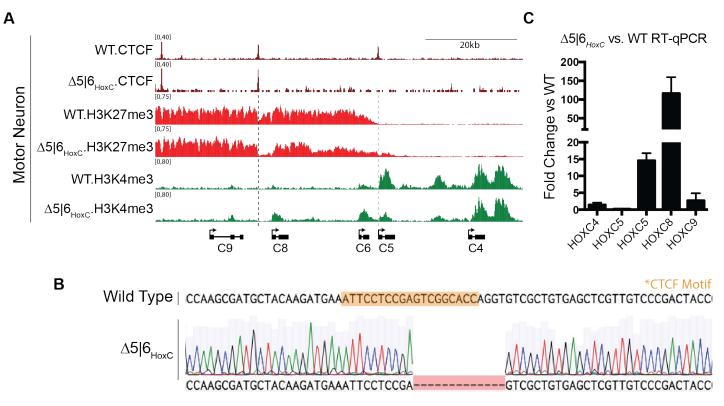



Figure S5 | CTCF plays a boundary function within the HoxC cluster

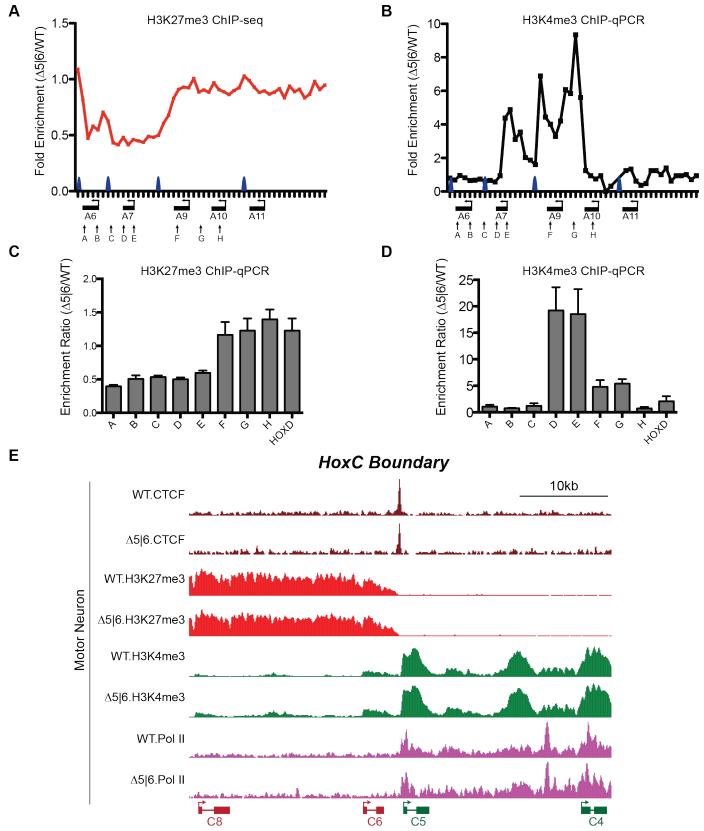



Figure S6 | Chromatin boundary is disrupted in  $\Delta$ 5|6 mutant

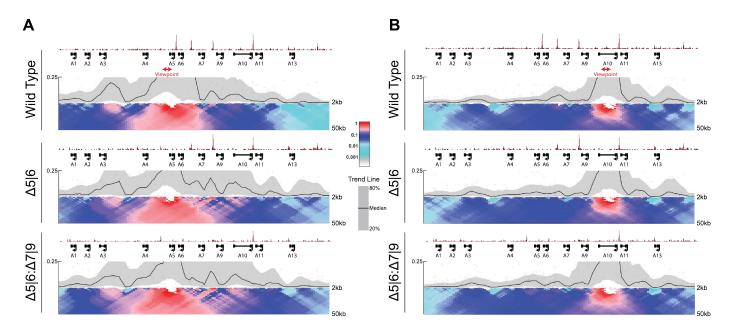



Figure S7 | Topological organization of the HoxA cluster in ESCs

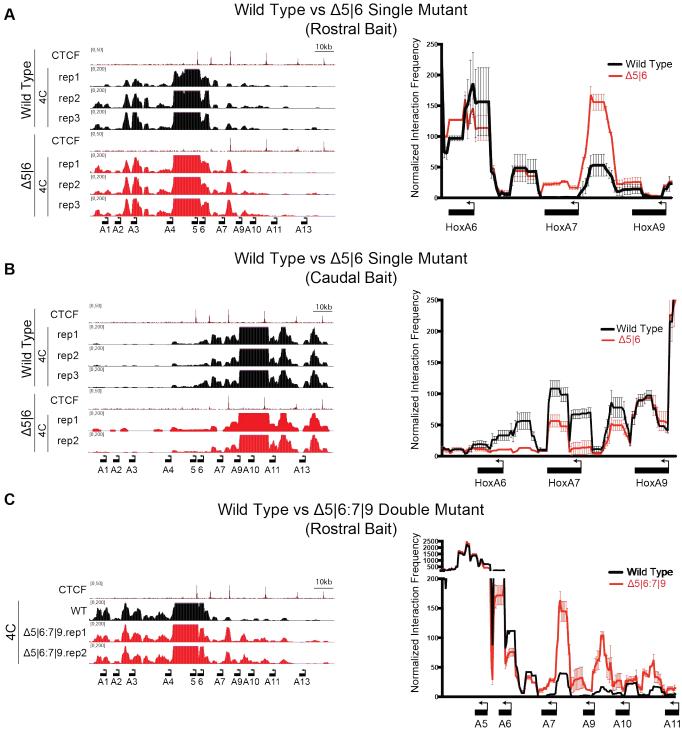



Figure S8 | Loss of CTCF alters topological structure of the HoxA locus

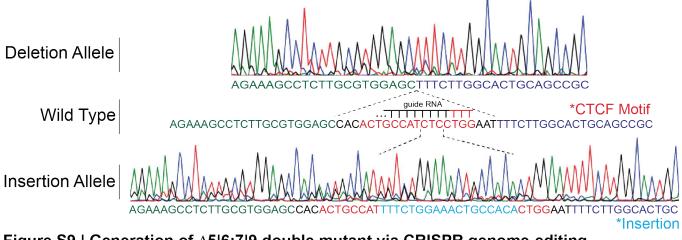



Figure S9 | Generation of  $\Delta$ 5|6:7|9 double mutant via CRISPR genome-editing

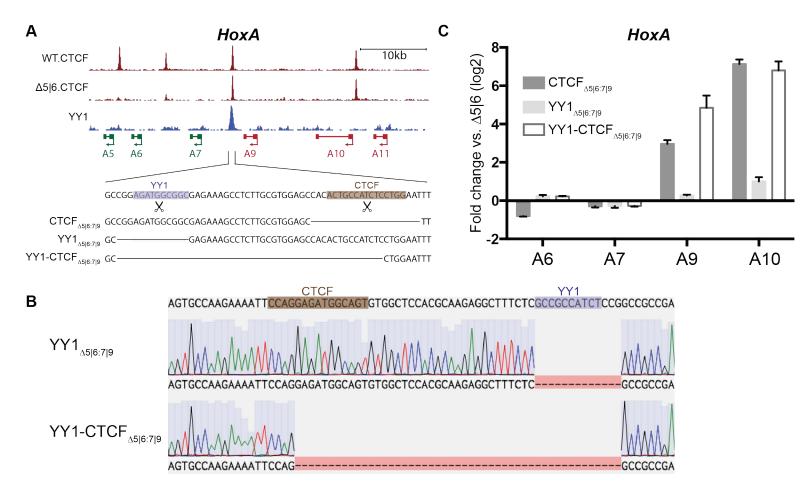



Figure S10 | Mutation of an adjacent YY1 binding site does not phenocopy CTCF ablation

| TABLE S1 |          |                   |        |          |          |             |         |
|----------|----------|-------------------|--------|----------|----------|-------------|---------|
|          |          | Mean Norm. Counts |        |          |          |             |         |
| Sample A | Sample B | Time Point        | Gene   | Counts A | Counts B | Fold Change | P-Value |
| WT       | Δ5 6     | ESC               | HoxA7  | 28.26    | 46.93    | 1.66        | 0.72915 |
| WT       | Δ5 6     | ESC               | HoxA9  | 5.43     | 10.15    | 1.87        | 0.75422 |
| WT       | Δ5 6     | ESC               | HoxA10 | 10.87    | 20.30    | 1.87        | 0.70507 |
| WT       | Δ5 6     | Day 4             | HoxA7  | 35.09    | 898      | 25.59       | 0.00046 |
| WT       | Δ5 6     | Day 4             | HoxA9  | 4.38     | 23.64    | 5.40        | 0.08749 |
| WT       | Δ5 6     | Day 4             | HoxA10 | 1.00     | 2.18     | 2.18        | 0.63613 |
| WT       | Δ5 6:7 9 | Day 4             | HoxA7  | 42.05    | 389.02   | 9.25        | 0.13785 |
| WT       | Δ5 6:7 9 | Day 4             | HoxA9  | 9.23     | 634.93   | 68.79       | 0.01268 |
| WT       | ∆5 6:7 9 | Day 4             | HoxA10 | 1.00     | 278.45   | 278.20      | 0.00235 |

| Line | Time Point A | Time Point B | Gene   | Counts A | Counts B | Fold Change | P-Value     |
|------|--------------|--------------|--------|----------|----------|-------------|-------------|
| WT   | ESC          | Day 4        | HoxA1  | 29.35    | 1023.46  | 34.87       | 0.023486545 |
| WT   | ESC          | Day 4        | HoxA2  | 4.35     | 577.36   | 132.79      | 0.005333454 |
| WT   | ESC          | Day 4        | HoxA3  | 11.96    | 919.88   | 76.93       | 0.008930133 |
| WT   | ESC          | Day 4        | HoxA4  | 4.35     | 930.14   | 213.92      | 0.002794114 |
| WT   | ESC          | Day 4        | HoxA5  | 10.87    | 5659.81  | 520.68      | 0.000669904 |
| WT   | ESC          | Day 4        | HoxA6  | 4.35     | 77.94    | 17.93       | 0.078501127 |
| WT   | ESC          | Day 4        | HoxA7  | 28.26    | 42.05    | 1.49        | 0.788431222 |
| WT   | ESC          | Day 4        | HoxA9  | 5.43     | 9.23     | 1.70        | 0.79814746  |
| WT   | ESC          | Day 4        | HoxA10 | 11.87    | 1.00     | 0.08        | 0.124951383 |
| WT   | ESC          | Day 4        | HoxA11 | 17.30    | 1.00     | 0.06        | 0.125101718 |
| WT   | ESC          | Day 4        | HoxA13 | 3.17     | 1.00     | 0.32        | 0.81619525  |

| TABLE S2                |       |                  |              |              |  |  |
|-------------------------|-------|------------------|--------------|--------------|--|--|
| sequence                | score | mismatches       | UCSC gene    | Name         |  |  |
| GGGACTCCAGCTCCACCCGCCGG | 1.4   | 3MMs [1:8:12]    | NM_001081373 | off-target.1 |  |  |
| CGGCCCTGAGCGCCACCCGCTGG | 1     | 3MMs [4:6:7]     | NM_153075    | off-target.2 |  |  |
| GGAACTCTAGCGCCACCCTCAGG | 0.5   | 4MMs [1:3:8:19]  |              | off-target.3 |  |  |
| AAGACTTGAGCACCACCCGCAGG | 0.5   | 4MMs [1:2:7:12]  |              |              |  |  |
| CTGACTCGGGCGCCACCAGCTGG | 0.4   | 3MMs [2:9:18]    | NM_021293    | off-target.4 |  |  |
| GGGACTAGATCGCCACCCACGAG | 0.3   | 4MMs [1:7:10:19] |              |              |  |  |
| TGGACTCCAGAGCCACCCTCCAG | 0.3   | 4MMs [1:8:11:19] |              |              |  |  |
| CGGTCTGCAGCGCCTCCCGCCGG | 0.3   | 4MMs [4:7:8:15]  |              |              |  |  |
| CAGGCTCCAGCGCCAGCCGCAGG | 0.3   | 4MMs [2:4:8:16]  |              |              |  |  |
| CACAGTCGAGCGCCAACCGCTAG | 0.3   | 4MMs [2:3:5:16]  | NM_172832    |              |  |  |
| CGCACACCAGCGCCCCCCGCAGG | 0.2   | 4MMs [3:6:8:15]  |              |              |  |  |
| CCGACTCGGTCGCCTCCCGCTGG | 0.2   | 4MMs [2:9:10:15] | NM_172903    | off-target.5 |  |  |
| GGGACTGCAGCGCCACCTGCTGG | 0.2   | 4MMs [1:7:8:18]  |              |              |  |  |
| CCGACTGGAGGGCCACCCTCAAG | 0.2   | 4MMs [2:7:11:19] | NM_023196    |              |  |  |
| CAGGCTCGGGCGCCACCTGCTGG | 0.2   | 4MMs [2:4:9:18]  | NM_018771    |              |  |  |
| CGGACTCCTGCCCCACCCGAAGG | 0.2   | 4MMs [8:9:12:20] |              |              |  |  |
| TGGACTCTAGTGCCACCTGCAGG | 0.2   | 4MMs [1:8:11:18] |              |              |  |  |
| TGGACTCCAGCGTCTCCCGCGGG | 0.2   | 4MMs [1:8:13:15] |              |              |  |  |
| AGGACTCTAGCTCCACCTGCTAG | 0.2   | 4MMs [1:8:12:18] |              |              |  |  |
| CGGACCACAGCGCCACCTGCTGG | 0.1   | 4MMs [6:7:8:18]  |              |              |  |  |
| CGGACGGGAGCGTCACCCGACAG | 0.1   | 4MMs [6:7:13:20] | NM_018858    |              |  |  |
| CCGACTCGGGCACCACCAGCTGG | 0.1   | 4MMs [2:9:12:18] |              |              |  |  |
| GGGAGTCGAGCGCCAACCTCGGG | 0.1   | 4MMs [1:5:16:19] | NM_001025426 |              |  |  |
| CGGCCTGGAGCGACAGCCGCAGG | 0.1   | 4MMs [4:7:13:16] | NM_011488    | off-target.6 |  |  |

\*gRNA used to target C5|6 had a score of 92

\*Green off-target candidates were tested. None showed mutation by PCR based genotyping.

|                            | TABLE S3                                                                                                         |                                                                     |                |
|----------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------|
|                            | Oligos, Antibodies and Plasmids                                                                                  |                                                                     |                |
|                            | RT-qPCR oligos (Figure S5)                                                                                       |                                                                     |                |
| Gene Name                  | Forward Sequence                                                                                                 | Reverse Sequence                                                    |                |
| HoxA1                      | ACCAAGAAGCCTGTCGTTCC                                                                                             | TAGCCGTACTCTCCAACTTTCC                                              |                |
| loxA2                      | CCTGGATGAAGGAGAAGAAGG                                                                                            | GTTGGTGTACGCGGTTCTCA                                                |                |
| loxA3                      | TCAAGGCAGAACACTAAGCAGA                                                                                           | ATAGGTAGCGGTTGAAGTGGAA                                              |                |
| loxA4<br>loxA5             | TGTACCCCTGGATGAAGAAGAT<br>TGTACGTGGAAGTGTTCCTGTC                                                                 | AAGACTTGCTGCCGGGTATAG<br>GTCACAGTTTTCGTCACAGAGC                     |                |
| loxA6                      | ACCGACCGGAAGTACACAAG                                                                                             | AGGTAGCGGTTGAAGTGGAAT                                               |                |
| loxA7                      | GAAGCCAGTTTCCGCATCTAC                                                                                            | CTTCTCCAGTTCCAGCGTCT                                                |                |
| loxA9                      | TCCCTGACTGACTATGCTTGTG                                                                                           | ATCGCTTCTTCCGAGTGGAG                                                |                |
| oxA10                      | GAAGAAACGCTGCCCTTACAC                                                                                            | TTTCACTTGTCTGTCCGTGAG                                               |                |
| loxA11                     | CGAGAGTTCTTCTTCAGCGTCT                                                                                           | TGGAGCCTTAGAGAAGTGGATT                                              |                |
| oxA13                      | GCGGTGTCCATGTACTTGTC                                                                                             | GCTGCCCTACGGCTACTTC                                                 |                |
| oxC4                       | AGCAAGCAACCCATAGTCTACC                                                                                           | GCGGTTGTAATGAAACTCTTTCTC                                            |                |
| oxC5                       | CACAGATTTACCCGTGGATGAC                                                                                           | CTTTCTCGAGTTCCAGGGTCT                                               |                |
| loxC6                      | TAGTTCTGAGCAGGGCAGGA                                                                                             | CGAGTTAGGTAGCGGTTGAAGT                                              |                |
| oxC8                       | GTAAATCCTCCGCCAACACTAA                                                                                           | CGCTTTCTGGTCAAATAAGGAT                                              |                |
| oxC9                       | GCAAGCACAAAGAGGAGAAGG                                                                                            | CGTCTGGTACTTGGTGTAGGG                                               |                |
|                            |                                                                                                                  |                                                                     | _              |
|                            | ChIP-qPCR oligos (Figure S7)                                                                                     |                                                                     | _              |
| rimer-pair Name            | Forward Sequence                                                                                                 | Reverse Sequence                                                    |                |
|                            | CTCCAGCTTCTCACATCACAAC                                                                                           | GGCCATGCTATTTCTTCAAGTC                                              |                |
|                            | TGTGATCCACCTGAAAACACTC                                                                                           | GGTTTTCAACGATCTCACACAG                                              |                |
|                            | GTACTTAGGTGGCTTGGGACTG                                                                                           | GGAATTCTGTGTTGGAGGAGAG                                              |                |
|                            | CAAGACCTTCCTGTGACTTTCC<br>AGGACAGAAAAGAGGGGGGATAG                                                                | CAAAGGCAAGGAGAATTGAGAC<br>CCATTTGCCTTGGAATTTTTAC                    |                |
|                            |                                                                                                                  |                                                                     |                |
|                            | TCTTCTTCCTCCCCACAGTC CTTCCCTTATGCACACCTTAGC                                                                      | GGGAAGAGAGGGAAAGAGAGAG<br>CTTCCATTCCAAATCGTTCTTC                    |                |
| 1                          |                                                                                                                  |                                                                     |                |
| loxD                       | ATTGTGGTGTGCTTTTCTTGTG<br>CTCTGGAGTGGGTTTTTGTTTC                                                                 | TGGCTAAAATCCTTCATTCACC<br>CAAGGAGCTTGTTTTTCCAAAG                    |                |
|                            |                                                                                                                  | CAAGGAGEHGHHHCCAAAG                                                 | _              |
| RNA Target                 | CRISPR gRNA oligos Forward Sequence                                                                              | Reverse Sequence                                                    | _              |
| 5 6                        | CACCGGGACTCGAGCGCCACCCGC                                                                                         | AAACGCGGGTGGCGCTCGAGTCCC                                            |                |
| 7 9                        | CACCGGAGCCACACTGCCATCTCC                                                                                         | AAACGGAGATGGCAGTGTGGCTCC                                            |                |
| Y1                         | CACCGTCTCGGCGGCCGGAGATGG                                                                                         | AAACCCATCTCCGGCCGCCGAGAC                                            |                |
| IOXC                       | CACCGATTCCTCCGAGTCGGCACC                                                                                         | AAACGGTGCCGACTCGGAGGAATC                                            |                |
|                            | *G for U6 promoter transcription initiation                                                                      |                                                                     |                |
|                            | *Bbsl Overhang                                                                                                   | *Bbsl Overhang                                                      | _              |
|                            | 4C-seq viewpoint oligos                                                                                          |                                                                     | _              |
| RNA Target<br>C.HOXA5-A    | Forward Sequence (DpnII)<br><u>AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNAGTATCTGTGAATGCAGAA</u> | Reverse Sequence (Csp6I)<br>CAAGCAGAAGACGGCATACGAAGGCGGGATTCTGAAGTT |                |
| C.HOXA5-A                  | AATGATACGGGGACCACCGAACACTCTTTCCCTACACGGCGCTCTTCCGATCTNNNNNNGTATCTGTGAATGCAGATG                                   |                                                                     |                |
| IC.HOXA10                  | AATGATACGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNGTTTAAGCAAACTGTGATC                                    |                                                                     |                |
| C.HOXAIO                   | *Illimuna adapters                                                                                               | CAAGCAGAAGACGGCATACGAGAACACAGGAGTTCCACCTA                           |                |
|                            | *Barcode                                                                                                         |                                                                     |                |
|                            | Genotyping primers                                                                                               |                                                                     |                |
| lame                       | Forward Sequence (DpnII)                                                                                         | Reverse Sequence (Csp6I)                                            |                |
| loxA.Δ5 6.geno             | CACCCTTGCACAATTTATGATGA                                                                                          | GGATACAAAGCCGGGGAAATAA                                              |                |
| loxA.Δ7 9.geno             | AGGACTGTGACCCTGAAATGG                                                                                            | GCCTCCGATAAAGAGACTGC                                                |                |
| oxC.Δ5 6.geno              | GGCACTATTCGTTTCAAAAACC                                                                                           | TCTTTATCCTATGCGCTCTTCC                                              |                |
| ff_target.1                | CCTATGAAATGCAGCAGAAATG                                                                                           | TTCAGTGGCTCTAGCTTCCAAC                                              |                |
| ff_target.2                | GGCTGGACAAAGAATACAGACC                                                                                           | CAGCTGGTAACTGCCGATTG                                                |                |
| ff_target.3                | AGCCGTAGGTAGTTGGTCTTTC                                                                                           | CGGGCAAGTTAAGTTTATCTCC                                              |                |
| off_target.4               | TTCCTGTGTCATTTTTCTGTGC                                                                                           | ACCTTCCTTCCCCTTTTACTTG                                              |                |
| ff_target.5<br>ff_target.6 | CAGTTGCGCAGGCTAAGAG<br>CCTAGTGGTCGGTCTTGTAAGC                                                                    | ACCTAGAGGGAGGCACTATTCC<br>CTCCGAGTGGAGTGTGATAATG                    |                |
| in_target.o                |                                                                                                                  |                                                                     |                |
| ntibody                    | Antibodies for ChIP<br>Company                                                                                   | Catalog #                                                           | Application    |
| 3K27me3                    | Abcam                                                                                                            | ab6002                                                              | ChIP           |
| 3K4me3                     | Abcam                                                                                                            | ab8580                                                              | ChIP           |
| ol II                      | Santa Cruz Biotech                                                                                               | sc-899                                                              | ChIP           |
| TCF                        | Millipore                                                                                                        | 07-729                                                              | ChIP           |
| 2AK119Ub1                  | Cell Signaling                                                                                                   | 8240                                                                | ChIP           |
| ZH2                        | Reinberg Lab, NYU                                                                                                | N/A                                                                 | ChIP           |
| .11                        | Developmental Studies Hybridoma Bank                                                                             | N/A                                                                 | Immunocytochem |
| .hx3                       | Developmental Studies Hybridoma Bank                                                                             | N/A                                                                 | Immunocytochem |
| lb9                        | Developmental Studies Hybridoma Bank                                                                             | N/A                                                                 | Immunocytochem |
| 8-III Tubulin              | Sigma                                                                                                            | T2200                                                               | Immunocytochem |
| RISPR gRNA-Cas9 plasmid    |                                                                                                                  |                                                                     |                |
| mor n grunn-caso pidsilliu |                                                                                                                  |                                                                     |                |

CRISPR gRNA-Cas9 plasmid SpCas9-2A-GFP vector (Addgene: PX458)