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A1 Statistical Approach

A1.1 Standard Heckman-Type Selection Model for Estimating HIV Prevalence

As outlined in the main text, our Heckman-type selection model adopts a bivariate probit approach
[1, 2], where we model consent to test for HIV for person i with interviewer j as the observed outcome
arising from a latent variable that may be interpreted as the propensity to consent to testing [3]:

s∗ij = xij
′βs + zj

′γs + uij (A1)

sij = 1 if s∗ij > 0, sij = 0 otherwise

where sij is a binary indicator for agreeing to test, xij are observed characteristics, zj are interviewer
effects, uij is random error, and s∗ij is an unobserved latent variable. βs and γs are the associated
vectors of parameters.
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The equation for the HIV status of individual i with interviewer j is:

h∗ij = xij
′βh + εij (A2)

hij = 1 if h∗ij > 0, hij = 0 otherwise

hij observed only if sij = 1

where h∗ij is again a latent variable, which can be thought of as reflecting propensity to be infected,
and εij is an error term. We assume (uij , εij) are jointly distributed as bivariate normal, each with
mean zero, variance 1, and correlation parameter ρ = corr(uij , εij).

The inclusion of the interviewer effects, zj , which are assumed to affect consent to testing, but not
HIV status, is crucial to the model. Without variables in the selection equation that are excluded
from the HIV status equation, the model is only identified by non-linearities, and does not provide
robust estimates [4].

Even with a suitable exclusion restriction, there are a number of technical problems associated with
estimating the model. The first concerns the interviewer effects in zj , which typically take the form
of a series of binary indicator variables, essentially an interviewer fixed effect [3]. Estimation of these
interviewer fixed effects may be difficult because, for interviewers who have only successes or failures
in obtaining consent, the parameter is not identified. For example, if an interviewer always obtains
consent, we know that the coefficient on the indicator variable for that interviewer in the consent
equation is large and positive. However, the coefficient is not identified, as there is no variation
in consent for that interviewer. The coefficient for that interviewer could be arbitrarily large, as
any very large positive interviewer effect above some threshold will perfectly predict success, and
therefore we cannot distinguish between different effect sizes for interviewers who obtain 100%
consent. In addition, we control for the region and language of the interviewee. However, in the
DHS interviewers usually work in a small number of regions, and an effort is often made to match
them with interviewees by language. This may create collinearity between the interviewer effect and
the region and language indicator variables in the equation, making it difficult or even impossible to
estimate the interviewer effects. The approach adopted by Bärnighausen and colleagues was to limit
estimation of individual interviewer effects to those interviewers with more than 50 interviews, and
not to use the interviewer effects of those interviewers who had conducted more than 50 interviews
when including them lead to identification problems [3].1 Instead, interviewers with less than 50
interviewers, or interviewers whose inclusion caused identification problems, were grouped together
as a baseline group with an assumed common interviewer effect.

A conceptual difficulty is that grouping all of the interviewers whose individual interviewer effects
are not identified into a baseline group may not be a convincing strategy, because we could be
pooling interviewers who always have consent with those who never achieve consent, and assuming
that they have the same average effectiveness in obtaining consent. Thus, we do not exploit the
fact that the HIV tests made by interviewers who always obtain consent are the most informative

1The identification problem is usually manifested in practice by the model failing to converge, technically the
unidentified parameters have estimated standard errors that are large and increasing at every iteration – the limit is
an unbounded standard error on the unidentified parameter.
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since they do not suffer from selection bias. As we discuss in the main text, two other limitations
with the fixed effect approach are potential small sample bias, and failure of the bootstrap method
for calculating standard errors.

A1.2 Selection Model Using Random Effects

Our approach to these problems is to assume that the unobserved interviewer effects reflect some
underlying parametric distribution which describes interviewer effectiveness. If interviewers were
randomly assigned to survey households we could simply assume that each interviewer was a random
draw from the pool of interviewers. However, systematic matching of interviewers to subjects,
particularly by region and language, can mean that there may be a correlation between interviewer
success rates and who they are matched with. Therefore, we write the interviewer effect as [5, 6]:

zj = x̄′jδ + vj (A3)

x̄j =

nj∑
i

xij
nj
, vj ∼ N(0, σ2z)

Where x̄j represents the average characteristics of the nj people that interviewer j interviews.
Excluding these controls could potentially invalidate the exclusion restriction of the model. In
order to be asymptotically unbiased and consistent, a requirement of random effects models is
that there is no correlation between the random effects, vj , and the explanatory variables at the
individual level, xij [5, 6]. In order for this to hold, we must assume that, controlling for these
observable averages, there is no remaining correlation between the error term in equation (A3)
and the individual level variables in the model. In particular, we assume that interviewers are not
systematically assigned to groups of survey participants based on unobservable characteristics, but
only on the observable characteristics measured by the survey. As these x̄j likely depend only on
survey design, they should not enter the HIV status equation.2

This assumption of interviewer random effects gives us the selection equation:

s∗ij = xij
′βs + x̄′jδ + vj + uij

sij = 1 if s∗ij > 0, sij = 0 otherwise (A4)

In principle, we could estimate the system given by equations (A2) and (A4) by maximum likeli-
hood. However, this is difficult as we have a selection equation which has a random effect, requiring
numerical integration, inside a bivariate probit model.

There is, however, a simple consistent estimator. Dubin and Rivers show that the bivariate probit
model with selection can be estimated by first finding a consistent estimate of the parameters of
the selection model, ignoring the covariance of the error terms, and then estimating the parameters

2If they are included in the HIV status equation they have little effect on our results; they simply reduce the
efficiency of estimation.
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of the full model by maximum likelihood, holding the selection equation parameters at their first
stage estimates [2]. The procedure is as follows. We first estimate the interviewer effects from the
selection equation only (stage one), then include these constructed parameters as our exclusion
restriction in a Heckman-type selection model (stage two). This two-stage approach is consistent,
though not fully efficient, and the second stage does not produce the correct analytic standard errors
since the interviewer effects are estimated in the first stage, but treated as exogenous variables in
the second stage. Murphy and Topel discuss the consequences for confidence intervals in models
which use data that are estimated from a first stage [7].

We can implement this approach by first estimating the interviewer effect as shown in equation
(A3). Equation (A4), the selection equation, is then run using the predicted interviewer effect (zj =
x̄′jδ+vj) as the exclusion restriction. Assuming random effects avoids the estimation problems of the
fixed effects approach; because we are able to estimate an interviewer effect for all interviewers we
can implement a bootstrap procedure to adjust our standard errors for the fact that the relationship
between consent and HIV status is uncertain and needs to be estimated. The assumption that the
interviewer effects are normally distributed random effects around x̄′jδ also means we have a smaller
set of parameters to estimate than in the fixed effects model.

Conceptually, we could estimate the interviewer random effects using a multilevel regression for
consent, with level one being the individual and level two being the interviewers. However, a simpler
method of constructing consistent estimates of the interviewer random effects is to implement a
probit model and compute the predicted random effect, v̂j , as the average of the error term for each

interviewer.3 We use this probit model to compute the estimated interviewer effect, ẑj = x̄′j δ̂ + v̂j ,

where δ̂ is the vector of estimated coefficients on the interviewer averages from equation (A3),
and v̂j is the predicted random effect from equation (A3).4 Having obtained the estimates ẑj , we
can then estimate the full bivariate probit model in equations (A1) and (A2) using this estimated
interviewer effect as the selection variable that affects consent but does not appear in the HIV
status equation.

Since the first stage is a consistent estimator of the interviewer effect, the two-stage procedure
will be consistent. We can address the problem of incorrect standard errors by bootstrapping over
the whole two-stage procedure.

A1.3 Bias Correction

While the random effects approach solves the identification problems associated with the interviewer
parameters and allows bootstrapping, a second problem remains. In small samples, particularly
when consent to test is very rare (or very common), or the HIV rate is very low (or very high), it is
difficult to estimate the correlation between consent to test and HIV status [8], and the maximum
likelihood estimates in the context of bivariate probit models can be biased [9]. Also, the model
may fail to converge, or may produce a result of ρ = ±1, on the boundary of the possible parameter
space, in which case the assumptions required for asymptotic normality of the maximum likelihood

3Estimating this first stage as a random effects model is computationally intensive and produces almost identical
results to the simple probit. The simple probit produces consistent estimates and this is all this is required for the
second stage.

4Our results are robust to just using v̂j alone as the interviewer effect rather than the full estimate x̄′j δ̂ + v̂j
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estimator are violated, and standard inference, including bootstrapping, is invalid [10, 11]. Such a
result also has the implication that, in terms of predicted probabilities, everyone who fails to test is
either HIV positive with certainty (ρ = +1), or HIV negative with certainty (ρ = −1), which seems
implausible. In general, maximum likelihood often does not have desirable finite sample properties
[12, 13], as the estimate is the most likely value (in terms of posterior probability), which gives zero
weight to values with lower posterior probabilities, even when those probabilities are positive.

We wish to construct an estimate of ρ that is consistent and also corrects for this small sample
bias. Take a data set x∗ and a parameter vector θ∗. The likelihood of θ∗ is simply the probability
of the data given these parameters:

L(θ∗) = P (x∗|θ∗) (A5)

In the usual maximum likelihood framework, we are not generally concerned with the likelihood of
the observed data given the parameters, we are more interested in the probability of the parameters
given the observed data. However, by Bayes rule:

P (x∗|θ∗) =
P (x∗|θ∗)P (θ∗)

P (x∗)
(A6)

Where P (θ∗) is our prior probability distribution on the parameters. If we have a flat prior
probability distribution over the interval [-1, 1], so that P (θ∗) is the same for every θ∗, we have
P (θ∗|x∗) ∝ P (x∗|θ∗) = L(θ∗), and the maximum likelihood estimate of θ∗ is also the estimate
that has the highest posterior probability given the data. While this estimate is the most likely
parameter value given the data, we can construct an alternative estimator as:

θ̂∗ = E(θ∗|x∗) =

∫ +∞

−∞
θ∗P (θ∗|x∗)dθ∗ (A7)

If the prior probability distribution is flat, we have P (θ∗|x∗) ∝ L(θ∗), the posterior probability is
proportional to the likelihood, and we can write our estimator as:

θ̂∗ = E(θ∗|x∗) =

∫ +1

−1
θ∗kL(θ∗)dθ∗ (A8)

Where k is a normalization factor so that the integral of the likelihood over the parameter space
is one, and θ∗kL(θ∗) can be interpreted as an approximation to a probability density function.

The standard maximum likelihood approach chooses the most likely value of θ∗, while our approach
gives us an average value of θ∗, where we average over different models weighted by the probability
of the model being correct. This gives consistent estimates (the likelihood function asymptotically
puts zero weight on incorrect parameters) and is an unbiased estimator by construction under the
assumption that the prior probability distribution is correct. This approach is implemented by
calculating the likelihood for each value of ρ, and then taking the weighted average of ρ, where the
weights are the likelihood values (transformed so that these values integrate to 1).
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In principle, we could construct these estimates for all the parameters in the model. However,
in practice the maximum likelihood estimates for most of the parameters in the model are well
determined,5 and it is only the correlation parameter ρ that poses problems. We therefore use a
profile (or concentrated) likelihood for ρ (see Appendix 3 for details). The profile likelihood can
be used to substitute for the full likelihood when there are other parameters in the model which
are not of direct interest [14]. We have verified that estimates for these other parameters are very
stable across all models. Therefore, once ρ is estimated we find the maximum likelihood values of
the other parameters given this value of ρ.

We report the maximum likelihood estimates and our new bias correction estimates together with
bootstrapped standard errors and confidence intervals. Our cluster bootstrapping takes account of
the stratification and cluster sampling procedure of the survey design [15]. All our HIV prevalence
estimates are weighted.

5Once we have accounted for the difficulties associated with the interviewer parameters using the random effects
approach.
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A2 Additional Results for Model Parameters

We begin by estimating the interviewer random effects as the average error term (for each in-
terviewer) from a probit model for consent to test for HIV, where we include a standard set of
covariates along with the mean of these variables for each interviewer to capture the effects of non-
random allocation of interviewers to participants as shown in equation (A4). Descriptive statistics
for interviewers in Zambia and Ghana are shown in Table A1. Table A2 lists the variables used as
predictors in the bivariate probit model, and their source in the data. The Stata code for preparing
the data is publicly available from http://hdl.handle.net/1902.1/17657 [3, 16]. The distribution of
the number of interviewees by interviewer and their consent rates is shown in figures A1-A4.

Table A3 presents results from the probit model for consent to test for HIV in Zambia. This
table is a single regression for HIV consent where the first column shows the marginal effects for
the individual level variables (xij), while the corresponding marginal effects for the interviewer
averages (x̄j) are shown in the second column.6 At the individual level, the following variables are
associated with consent to test: education, location, prior sexually transmitted disease (STDs), age
at first intercourse, number of partners, willingness to care for a HIV positive relative, knowing an
AIDS victim, and being a smoker. For example, an extra year of education is associated with an
increase in the probability of consenting to an HIV test by roughly 0.5 percentage points. Apart
from years of education, which is the mean years of education for that interviewer’s interviewees, all
interviewer averages are measured as the proportion of interviewees in that category. Many of the
interviewer average measures are significant in predicting consent. For example, in table A3 if the
interviewee speaks Lozi the probability of consent to testing increases, but the association is not
statistically significant. However, interviewers who conducted more interviews with Lozi speakers
had higher consent rates (indicated by the positive and statistically significant coefficient for the
proportion of interviews with Lozi speakers in table A3). These interviewers are likely to be Lozi
speakers themselves, and these results therefore suggest that the Lozi speaking interviewers may
have been better than average at obtaining consent.

Table A4 presents marginal effects for the Heckman-type selection model for consent and HIV
status for Zambia. The first two columns give results for the maximum likelihood fixed effects ap-
proach. The middle two columns give results for our maximum likelihood random effects approach,
and the final two columns give the results for the random effects bias correction model. For this
third model, we estimate the likelihood on a grid of values of ρ (we use values between −1 and +1
at intervals of 0.01). We than calculate the likelihood of the model and posterior probability of
each value of ρ, and then find the expected value of ρ based on this probability.7 The coefficients
reported in table A4 are calculated with this value of ρ imposed. Coefficient estimates across the
three models are very similar.

Chiburis and colleagues recommend the use of the bootstrap for inference in the context of re-
cursive bivariate probit models to correct for poor coverage of analytic standard errors [9]. We
find that the bootstrap confidence interval for the random effects model is almost 10 times as wide
as the analytic standard errors for the fixed effects model. We use 1,000 iterations to calculate

6Marginal effects show the expected change in the probability of a positive outcome for a unit change in that
covariate, evaluated at the mean values of the covariates.

7The posterior probability is calculated by applying a constant to the likelihood for each value of ρ such that these
transformed likelihoods integrate to 1.
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these standard errors, and the corresponding 95% bootstrap confidence interval is calculated using
the appropriate centiles from the empirical distribution of the bootstrap estimates. This approach
is more appropriate than normal-based approximations when the distribution of the parameter of
interest is skewed.

In table A5, we present the estimated correlation coefficient for Zambia from the different models.
The negative values estimated indicate that those who refuse to test are more likely to be HIV-
positive. The maximum likelihood random effects approach yields a ρ of around −0.50, which is
somewhat lower than the −0.75 obtained from the fixed effects estimator. The random effects
bias corrected estimate is slightly smaller again at −0.44. Table A6 presents estimates of HIV
prevalence among those who refused to consent to an HIV test, again comparing the fixed effect,
random effect and random effects bias corrected methods. As with the correlation coefficient,
the estimates from the random effects model are lower than from the fixed effects model (32% v
52%). The corresponding estimate from the imputation model is 12%. Table A7 presents marginal
effects for the consent model in Ghana, and tables A8-A10 give the parameter results of the three
Heckman-type selection models.
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A3 The concentrated (profile) likelihood function

The likelihood of the parameters (βs, βh, ρ), given the full data set (y, x, z) is:

L(βs, βh, ρ) = P (y, x, z|βs, βh, ρ) (A9)

For a given ρ, we can concentrate the likelihood function by setting the other parameters at their
maximum likelihood values given ρ:

Lc(ρ) = P (y, x, z|β̂s(ρ), β̂h(ρ), ρ) ≈ P (y, x, z|ρ) (A10)

In large samples, the approximation to P (y, x, z|ρ) will become exact as the maximum likelihood
estimates of the other parameters are consistent. Using the concentrated maximum likelihood, the
problem is reduced to a one parameter model and we can carry out our small sample correction
with a prior probability distribution over ρ alone.
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A4 Additional Tables and Figures

Table A1: Descriptive Statistics by Interviewer

Number of Interviewers Number of Interviews by Interviewer Consent by Interviewer HIV Prevalence By Interviewer
Median (Interquartile Range)

Zambia 89 25 (4 – 132) 84% (72% – 93%) 10% (0% – 16%)
Ghana 55 114 (5 – 152) 87% (81% – 94%) 1% (0% – 2%)

Note to table A1: For each interviewer, their consent rate is calculated as the number of respondents from whom
consent to test for HIV was obtained by the interviewer, divided by the number of respondents from whom consent
to test for HIV was sought by the interviewer. For each interviewer, their HIV prevalence rate is calculated as the
number of HIV positive respondents among those who consented to test for that interviewer, divided by the number
of respondents who consented to test for that interviewer.
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Table A2: DHS Variable Description

Variable DHS Variable Name (Zambia 2007) Note

Demographic Characteristics
Age Category v013 5 year age bands
Years of Education v133 Education in single years
Marital Status v501 Never/previously/currently married
Ethnicity v131 Categorical
Language smlangi Language of interview
Religion v130 Categorical

Sex and Behavior
Would Respondent Care for HIV Positive Relative? v778 Binary Indicator
Does Respondent Know Anyone Who Died of AIDS? v775 Binary Indicator
Ever had an HIV Test v781 Binary Indicator
Smoker v463a, v463b, v463c Binary Indicator
Alcohol Drinker s1012a Binary Indicator
Ever Had STD v763a, v763b, v763c Binary Indicator
Age at First Intercourse v525 Never, <age 15, >age 15
Had High Risk Sex v766a Binary, sex with someone other than partner
Used Condom Last Intercourse v761 Binary Indicator
Number of Partners Last 12 Months v766a, v766b Continuous

Household Characteristics
Wealth Quintile mv190 Categorical
Type of Location hv025 Large City/Small City/Town/Countryside
Region v101 Categorical

HIV Testing
Consented to Test for HIV ha63 Binary Indicator
Valid HIV Test Result hb63 Binary Indicator

Survey Characteristics
Interviewer Identity v028 Anonymised ID Code
Primary Sampling Unit v001 PSU Cluster
Household Weight hv005 Nationally representative weight
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Table A3: Marginal Effects from a Probit Model for HIV Test Consent for Zambian Men

HIV Test Consent

Variable Individual Level Variables Interviewer Level Averages

Years of Education 0.00475** -0.0001
(0.002) (0.000)

Wealth Category
Poorest -0.00731 -0.0086***

(0.031) (0.002)
Poorer -0.02721 -0.0046

(0.031) (0.003)
Middle -0.03732 -0.0059

(0.027) (0.004)
Richer -0.00842 -0.0109***

(0.019) (0.004)
Location
Small city 0.12471*** 0.0039

(0.037) (0.004)
Town 0.14458*** 0.0036

(0.044) (0.004)
Countryside 0.20348*** 0.0008

(0.062) (0.003)
Marital Status
Never Married 0.01165 0.0036

(0.028) (0.003)
Currently Married 0.03447 -0.0018

(0.031) (0.004)
Had STD 0.04105* 0.0036

(0.022) (0.003)
Age at First Intercourse
15 or Younger 0.04986** 0.0043

(0.020) (0.003)
>15 0.03778* 0.0013

(0.022) (0.003)
Had High Risk Sex 0.05241** -0.0038

(0.025) (0.004)
Number of Partners
None 0.05095** -0.0078**

(0.025) (0.004)
2+ 0.01516 0.0021

(0.021) (0.003)
Used Condom Last Intercourse -0.00033 -0.0005

(0.016) (0.002)
Table A3 – Continued on the Next Page
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HIV Test Consent

Variable Individual Level Variables Interviewer Level Averages

Would Care for HIV Relative 0.05757** 0.003
(0.024) (0.003)

Knows Someone Who Died of AIDS 0.03795*** -0.0011
(0.011) (0.001)

Previously HIV Tested 0.00504 -0.0038
(0.013) (0.002)

Smoker 0.03644*** 0.0041**
(0.012) (0.002)

Drinks Alcohol 0.01008 -0.0064***
(0.012) (0.002)

Language
English -0.04601 0.0079

(0.062) (0.008)
Bemba -0.00834 0.0037

(0.061) (0.009)
Lozi 0.04688 0.0130**

(0.056) (0.007)
Nyanja 0.05083 0.0036

(0.055) (0.009)
Tonga 0.06172 0.006

(0.062) (0.008)

Observations 6,416

Robust standard errors in parentheses
*** p <0.01, ** p <0.05, * p <0.1

Note to table A3: Age group, region, religion, and ethnicity are included in the regression but are not shown. Each
column is for the same regression where HIV consent is regressed on the X variables and the corresponding average
(in percent) for each interviewer. A probit model is used, and marginal effects (absolute change in the probability of
a positive outcome) are shown. In some cases standard errors are very small, but not zero as appears in the table
due to rounding. Interviewer averages of categorical variables are a proportion ranging from 0 to 1. Standard errors
account for clustering at the PSU level.
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Table A4: Marginal Effects for Heckman-type Selection Models (Men Zambia 2007)

Maximum Likelihood Maximum Likelihood Bias Correction
Fixed Effects Random Effects Random Effects

Variables Consent Equation HIV Equation Consent Equation HIV Equation Consent Equation HIV Equation

Interviewer Effect 0.2845*** 0.2857***
(0.028) (0.028)

Years of Education 0.0046** 0.0012 0.0019 0.0047** 0.002
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Wealth Category
Poorest -0.0172 0.0486** -0.0199 0.0463** -0.0198 0.0451**

(0.020) (0.020) (0.020) (0.018) (0.020) (0.018)
Poorer -0.0262 0.0528*** -0.0299 0.0479*** -0.0298 0.0465***

(0.021) (0.020) (0.021) (0.018) (0.021) (0.018)
Middle 0.0028 0.0645*** -0.0017 0.0630*** -0.0017 0.0620***

(0.025) (0.024) (0.024) (0.022) (0.024) (0.021)
Richer 0.0055 0.0503* 0.0072 0.0493* 0.0071 0.0485*

(0.031) (0.028) (0.030) (0.025) (0.030) (0.025)
Location
Small City 0.1529** -0.0589 0.1626** -0.0351 0.1622** -0.0308

(0.067) (0.045) (0.064) (0.035) (0.064) (0.032)
Town 0.1605*** -0.0764** 0.1649*** -0.0495* 0.1647*** -0.0449*

(0.061) (0.038) (0.059) (0.027) (0.059) (0.024)
Countryside 0.1911*** -0.1289*** 0.1972*** -0.0956*** 0.1967*** -0.0896***

(0.063) (0.039) (0.059) (0.028) (0.059) (0.024)
Marital Status
Currently Married 0.0105 0.0787*** 0.022 0.0791*** 0.0221 0.0779***

(0.029) (0.030) (0.028) (0.027) (0.028) (0.027)
Formerly Married -0.0146 0.2125*** -0.0093 0.1992*** -0.0096 0.1950***

(0.028) (0.026) (0.028) (0.025) (0.028) (0.023)
Had STD 0.0407 0.1079*** 0.0437* 0.1073*** 0.0437* 0.1064***

(0.025) (0.023) (0.025) (0.019) (0.025) (0.019)
Age at First Intercourse
15 or Younger 0.0502** -0.0422 0.0485** -0.0254 0.0487** -0.0228

(0.022) (0.035) (0.021) (0.031) (0.021) (0.030)
>15 0.0374* -0.0475 0.0356* -0.0334 0.0357* -0.0312

(0.022) (0.034) (0.021) (0.030) (0.021) (0.030)
Had High Risk Sex 0.0531* -0.0275 0.0546** -0.0199 0.0544** -0.0184

(0.027) (0.025) (0.027) (0.022) (0.027) (0.021)
Number of Partners
1 -0.0433 -0.0202 -0.0520* -0.0266 -0.0521* -0.0272

(0.027) (0.029) (0.027) (0.026) (0.027) (0.025)
2+ -0.0259 0.0343 -0.0371 0.0293 -0.0371 0.0282

(0.042) (0.039) (0.042) (0.034) (0.042) (0.033)
Condom Last Intercourse -0.0079 0.0629*** -0.0017 0.0586*** -0.0014 0.0575***

(0.016) (0.015) (0.015) (0.014) (0.015) (0.013)
Would Care for HIV Relative 0.0487** 0.017 0.0524*** 0.0285 0.0525*** 0.0298

(0.020) (0.033) (0.020) (0.030) (0.020) (0.029)
Know Someone Who Died of AIDS 0.0369*** -0.0144 0.0370*** -0.0081 0.0370*** -0.007

(0.010) (0.014) (0.010) (0.011) (0.010) (0.011)
Previously HIV Tested 0.0053 0.0340*** 0.005 0.0333*** 0.005 0.0328***

(0.013) (0.013) (0.013) (0.011) (0.013) (0.011)
Smoker 0.0371*** -0.0262* 0.0371*** -0.0197 0.0370*** -0.0183

(0.013) (0.016) (0.013) (0.013) (0.013) (0.013)
Drinks Alcohol 0.0097 0.0186 0.0106 0.0184* 0.0105 0.0182*

(0.012) (0.012) (0.012) (0.011) (0.012) (0.011)
Language
English 0.0276 0.0028 0.035 0.0075 0.0351 0.0081

(0.028) (0.033) (0.029) (0.029) (0.029) (0.029)
Bemba 0.0953 0.0666 0.0916 0.0816* 0.0919 0.0826**

(0.061) (0.049) (0.058) (0.042) (0.058) (0.041)
Lozi 0.0980*** -0.0076 0.0967*** 0.0079 0.0965*** 0.0099

(0.030) (0.031) (0.028) (0.026) (0.028) (0.025)
Nyanja 0.1017** -0.0177 0.1133*** 0.0035 0.1132*** 0.0066

(0.046) (0.043) (0.036) (0.035) (0.036) (0.034)
Tonga 0.0376 -0.0119 0.0453 -0.0132 0.0452 -0.0128

(0.048) (0.064) (0.051) (0.063) (0.051) (0.062)

Observations 6,416 6,416 6,416 6,416 6,416 6,416
Robust standard errors in parentheses

*** p <0.01, ** p <0.05, * p <0.1

Note to table A4: Controls for age group, region, ethnicity, and religion are included in each regression equation
but not shown. The model is a bivariate probit for HIV status and consent to a HIV test. Data are for men who
completed an interview. The first model uses interviewer fixed effects as the exclusion restriction. The coefficients
from the interviewer effects are not shown in the table. The second model uses the random effects procedure where
HIV consent is regressed on the X variables, along with the mean values for each interviewer (see table A3). The
average error term for each interviewer is added to the predicted value of the interviewer means, and used as the
exclusion restriction in the HIV regression. The final model is the random effects bias correction procedure using the
same exclusion restriction. Coefficients are obtained by restricting the value of ρ to its random effects bias correction
estimate and implementing the bivariate probit at that value. Marginal effects (absolute change in the probability of
a positive outcome) are shown. Source: DHS Zambia 2007 (men). Standard errors account for clustering at the PSU
level.
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Table A5: Correlation Coefficient (ρ) Estimates for Men in Zambia

Model for Refused Consent Parameter Value Analytic 95% CI Bootstrap 95% CI

Fixed Effects Model -0.75 -0.94 -0.22
Random Effects Model -0.50 -0.73 -0.18 -0.68 0.23
Random Effects Bias Correction Model -0.44 -0.64 0.43

Note to table A5: The table shows the estimated correlation coefficient between consent and HIV status for the fixed
effects, random effects and random effects bias correction models. Analytic standard errors are shown for the fixed
effects and random effects models, with bootstrapped errors for random effects and random effects bias correction
models using 1,000 replications. Source: DHS Zambia 2007 (men).

Table A6: HIV Prevalence (%) among Men who Refused to Test in Zambia

Model for Refused Consent Parameter Value Analytic 95% CI Bootstrap 95% CI

Fixed Effects Model 52.00% 49.90% 54.00%
Random Effects Model 32.00% 30.30% 33.80% 6.30% 42.70%
Random Effects Bias Correction Model 28.60% 26.60% 29.80% 3.20% 39.80%

Imputation Model 11.70% 10.80% 12.60%

Note to table A6: The table shows the estimated HIV prevalence rate among individuals who refused consent for
the fixed effects, random effects and random effects bias correction models. Analytic standard errors are shown for
the fixed effects and random effects models, with bootstrapped errors for random effects and random effects bias
correction models using 1,000 replications. Also shown is the HIV rate using an imputation model for men who
refused consent. Prevalence estimates are weighted and account for survey design. Source: DHS Zambia 2007 (men).
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Table A7: Marginal Effects from a Probit Model for HIV Test Consent for Ghanaian Men

HIV Test Consent

Variables Individual Level Variables Interviewer Level Averages

Years of Education 0.00224* -0.0002
(0.001) (0.000)

Wealth Category
Poorest 0.09640*** 0.0136**

(0.016) (0.007)
Poorer 0.08063*** 0.0200***

(0.014) (0.001)
Middle 0.05346*** 0.0417***

(0.015) (0.007)
Richer 0.03687*** 0.0376***

(0.014) (0.006)
Marital Status
Currently Married 0.02424 -0.0035

(0.022) (0.004)
Formerly Married -0.04371 0.0084

(0.028) (0.011)
Had STD 0.03830* 0.0529***

(0.021) (0.009)
Age at First Intercourse
Never Had Sex 0.00918 -0.0578***

(0.021) (0.009)
15 or Younger -0.02929 -0.0569***

(0.018) (0.010)
Had High Risk Sex 0.00272 0.0092

(0.019) (0.007)
Number of Partners
1 0.00304 -0.0331***

(0.022) (0.005)
2+ -0.00752 0.0218**

(0.031) (0.010)
Condom Last Intercourse 0.00045 -0.1715***

(0.017) (0.024)
Would Care for HIV Relative 0.02213* 0.0124***

(0.013) (0.001)
Know Someone Died of AIDS 0.01538 -0.0424***

(0.010) (0.006)
Previously HIV Tested 0.00564 -0.0097***

Table A7 – Continued on the Next Page
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HIV Test Consent

Variables Individual Level Variables Interviewer Level Averages

(0.017) (0.003)
Smoker -0.00928 -0.0233***

(0.017) (0.007)

Language
Akan 0.04955*** -0.0147***

(0.017) (0.001)
Ga 0.06397** 0.0282***

(0.026) (0.005)
Ewe 0.02522 0.0175***

(0.038) (0.005)
Nzema 0.043 0.0112*

(0.047) (0.007)
Dagbani 0.01586 -0.0241***

(0.049) (0.007)
Other -0.03509

(0.030)

Observations 4,955

Robust standard errors in parentheses
*** p <0.01, ** p <0.05, * p <0.1

Note to table A7: Age group, region, religion, and ethnicity are included in the regression but are not shown. Each
column is for the same regression where HIV consent is regressed on the X variables and the corresponding average
(in percent) for each interviewer. A probit model is used, and marginal effects (absolute change in the probability of
a positive outcome) are shown. In some cases standard errors are very small, but not zero as appears in the table
due to rounding. Interviewer averages of categorical variables are a proportion ranging from 0 to 1. Standard errors
account for clustering at the PSU level.
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Table A8: Marginal Effects for Heckman-type Selection Models (Ghana 2003)

Maximum Likelihood Maximum Likelihood Bias Correction
Fixed Effects Random Effects Random Effects

Variables Consent Equation HIV Equation Consent Equation HIV Equation Consent Equation HIV Equation

Interviewer Effect 0.2125*** 0.2120***
(0.020) (0.020)

Years of Education 0.002 0.0004 0.0023* 0.0004 0.0023* 0.0004
(0.001) (0.000) (0.001) (0.000) (0.001) (0.000)

Wealth Category
Poorest -0.0187 0.0039 -0.0184 0.0039 -0.0184 0.004

(0.020) (0.005) (0.019) (0.005) (0.019) (0.005)
Poorer -0.0563*** 0.0078 -0.0553*** 0.0078 -0.0554*** 0.0079

(0.020) (0.006) (0.020) (0.006) (0.020) (0.006)
Middle -0.0747*** 0.0017 -0.0769*** 0.0017 -0.0769*** 0.0018

(0.021) (0.006) (0.021) (0.006) (0.021) (0.006)
Richer -0.1139*** 0.0021 -0.1169*** 0.0021 -0.1171*** 0.0023

(0.024) (0.007) (0.023) (0.007) (0.023) (0.007)
Marital Status
Currently Married 0.0241 0.0128 0.0235 0.0128 0.0237 0.0128

(0.022) (0.008) (0.022) (0.008) (0.022) (0.008)
Formerly Married -0.0382 0.0088 -0.0420* 0.0087 -0.0418* 0.0088

(0.024) (0.008) (0.024) (0.008) (0.024) (0.008)
Had STD 0.0461 0.0093 0.0457 0.0094 0.0456 0.0094

(0.029) (0.007) (0.028) (0.007) (0.028) (0.007)
Age at First Intercourse
15 or Younger 0.0502** -0.0422 0.0485** -0.0254 0.0487** -0.0228

(0.022) (0.035) (0.021) (0.031) (0.021) (0.030)
>15 0.0374* -0.0475 0.0356* -0.0334 0.0357* -0.0312

(0.022) (0.034) (0.021) (0.030) (0.021) (0.030)
Had High Risk Sex 0.0531* -0.0275 0.0546** -0.0199 0.0544** -0.0184

(0.027) (0.025) (0.027) (0.022) (0.027) (0.021)
Number of Partners
1 0.004 -0.01 0.0033 -0.01 0.0032 -0.0101

(0.022) (0.007) (0.022) (0.007) (0.022) (0.007)
2+ -0.0064 -0.0178* -0.0068 -0.0180* -0.0069 -0.0180*

(0.031) (0.011) (0.030) (0.011) (0.031) (0.011)
Condom Last Intercourse 0.0001 0.0083* 0.0000 0.0082* 0.0000 0.0083*

(0.018) (0.004) (0.018) (0.004) (0.018) (0.004)
Would Care for HIV Relative 0.0221* -0.0007 0.0230* -0.0007 0.0229* -0.0007

(0.013) (0.004) (0.012) (0.004) (0.012) (0.004)
Know Someone Who Died of AIDS 0.0163 -0.0009 0.0162 -0.001 0.0161 -0.0009

(0.011) (0.003) (0.011) (0.003) (0.011) (0.003)
Previously HIV Tested 0.004 -0.0054 0.0046 -0.0054 0.0049 -0.0056

(0.018) (0.007) (0.018) (0.007) (0.018) (0.007)
Smoker -0.0103 0.0057 -0.0089 0.0057 -0.0089 0.0058

(0.017) (0.004) (0.017) (0.004) (0.017) (0.004)
Language
Akan 0.0474*** 0.0042 0.0513*** 0.0043 0.0511*** 0.0044

(0.017) (0.004) (0.016) (0.004) (0.016) (0.004)
Ga 0.0766* 0.0009 0.0864** 0.001 0.0858** 0.001

(0.045) (0.013) (0.044) (0.013) (0.044) (0.013)
Ewe 0.0338 0.0122 0.0272 0.0122 0.0271 0.0123

(0.045) (0.009) (0.045) (0.009) (0.045) (0.009)
Nzema 0.0537 0.0253* 0.0484 0.0253* 0.0489 0.0254*

(0.060) (0.015) (0.052) (0.015) (0.052) (0.015)
Dagbani -0.0201 -0.1142*** 0.0187 -0.1387*** 0.0186 -0.8298***

(0.063) (0.018) (0.038) (0.021) (0.038) (0.084)
Other -0.0391 -0.0102 -0.0327 -0.0102 -0.0328 -0.0102

(0.027) (0.009) (0.025) (0.009) (0.025) (0.009)

Observations 4,955 4,955 4,955 4,955 4,955 4,955
Robust standard errors in parentheses

*** p <0.01, ** p <0.05, * p <0.1

Note to table A8: Controls for age group, region, ethnicity, and religion are included in each regression equation
but not shown. The model is a bivariate probit for HIV status and consent to a HIV test. Data are for men who
completed an interview. The first model uses interviewer fixed effects as the exclusion restriction. The coefficients
from the interviewer effects are not shown in the table. The second model uses the random effects procedure where
HIV consent is regressed on the X variables, along with the mean values for each interviewer (see table A3). The
average error term for each interviewer is added to the predicted value of the interviewer means, and used as the
exclusion restriction in the HIV regression. The final model is the random bias correction procedure using the same
exclusion restriction. Coefficients are obtained by restricting the value of ρ to its random effects bias correction
estimate and implementing the bivariate probit at that value. Marginal effects (absolute change in the probability of
a positive outcome) are shown. Source: DHS Ghana 2003 (men). Standard errors account for clustering at the PSU
level.
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Table A9: Correlation Coefficient (ρ) Estimates for Men in Ghana

Model for Refused Consent Parameter Value Analytic 95% CI Bootstrap 95% CI

Fixed Effects Model 0.93 0.50 0.99
Random Effects Model 0.93 0.02 1.00 0.56 1.00
Random Effects Bias Correction Model 0.59 0.39 0.72

Note to table A9: The table shows the estimated correlation coefficient between consent and HIV status for the fixed
effects, random effects and random effects bias correction models. Analytic standard errors are shown for the fixed
effects and random effects models, with bootstrapped errors for random effects and random effects bias correction
models using 1,000 replications. Source: DHS Ghana 2003 (men).

Table A10: HIV Prevalence (%) among Men who Refused to Test in Ghana

Model for Refused Consent Parameter Value Analytic 95% CI Bootstrap 95% CI

Fixed Effects Model 1.00E-07 3.00E-08 2.00E-07
Random Effects Model 2.00E-05 1.00E-06 4.00E-06 1.00E-08 0.16%
Random Effects Bias Correction Model 0.07% 0.05% 0.09% 0.03% 0.35%

Imputation Model 1.82% 1.60% 20.48%

Note to table A10: The table shows the estimated HIV prevalence rate among individuals who refused consent for
the fixed effects, random effects and bias correction models. Analytic standard errors are shown for the fixed effects
and random effects models, with bootstrapped errors for random effects and bias correction models using 1,000
replications. Also shown is the HIV rate using an imputation model for men who refused consent. Estimates lower
than 0.01% are shown in scientific notation. Prevalence estimates are weighted and account for survey design. Source:
DHS Ghana 2003 (men).
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Additional Figures

Figure A1: Histogram of Number of Interviews by Interviewer in Zambia 2007 (Men)
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Graph is at the interviewer level (one observation per interviewer).
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Figure A2: Histogram of Consent Rates by Interviewer in Zambia 2007 (Men)
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Note to Figure A2: Graph is at the interviewer level (one observation per interviewer). For each interviewer, their
consent rate is calculated as the number of respondents from whom consent to test for HIV was obtained by the
interviewer, divided by the number of respondents from whom consent to test for HIV was sought by the interviewer.
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Figure A3: Histogram of Number of Interviews by Interviewer in Ghana 2003 (Men)
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Graph is at the interviewer level (one observation per interviewer).
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Figure A4: Histogram of Consent Rates by Interviewer in Ghana 2003 (Men)
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Note to Figure A4: Graph is at the interviewer level (one observation per interviewer). For each interviewer, their
consent rate is calculated as the number of respondents from whom consent to test for HIV was obtained by the
interviewer, divided by the number of respondents from whom consent to test for HIV was sought by the interviewer.

23



References

1. W. P. Van de Ven and B. Van Praag. The demand for deductibles in private health insurance:
A probit model with sample selection. J Econom, 17:229–252, 1981.

2. J. A. Dubin and D. Rivers. Selection bias in linear regression, logit and probit models. Sociol
Methods Res, 18:360–390, 1989.

3. T. Bärnighausen, J. Bor, S. Wandira-Kazibwe, and D. Canning. Correcting HIV prevalence
estimates for survey nonparticipation using Heckman-type selection models. Epidemiology,
22:27–35, 2011.

4. D. Madden. Sample selection versus two-part models revisited: the case of female smoking
and drinking. J. Health Econ., 27:300–307, 2008.

5. Y. Mundlak. On the pooling of time series and cross section data. Econometrica, 46:69–85,
1978.

6. G. Chamberlain. Analysis of covariance with qualitative data. Rev Econ Stud, 47:225–238,
1980.

7. K. M. Murphy and R. H. Topel. Estimation and inference in two-step econometric models. J
Bus Econ Stat, 20:88–97, 2002.

8. J. S. Butler. Estimating the correlation in censored probit models. Rev Econ Stat, 78:356–358,
1996.

9. R. C. Chiburis, J. Das, and M. Lokshin. A practical comparison of the bivariate probit and
linear IV estimators. Econ Lett, 117:762–766, 2012.

10. D. W. Andrews. Estimation when a parameter is on a boundary. Econometrica, 67:1341–1383,
1999.

11. D. W. Andrews. Inconsistency of the bootstrap when a parameter is on the boundary of the
parameter space. Econometrica, 68:399–405, 2000.

12. W. Greene. The behaviour of the maximum likelihood estimator of limited dependent variable
models in the presence of fixed effects. Econom J, 7:98–119, 2004.

13. S. Greenland. Small-sample bias and corrections for conditional maximum-likelihood odds-
ratio estimators. Biostatistics, 1:113–122, 2000.

14. S. A. Murphy and A. W. Van der Vaart. On profile likelihood. J. Am. Stat. Assoc., 95:
449–465, 2000.

15. D. J. Corsi, M. Neuman, J. E. Finlay, and S. Subramanian. Demographic and health surveys:
a profile. Int. J. Epidemiol., 41:1602–1613, 2012.

16. D. R. Hogan, J. A. Salomon, D. Canning, J. K. Hammitt, A. M. Zaslavsky, and
T. Bärnighausen. National HIV prevalence estimates for sub-saharan Africa: controlling se-
lection bias with Heckman-type selection models. Sex. Transm. Infect., 88:i17–i23, 2012.

24


	Statistical Approach
	Standard Heckman-Type Selection Model for Estimating HIV Prevalence
	Selection Model Using Random Effects
	Bias Correction

	Additional Results for Model Parameters
	The concentrated (profile) likelihood function
	Additional Tables and Figures

