

Mapping of U2AF65 CLIP tags to the human genome.

(a) Western analysis of the IP efficiency of anti-U2AF65 antibody. (b) Comparison between U2AF65 CLIP-seq data generated in the current study with the published U2AF65 iCLIP-seq data¹⁷. (c,d,e) Profiles of base deletion (c), insertion (d) and substitution (e) detected by CIMS analysis of U2AF65-RNA interactions³⁷. (f) Preferential deletion mutation on uridine residues in CIMS. (g) Footprint of U2AF65 binding on RNA based on CIMS.

Rank	Motif	Z-Score	Rank	Motif	Z-Score
1	TTTCTT	291.73	11	TTGTTT	218.16
2	TTTTTC	287.13	12	TCTCTT	215.60
3	TTTTCT	284.90	13	CTTTT	205.42
4	TTCTTT	265.92	14	TTTCCT	201.44
5	TCTTTT	248.90	15	TTTGTT	196.16
6	TGTTTT	236.20	16	TCTTTC	183.32
7	TTCCTT	234.80	17	TCCTTT	177.87
8	TTTCTC	226.90	18	CTTTTC	176.71
9	TTCTCT	223.15	19	TTCTTC	165.66
10	TTTTCC	218.24	20	GTTTTT	163.49

а

Supplementary Figure 2

Enriched motifs in U2AF65-binding sites.

(a) List of top 20 enriched hexamers. (b) Percentage of U2AF65 binding sites that contain one or more top 50 motifs (red), compared with randomly selected 50 hexamers (blue). (c) S65 scores of U2AF65 binding sites in 3'splice sites and non-3'splice sites¹⁸.

Supplementary Figure 3

RT-PCR validation of U2AF65 RNAi-induced alternative splicing.

(a) Induced exon skipping events in response to U2AF65 RNAi. (b) Induced exon inclusion events in response to U2AF65 RNAi.

Supplementary Figure 4

U2AF65 binding profile on representative genes and insertion mutational analysis of U2AF65-binding site-induced changes in alternative splicing.

(a) U2AF65 binding on the alternative exon in *GANAB*. (b) U2AF65 binding on the alternative exon in *ANKRD10*. PCR-validated splicing changes are shown in the right. (c) The minigene constructs illustrating the insertion of the U2AF65 binding site from an intronic region in *DROSHA* (see Fig. 4d) into an U2AF65 insensitive gene *Clorf43* either in an upstream or a downstream intronic location. Bottom panel: RT-PCR analysis of wt and mutant minigenes in response to U2AF65 RNAi.

Supplementary Figure 5

Similar effects of U2AF65 RNAi and U2AF35 RNAi on alternative splicing.

(a) Examples of induced exon skipping events in response to U2AF65 or U2AF35 RNAi. (b) Examples of induced exon inclusion events in response to U2AF65 or U2AF65 or U2AF35 RNAi (c) Concordant splicing response to U2AF65 and U2AF35 RNAi determined by RT-PCR. \triangle PSI: Difference of Percentage of Splicing In (PSI) between HeLa cells treated with U2AF35 or U2AF65 siRNA and negative control (NC) siRNA. (d) Heatmap showing similar U2AF65 RNAi-induced splicing events with or without exogenously expressed U2AF35. (e) RT-PCR validation of a set of U2AF65 RNAi-induced splicing events in the presence or absence of overexpressed U2AF35.

Supplementary Table 1: Deep sequencing statistics

a: RNA-Seq					
	Ctrl	Knock down U2AF65			
total reads	28228751	25595461			
mapped reads	14384722	17183922			
mapped ratio	50.96%	67.14%			
uniquely mapped reads	14119360	16834141			
uniquely mapped ratio	91.16%	97.96%			

b: U2AF65 CLIP-Seq				
total reads	19513772			
mapped reads	12088822			
mapped ratio	61.95%			
uniquely mapped reads	9329565			
uniquely mapped ratio	77.18%			
reads with CIMS	1482140			

c: RASL-Seq					
	Knock down U2AF35	Knock down U2AF65			
total detectable events	1892				
significantly changed events	334	271			
co-changed events	208				
events in the same directions	206				
ratio of same direction changes	001/				
over total	99%				

Supplementary Table 2: List of primers used to express U2AF and its mutants					
Expressed gene	Forward Primer (5'3')	Reverse Primer (5'3')			
	CATAAGCTTGCCACCATGGATTACA	TGAGGATCCTCACAGATCCTCTTCAGAG			
U2AF35-WT	AGGATGACGACGATAAGGCGGAGT	ATGAGTTTCTGCTCGAATCGCCCAGATC			
	ATCTGGCCTCC	TTTCAC			
112 A E 25 S 2 A V	CGTCATGGAGACAGGTGCTATCGG	CGGTTTATTGTGCAACCGATAGCACCTG			
U2AF55-5541	TTGCACAATAAACCG	TCTCCATGACG			
112AE25 S24E	CGTCATGGAGACAGGTGCTTTCGGT	CGGTTTATTGTGCAACCGAAAGCACCTG			
U2AF35-554F	TGCACAATAAACCG	TCTCCATGACG			
U2AE25 0157D	CAGAGAAGCCTGCTGCCGTCGGTA	GCATTCTCCCATCTCATACCGACGGCAG			
02AF55-Q157K	TGAGATGGGAGAATGC	CAGGCTTCTCTG			
	CAGAGAAGCCTGCTGCCGTCCGTA	GCATTCTCCCATCTCATACGGACGGCAG			
02AF55-Q157F	TGAGATGGGAGAATGC	CAGGCTTCTCTG			
	CTTCCCAGTCTGCTGACGGTACGGA	GCAGGCTTCTCTGAAGTCCGTACCGTCA			
UZAF55-Del-UHM	CTTCAGAGAAGCCTGC	GCAGACTGGGAAG			
	CATAAGCTTGCCACCATGGATTACA	TGAGGATCCTCACAGATCCTCTTCAGAG			
U2AF65-WT	AGGATGACGACGATAAGTCGGACT	ATGAGTTTCTGCTCCCAGAAGTCCCGGC			
	TCGACGAGTTC	GGTG			
112AE65 D19W	GCTCAACGAGAATAAACAAGAGTG	CGATGCCGGTTCTCCTTGTCCCACTCTTG			
U2AF65-R18W	GGACAAGGAGAACCGGCATCG	TTTATTCTCGTTGAGC			
U2AF65-M144I	GCCCGTGGTCGGGAGCCAGATCAC	GAGGCGCCGGGCTTGTCTGGTGATCTGG			
	CAGACAAGCCCGGCGCCTC	CTCCCGACCACGGGC			
112 A E 65 I 197V	CAGGCCCCTGGCAACCCAGTGGTG	CCTGGTTAATCTGCACAGCCACCACTGG			
U2AF03-L18/V	GCTGTGCAGATTAACCAGG	GTTGCCAGGGGCCTG			

Supplementary Tab	le 3: Oligonucleotide	es for cloning of minigene reporter plasmids and RT-PCR quantification		
Forward TGACTCGAGGGACCATATGGTCCCACA				
TPD52L2-WT	Reverse	TGACCGCGGAGAGCACCCAGATGTACAG		
	Forward	TGCCTGTATCATCAGCACCAACTTTTGTGGAACAGGG		
TPD52L2-Del	Reverse	CCCTGTTCCACAAAAGTTGGTGCTGATGATACAGGCA		
	Forward	CGCAAGCTTGCTCGCGGGATTGATGT		
EIF4A2-WI	Reverse	CCG <mark>CTCGAG</mark> GTGATCGCCTATTCAGCAAC		
	Forward	CAGCATCTTGGCTGTATTGAATTCGAGTGAACCCTGGT AGTTATA		
EIF4A2-UD	Reverse	TATAACTAAACCAGGGTTCACTCGAATTCAATACAGCCA AGATGCTG		
	Forward	GAGCGAGTCGGTATTTATATTTGGATCCAGTTAGAAGCA CGAACTA		
EIF4A2-DD	Reverse	TAGTTCGTGCTTCTAACTGGATCCAAATATAAATACCGAC TCGCTC		
	Forward	TGAGGATCCAGAGCGAGAACGGGAGAGAC		
Drosha-WT	Reverse	TGACTCGAGCACCTGATCCATGGGGTCAC		
	Forward	GAACACAAATGTGTTCATGATAGCCCGTATTGTAATGTCT GGAAGTTA		
Drosna-Dei	Reverse	TAACTTCCAGACATTACAATACGGGCTATCATGAACACA TTTGTGTTC		
	Forward	CCCAAGCTTGACTTGAAAGAGGAGATTGATATTCG		
Clorf43-Wl	Reverse	ATGCTCGAGCCCTGTCCCATAGCGGGCTGTTTC		
	Forward	CAGTCTCAGCTCACTGCAACACCGGTCTCCACCCCTTGT TCAAGC		
Clori43-UP-Agei	Reverse	GCTTGAACAAGGGGGGTGGAG <mark>ACCGGT</mark> GTTGCAGTGAGCT GAGACTG		
	Forward	GCATGGTGGTGCACATCTGT <mark>ACCGGT</mark> AATCCCAGCTAAT CAGGAGG		
C1orf43-Down-Agel	Reverse	CCTCCTGATTAGCTGGGATTACCGGTACAGATGTGCACC ACCATGC		
	Forward	ATAACCGGTATTATTAGTTTTGTTAAATTATGG		
U2AF65 binding region	Reverse	ACTACCGGTTGGGAGGATTAGAAAGATTATAC		
U2AF65 non-binding Forward		GAGAGTTAGAAGCCAGCCACC		
region	Reverse	CCACCGCCTCCTGGGTT		
Quantification primar 1	T7 Promoter	TAATACGACTCACTATAGG		
	BGH-Rev-primer	TAGAAGGCACAGTCGAGG		
Quantification primer 2	EGFP-Forward	CTGGTCGAGCTGGACGGCGACG		
Quantification primer 2	EGFP-Reverse	TTCTTCTGCTTGTCGGCCAT		

Supplementary Table 4: List of primers used to validate U2AF-regulated splicing events					
Gene Symbol	Forward Primer (5'3')	Reverse Primer (5'3')	Short isoform (nt)	Long isoform (nt)	Validated
EFNA1	GCGCTTCACACCTTTCACC	GCAAGTCTCTTCTCCTGTGGA	108	170	Yes
UCHL5	TCTGCCTTTCATTATGGAATTG	TGCCTCAGCTATTCAAAAATC TC	199	274	Yes
CD46	TGGAGTTGCAGTAATTTGTGT TG	GCAAACCAGGTTGTGGAATC	156	249	Yes
STAG3L2-E7	CTGGATGGTTTCCATGATCG	AAGGACAGCAGAAGCTGGAA	177	285	Yes
STAG3L2-E4	CCAAGCGGTACATCGTCATA	GAAGCGGCCAGTGAAGAG	187	311	Yes
SEC16A	TAAGCTCTGCAGCGTCACTC	CAGCTGAGCAGGGTTGTAGA	143	203	Yes
EIF4G2	GGGACGTCATCGTTCAAATC	TGGTGGTTGTGCACTAGGAG	205	319	Yes
FAM76B	CTCCAAAGAAAAAGCCCAAA	AATGGTCTGGTCTCTCTGCTG	167	225	Yes
CCDC53	GGTGTACAGTGATGGCAATAA	GAAGATTCGCTATCTGAACTT	126	222	Vac
CCDC33	GA	TCTTC	130		res
PIGQ	GCTCGTGGACCTCATCAACT	ATGAGCTCCCCAAGGAACAG	190	252	Yes
SAT1	TTTGGAGAGCACCCCTTTTA	CTCATCACGAAGAAGTCCTCA A	158	268	Yes
ANKRD36B	AGCTCTGCTGGATGCTTCAT	TTTCTCAAGCCGCTCAATTT	164	235	Yes
EIF4A2	GCTCGCGGGGATTGATGTGC	GAATCCTCTTGTCTTCTTC	154	261	Yes
HNRPDL	AGCACTTATGGCAAGGCATC	TCTTCAATGTCGTCCTGCAA	129	234	Yes
MYOF	CTAAAATTGCTGCCTCTGGTG	TGGGAATCCCGTGTACTCTC	128	167	No
NAP1L4	GAAGGTGACGAGGAGGAGA	CCTCCGCTTCCTACTGCTG	100	138	No
ANKRD10	TGAGGGTGAAACTCCCATTC	GAAACTGGGCACACTCTTGG	161	255	Yes
GIT1	GCTGGCCTTCTACCTCTGTG	TTCTCTTCGATCCACCTCGT	187	214	Yes
АСОТ9	CAAAGGGCAGCTTACTCCTG	GGCAGTCCATCCTGTGATTT	201	228	Yes
KIAA0515	ATGAAAGGCTTCCACTTTGC	TCAGGCCTTACTCTCCTCCA	212	294	Yes
ENOSF1	AGCCATTGTGGATTGAGGAG	ACTTTTTGGCCATCAGCAAT	189	231	Yes
THYN1	AGAGGCTTACCCAGACCACA	CCTCCAGGCTCAAAACAAAA	118	269	Yes
CHEK2	CAGCTCTCAATGTTGAAACAG AA	CTGCACAGCCAAGAGCATC	150	212	Yes
CAST	TGAGAAGAAGTCACAGTCAA CCA	TCAGCTGATCTGGAAACTGCT	105	162	Yes
MGRN1	TGGAGCATGATGAGCACTCT	TGTCCAGGATGTGGTCGATA	204	270	Yes
HNRNPC	GCAGCAGTCGGCTTCTCTAC	CATGGAGCGAGGATCTGTCT	153	179	Yes
TAZ	AGATGGCGTCTACCAGAAGG	AGGATGATGGGGGTTGAGATG	126	168	Yes
STARD3NL	CTTCTGGCAGTTTTTCGATTT	CAGGAACCACGTCTCAATCC	156	210	Yes
c16orf35	CAACAATTTTGGCAACCAAG	ACGGGACAGGTTATGCAGAC	158	233	Yes
FIP1L1	AGCTCCTCCCACTCACCTTC	CCTGGTGGAGGAGGAAAAC	105	132	Yes
PCBP2	GTTGGCAATGCAACAGTCTC	CGTTTGGAATGGTGAGTTCAT	110	149	Yes
CALD1	GGAAGAGGAGAAGCCAAAGC	TGTGGGTCATGAATTCTCCA	161	239	Yes
APP	CCGCTGGTACTTTGATGTGA	TTCTCATCCCCAGGTGTCTC	186	243	Yes
SGCE	GGAAGTGATTCGTGGAGAGG	GCACTGTGATGGACCAGTTG	204	231	Yes
ZNF207	CCTCCAATGACTCAAGCACA	ACCAACAGGTCCTTGGACAG	156	249	Yes
OS9	TGGGCTGAAGAAGGAGTCAG	TCGTGTCCTCATCAGTCAGC	248	413	Yes

PICAML	TGATGTAAATTGGAGTCAACC AG	TCCTATCATGCCTGTTGGTG	151	175	No
FIP1L1	GAGGATACGAATGGGACTTG A	TGGAAGCCCAGTCTTGAACA	160	229	Yes
ECHDC1	AGAGGGGAAAGGCCTCATT	ATTCTGCTCCTCCACCCAAT	150	203	Yes
PSMG1	GTCTGGGAGGAAGTTGGTTG	TGCATGTTCTTCCTTGGACA	152	215	Yes
GOLGA2	CTGCATCGTCTGCTAACCTG	CGAGGATCCCTATGGTCTGA	150	231	Yes
GANAB	CCATTCCGCCTTGACCTACT	ATCCCTGGGTGTTTCCTCAG	159	225	Yes
RFWD2	CACATGCAGCCCAACTACAG	TGTGTGATGGAGAAGGAGCT T	141	201	Yes
MYO18A	GCAGGCTGACCTAAAGTTGG	ATCATCAGAAGCTGCCTTGG	202	247	Yes
ADA	GCTACCACACCCTGGAAGAC	CCCGTTTGGTCATCTGGTAA	160	225	Yes
AKR1A1	ATGCTACGACTCCACCCACT	TTGGGGATGCAGATCACTTT	190	390	Yes
CEP78	CCACAATGGCTGGGATAGAT	GGACAGGAAAGGAGTCGAGA	216	264	Yes
TPD52L2	GGGAGCTGAAACAGAACCTG	TCTCCAAGCTTCCTGCTGAT	151	211	Yes
TAZ-E5	GCAGACATCTGCTTCACCAA	TGGGAAGATATGCACCCAGT	150	240	Yes
CEP164	TCAGCCTCTTGGGTTTAGGA	GAGGGCTTGCAGGGAGTAG	151	229	Yes
MACF1	CCTACTCGTTCCAGCTCCAG	GCAAGGGATGTCCGACTAGA	161	272	Yes
DMD	GCACAGGGTTAGAGGAGGTG	TCTGCTCCTTCTTCATCTGTCA	151	183	Yes
RNF10	CCTGCTCCTCTGATTCTGCT	GCTTGGCTGAAGGAATTTTG	257	358	Yes
UBTF	GAAATCGGACATCCCAGAGA	GTGAGGGTGGACTTGGTGAT	165	276	Yes
NUMB	CCTTGGCCATGTAGAAGTTGA	CTGAGTCCATCTGCTGAGACC	126	159	Yes
GSK3B	GAACTCCAACAAGGGAGCAA	GTGGTGTTAGTCGGGCAGTT	174	213	Yes
STX16	GCCGGATTAAGCAGAAGATG	GCTGGGATCTTTCCTCTCG	155	318	Yes
ACAA1	TCACTGTGACCCAGGATGAG	CTTGCAAAGGCCTCATTGAT	151	331	Yes
BIN1	CAAGCTGGTGGACTACGACA	CTCCTCCTGCAGATCCACAT	151	244	Yes
LIMCH1	GAGGAATACCGCAAGAGCTG	CTTGCCATTTGTCGTCCTCT	187	223	Yes
RBPJ	ATAAATGATGGCGCTTCCTG	CTGGGACGACACAGAGCATA	152	256	Yes
P2RX5	CCCTGCAGAGTGCTGTCAT	TTTCCAGCTGTAACCGCTTC	181	253	Yes
HMGCR	CGCCGACAGTTACTTTCCA	GAGCCAGGCTTTCACTTCTG	186	345	Yes
OSBPL9	AAACACTGCATTGTGTTGCTG	ACAGTCTGGGAAGGCATTGT	113	152	Yes
ODF2L	CTGAAATAGTAAAAAGCAGA	GCTGAATAAGACAGTTTTCC	147	306	Yes
IVNS1ABP	ATCAACTGGGTGCAGCGTAG	CATCATCACTGCCAAACACC	151	292	Yes
PCSK6	GGAGCTCTCAGCCCCAGA	TGAAGTGGACGCAGTTCAAG	167	206	Yes
PPP2R5D	CGTGTCCTACTTCCCCTTCA	GGAAGAGGGGTTCCATCACT	187	241	Yes
TNFSF13	CTGGGAGAATGGGGAGAGAT	TCCTGGATTCGGACACCATA	150	198	No
RIPK2	CATTCCCTACCACAAACTCG	AGGATGCGAAATCTCAATGG	185	339	Yes
FXP1	ACACTGATGCCAGCGAATCT	AGCACTAGTTGGGCCGTTTA	198	290	Yes
SETX	TCACACGAGCCAAGTACAGC	GCACAGGCTTGAGTTTCAGA	171	258	Yes
ASUN	TTGCACGTCCTTAGCAGTTC	TTAGGGCCCTTTCCTCTTGT	245	416	Yes