DMD # 63206

Supplemental Data

Drug Metabolism & Disposition

The Effects of Endoxifen and Other Major Metabolites of Tamoxifen on the Sulfation of Estradiol Catalyzed by Human Cytosolic Sulfotransferases hSULT1E1 and hSULT1A1*1

Edwin J. Squirewell and Michael W. Duffel*

Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA **Supplemental Figure 1.** Initial velocities of hSULT1E1-catalyzed sulfation of estradiol (50 μ M) with varied concentrations of PAPS. The $K_{\rm m}$ and $V_{\rm max}$ for PAPS was 1.5 μ M and 62 nmol/min/mg, respectively.

DMD # 63206

Supplemental Figure 2. K_i determinations for inhibitors of the hSULT1E1-catalyzed sulfation of estradiol. The inhibitors that were used in this study were (A) Endoxifen, (B) N-desTAM, (C) 4-OHTAM, and (D) TAM-NO. Each solid line represents a single concentration of inhibitor in the presence of various substrate concentrations, and data points are the means \pm standard error from triplicate determinations. For A-C, the inhibition model (either non-competitive or mixed) that provided the best fit to the data is shown. While an attempted fit of the data to a non-competitive inhibition equation is shown for D, neither this nor other simple inhibition models adequately described inhibition at the higher concentration of TAM-NO.

Supplemental Figure 3. Initial velocities of hSULT1A1*1-catalyzed sulfation of estradiol (5 μ M) with varied concentrations of PAPS. The K_m and V_{max} for PAPS was 1.1 μ M and 6.1 nmol/min/mg, respectively

DMD # 63206

Supplemental Figure 4. K_i determinations for inhibitors of the hSULT1A1*1-catalyzed sulfation of estradiol. The inhibitors that were used in this study were (A) endoxifen and (B) 4-OHTAM. Each solid line represents a single concentration of inhibitor in the presence of various substrate concentrations, and data points are the means \pm standard error from triplicate determinations. Data were fit using a competitive model for inhibition. As seen, the data for 4-OHTAM fit this model of inhibition well. However, the data for inhibition of the enzyme by endoxifen (A) did not fit a competitive inhibition model. Data for endoxifen as inhibitor also did not fit well to either non-competitive or mixed inhibition models under these assay conditions (not shown).

Supplemental Figure 5. LC-MS analysis of endoxifen sulfate formed in an enzymatic reaction catalyzed by hSULT1E1

Supplemental Figure 6. LC-MS analysis of 4-TAM-SO₄ formed in an enzymatic reaction catalyzed by hSULT1E1

Supplemental Figure 7. LC-MS analysis of N-desTAM-S formed in an enzymatic reaction catalyzed by hSULT1E1.

Supplemental Figure 8. LC-MS analysis of 4-TAM-SO₄ formed in an enzymatic reaction catalyzed by hSULT1A1*1.

Supplemental Figure 9. LC-MS analysis of endoxifen-sulfate formed in an enzymatic reaction catalyzed by hSULT1A1*1.

Supplemental Figure 10. LC-MS analysis of N-desTAM formed in an enzymatic reaction catalyzed by hSULT1A1*1.