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SUPPORTING MATERIAL 

 

1. Coarse grain simulations: solution procedure 

CG simulations were conducted for the 4 individual helices using Langevin dynamics at 300 K 

for a range of values of ks. The Langevin equation (1) includes an inertial term, a viscous term, a 

random force term, and a potential energy term, respectively, in the form  

 

( ) ( ) ( )mx t x t R t E                     (S1) 

 

where 𝑚 is the mass of each bead, 𝑥̈(𝑡) is the bead’s acceleration at time 𝑡, 𝛾 is the damping 

constant, 𝑥̇(𝑡) is the bead’s velocity at 𝑡, 𝑅(𝑡) is a random force that represents the protein’s 

interaction with the surrounding fluid, and 𝐸 is the potential energy governing the solute that 

includes ENM forces. The fluctuation-dissipation theorem (2) connects the random force and 

viscous drag  

 

( ) ( ') 6 ( ')BR t R t k T t t                     (S2) 

 

where 𝑘𝐵 is Boltzman’s constant, 𝑇 is temperature, 𝑅(𝑡′) is the random force applied at 𝑡′, and 

𝛿(𝑡 − 𝑡′) is the Dirac delta function.  Written as a system of equations for all beads, the 

Langevin equation takes the form 

 

[ ]{u(t)} {u(t)} {R(t)} [k]{u(t)}M                    (S3) 

 

where [M] is a diagonal mass matrix, {𝑢̈(𝑡)}, {𝑢̇(𝑡)}, 𝑎𝑛𝑑 {𝑢(𝑡)} are column vectors containing 

the accelerations, velocities, and positions in the x, y, and z directions for each bead, {𝑅(𝑡)} is a 

column vector containing the random force in the x, y, and z directions for each bead, and [𝑘] is 

a stiffness matrix. 

The standard deviation of the random force is derived from Eqs. S2 and S3 to be 
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where ∆𝑡 is the timestep. The friction coefficient is dependent on the bead type as well 
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where 𝑎 is the Van der Waals radius of the bead and 𝜂 is the viscosity of water. The timestep 

used for Langevin dynamics was based on the characteristic time, τ, that is defined as 
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where 𝑚 is the maximum bead mass. The timestep was adjusted to match the diffusion of a bead 

attached to a spring. Using this technique, the timestep was determined to be 43.4 fs or τ/20. 

In order to model the dynamics of the coarse-grained model, the Langevin dynamics equation 

was solved using a generalized Verlet algorithm (1)  
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where 𝑛 is the timestep. The position is calculated from the half velocity, and then the position 

and half velocity are both used to calculate the full velocity. 

 

2. ENM Reference State 

 

 

 
FIGURE  S1 A model showing two beams. The reference or zero energy state for both beams is 

when they are separated from each other.  When the beams form a bundle, mutual interactions 

deform them into some shape with associated stored energy that will be released when the beams 

are separated. 

 

For each of the helices there exists a relaxed, natural, or reference state, and we maintain that the 

relaxed state of the springs that comprise the elastic network model should be defined in this 

reference state.  This idea is illustrated in the figure above. Say we have two helices (orange and 

blue) with two different reference states (bent and straight).  When the two helices come into 

contact with each other, they will both deform to form an equilibrium structure. If we assume the 

energy of the system to be 0 on the left, some energy is required to bend both helices to form the 

combined structure on the right. In our model we use our references states, like those on the left, 
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to help us calculate the energy stored in the bundle that can be released as the bundle is pulled 

apart. 

         The existence of such a reference state is not contingent upon its viability as a stable state 

for an actual isolated helix.  Although Syb by itself is largely unstructured, we can still define the 

Syb helix by itself, i.e., removed from the other SNARE helices.  It is a notional state used 

merely to obtain the frozen or stored elastic energy in the SNARE bundle.  That is, all that is 

required is that the helical forms be stable as a bundle and that we have a systematic procedure 

by which to define springs on a relaxed state, again, regardless of whether the relaxed state 

actually exists.  

We recognize that in many sources in the literature it is noted that Syb is largely 

unstructured when not in the presence of the SNARE bundle.  We conducted 40 ns all-atom 

simulation of the individual SNARE helices, starting with a configuration extracted from the 

crystal structure.  We found that this timescale was more than sufficient to allow all of the 

helices to straighten into relatively straight rod-like conformations.  It was also short enough that 

each rod retained its helical structure.  Because of this separation of time scales – time to relax an 

individual helix << time required for it to lose it structure – we were able to define the natural or 

reference state of each helix on which to construct the elastic spring network. 

 

 

3. Determining the cut-off distance and spring constant in the elastic network model for 

SNARES 

Coordinates from the straightened out helical structures were extracted from the individual 

AA simulations, and the connectivity and natural length of the ENM springs for each helix were 

determined based on these structures.  If the cutoff distance is too small, the proteins will 

denature. If it is too large, simulation speed will be compromised with no significant 

improvement in representation.  In order to find an optimal value, this distance was adjusted and 

a histogram was created for each helix to show the total number of springs that were connected 

to each bead. The minimum criterion for the number of springs was that each bead should be 

connected by a spring to all of its nearest neighbors. It was concluded that a cutoff distance of a 

minimum of 10 Å yielded at least 4 springs per bead, which satisfied this criteria. After further 

investigation, it was determined that Rc was required to be at least 20 Å in order to maintain the 

helical structure of each helix during AA simulations. The histogram for the final value of Rc, 20 

Å, for the helix Syb is shown in Fig. S2. The histograms for the other three helices are similar.  
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FIGURE  S2 A histogram for the number of ENM springs per bead is shown for Syb with a 

value of 20 Å for Rc. 

 

The values of ks for the ENM were chosen by matching the spectrum of fluctuations of the 

AA simulations and the CG model.  For the analysis of individual AA helix simulations, the 

positions of the alpha carbons were extracted every 10 ps. For each alpha carbon a time series of 

distance from average location was calculated. The fast Fourier transform (FFT) was then 

evaluated for each bead’s time series. The average was taken over all beads yielding a single 

spectrum per helix.  In order to make this comparison of the fluctuations, CG simulations were 

conducted for the 4 individual helices using Langevin dynamics at 300 K for a range of values of 

ks.  The time length of simulations required was determined by conducting a normal modes 

analysis (NMA) on the CG model of the crystal structure, 1N7S, for all helices individually 

using different values of ks.  AA simulations were run for 2 ns, which is considerably longer than 

the characteristic time given as the inverse of the lowest natural frequency. The results for Syb 

are shown in Table S1. 
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TABLE S1 The lowest natural frequencies and characteristic times for Syb determined are 

shown below for different values of ks 

ks 

(N/m) 

Lowest Natural 

Frequency Squared 

(1/ns)
2
 

Time 

(ns) 

0.0963 4.53 4.70E-01 

0.1926 9.05 3.32E-01 

0.2889 1.36 2.71E-01 

0.3853 1.81 2.35E-01 

0.4816 2.26 2.10E-01 

 

For Syb, as was seen for all helices, the characteristic times are significantly less than 1 ns.  

As a result the AA simulations were analyzed for the first 2 ns of the trajectories, and the CG test 

simulations were conducted for 2 ns and analyzed with data collected every 2 ps. In order to best 

match the fluctuations, the root mean squared deviation (RMSD) between the AA and CG 

spectra was found for each run. An example of the comparison of both spectra is shown in Fig. 

S3 for Syb with ks value of 0.0963 N/m. The RMSD for all helices for all values of ks are shown 

in Table S2 with the minimum RMSD values shaded in grey. 

 

 
FIGURE S3 The spectra used to compare the fluctuations of the AA (blue) and CG (red) models 

are shown for Syb for 2 ns. Values of ks as 0.0963 N/m and Rc of 20 Å were used for the CG 

model. An RMSD of 4.7E-10 was found. 
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TABLE S2 The RMSD values between the AA and CG fluctuation spectra are shown below for 

all helices for a range of values of ks. The minimum RMSD values are shaded in grey. 

ks (N/m) Syb RMSD  Syx RMSD  SN1 RMSD  SN2 RMSD  

0.00009 9.6450e-09 1.0532e-08 1.2658e-08 9.5905e-09 

0.0009 4.9432e-09 5.5075e-09 6.7327e-09 4.6640e-09 

0.0096 1.4341e-09 1.1056e-09 1.5941e-09 1.7538e-09 

0.0481 7.4334e-10 1.4651e-09 8.5729e-10 1.6778e-09 

0.0963 4.7077e-10 4.3346e-10 1.3671e-09 2.3080e-09 

0.1444 7.2271e-10 9.9229e-10 1.5680e-09 1.1604e-09 

0.1926 1.4341e-09 1.1064e-09 1.5941e-09 1.7539e-09 

0.2889 1.2019e-09 1.5654e-09 2.7382e-09 3.0644e-09 

0.3853 1.7372e-09 2.0310e-09 3.2207e-09 3.3413e-09 

0.4816 2.4969e-09 2.8429e-09 3.2951e-09 3.5652e-09 

 

Based on the data in Table S2, a value of 0.0963 N/m was chosen for ks for all four helices. For 

Syb and Syx, this corresponds to the value of ks with the smallest RMSD. For SN1 and SN2 

however, the minimum RMSD occurs either a little above or below ks of 0.0963 N/m. Because 

the RMSD is still very small for these two helices with that value of ks, it was chosen to use a 

consistent value of ks for all helices. 

 

4. Calibration of λ and displacement orientation 

As described in the SNARE CG model portion in the methods section, the value of λ was 

adjusted in order to match the peak force reported by Gao et al. (3) of 14 – 19 pN.  We 

conducted a series of displacement control simulations at 0K for a set of λ values ranging from 

0.30 to 0.72.  Displacement was applied in steps and the system allowed to relax.  Relaxation to 

equilibrium was monitored by tracking the forces acting on the C-terminal beads of Syb and Syx 

as shown in Fig. S4. Each force spike corresponds to a displacement being applied to the C-

terminal bead of Syb. After 10
5
 timesteps, both forces relax to nearly the same value, which is 

taken as the equilibrium force for that displacement, and the next displacement step is then 

applied. 
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FIGURE S4 The force as a function of timestep is shown for a displacement control run with λ 

set to 0.30. The forces on the C-terminal beads of Syb (blue) and Syx (red) are shown. Each 

spike in the Syb force corresponds to application of a new displacement step. A total 

displacement of 20 nm is shown. 

 

 The resulting force displacement curves for a few of these runs for varying λ are shown in 

Fig. S5. 
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FIGURE S5 Force displacement curves are shown for displacement control simulations done 

using λ values of 0.16 (red), 0.24 (blue), 0.30 (black), and 0.40 (magenta).  

 

It was clear that as λ was increased, the peak force increased as well. By choosing its value to 

be 0.3, we attained a peak force of 17.2 pN that lies in the experimentally measured range. 

 

  

5. SNARE Force Displacement Instabilities and Their Effect on Energy 

There are several mechanical instabilities in the force-separation curve of the SNARE, for 

example at 7.5 nm in Fig. 3 C. These usually correspond to “breaking” of one of the layers.  

When the system jumps from one stable point to the next, it does not follow the equilibrium 

force-separation relationship between these two points; instead, it lies above it.  When we 

integrate the force-separation curve to obtain energies, we consequently compute a slightly larger 

magnitude (more negative) than it should be. This does not affect any of the predictions about 

stable equilibria. 

  

6. Continuum Governing Equations and Their Solution 

The axisymmetric deformation of the vesicle-membrane system can be reduced to the solution of 

a set of ordinary differential equations.  The undeformed configuration of the vesicle is a sphere 

of radius with arc-length in a cross-section denoted by  whereas, the plasma membrane 

occupies the interior of a circle of radius . We introduce the notation  to denote the 

angle made by the tangent to a point on the cross-section of the deformed membrane in the 

plane with the axis (see Fig. S5 A). Briefly, the equations describing the deformation involve 

the shear force , the angle , the mean curvature , the deformed arc length , the deformed 

coordinates of a generic material point which has an arc length coordinate in the 

undeformed configuration. To expedite the analysis, we introduce the following normalized 

variables:  

 

        (S10) 

where, 

is the osmotic pressure of the vesicle,  

 is an integration constant resulting from integrating the tangential force equilibrium equation 

(see supplementary information for details), 

is the electrostatic force per unit area of the membrane and is always along direction, 
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is the tangential component of the concentrated load at the material point in the deformed 

membrane, 

is the normal component of the concentrated load at the material point deformed 

membrane. 

 

 

        A                                                                          B 

 
FIGURE S6 (A) Arc length and tangent angle over the membrane, (B) Forces and moment along 

the cut in the membrane. 

 

As shown above non-dimensionalization of all the length scales is done by the radius of the 

undeformed vesicle, . As has units of energy, we use it to non-dimensionalize force per unit 

length quantities i.e. in-plane tension, and out of plane shear, by . Also force per unit 

area quantities, , ,  and  are made dimensionless by . 

Also, in both the loading conditions it has been assumed that the 
 
for vesicle is always 

zero. There are six ordinary differential equations governing the deformation of the vesicle 

membrane, they are: 

tF 0S
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        (S11a-S11f) 

 

where, the dot denotes differentiation with respect to the normalized undeformed arc length , 

and  

 

.            (S11g) 

 

The normalized normal force acting on the deformed membrane surface, in Eq. S11a is related 

to the osmotic pressure of the vesicle, , the electrostatic  force per unit area, and the normal 

component of the concentrated load applied at ,  by, 

 

          (S11h) 

 

where, is the Dirac delta function. 

These differential equations are supplemented with the boundary conditions: 

 

                   (S12a-S12f) 

 

The boundary conditions defined above essentially represent the symmetry in the vesicle 

geometry. About the symmetry axis, the curve has zero slope and out of plane shear  is zero, at 

both  and . Also, for the continuity of the geometry, we impose  at both  and 

π. 

The notation for positive shear force and tension is described in Fig. S6. Finally, the expression 

for the in-plane tension in both the vesicle and plasma membrane is given by, 
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.          (S13) 

 

The governing equations for the deformation of the plasma membrane is very similar, except that 

Eq. S11g must be replaced by, 

 

               (S14) 

 

This change is due to the difference between the reference configurations.  The boundary 

conditions are: 

 

          (S15a-S15f)   

  

The boundary conditions at is due to axisymmetry.  Eq. S15f states that the tension in the 

plasma membrane approaches the pretension at the boundary. This boundary condition allows 

the neuron membrane to deflect. Had we replaced this boundary condition with a clamped 

condition, the deflection everywhere would be zero because of area incompressibility.    

The coupled ODE’s in Eqs. S11 - S15 with the boundary conditions are solved using the 

MATLAB® bvp4c solver. The input parameters for the solver are the osmotic pressure across 

the vesicle membrane which remains fixed throughout the deformation, SNARE-machinery 

force parameters ( and magnitude ), electrostatic force and pretension ( )  in the plasma 

membrane. 

 

7. Example problem of continuum model 

Here we show an example of the results of the calculation of vesicle-membrane interaction.  In 

this example, the location of force application is fixed at on both the vesicle and neuron 

base, as shown in Fig. S7.  This location of load application corresponds to the number of 

SNAREs of 21.   Parameters used in the continuum model are shown in Table S3. 

 

TABLE S3 Parameters used for the continuum model of the vesicle and plasma membrane 
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Dielectric constant of water,   80 dimensionless 

Ion concentration inside neuron,
 0c  200 mM (4) (1-1) electrolyte 

Debye length, 
Dl  0.67nm 2 22

o B
D

o

k T
l

q z c


  

Synaptic vesicle radius, R  20nm (5)  

Surface charge of vesicle and inside of 

plasma membrane, 
1 2 and    

-0.025 Cm
-2

, -0.025 Cm
-2 

(5–

7) 
 

Surface potential of vesicle and inside of 

plasma membrane, 
1 2 and    

-25 mV, -25 mV  

Bending rigidity of lipid bilayer, c  ~20 kBT (8)
 

8.28 x 10
-20

 J 

 

The strength of the line force is varied in the range of  in dimensionless terms, which 

is equivalent to a net force between . Fig. S7 shows the deformed shapes of the 

membranes for four different values of . The inset on the right shows the calculated 

relationship between applied force and separation between load application points. The force 

decreases rapidly with increasing separation, reflecting the steep decay of the electrostatic 

repulsion. 

 

 

 
FIGURE S7 Deformed geometry for different force magnitudes. The thick lines represent the 

neuron base and the thin lines represent the vesicle. The inset on the left shows the zoomed in 

section of the load application point (shown as  ) and the inset on the right shows the vertical 

separation between the two ends of SNARE-machinery versus the net SNARE force. The 

5 20
66 266 pN

F
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parameters are for the analysis are: load application point, , pretension in plasma 

membrane,  and vesicle pressure.  . 

 

8. SNARE Force Separation Curve Shift  

To compare the attractive force imposed by the SNARE bundle to the repulsive force on the 

vesicle, we need a consistent definition of separation.  The distance connecting the final residue 

beads (Syb89 and Syx256) is shorter than the distance between the outside membrane surfaces 

due to the presence of other parts of the SNARE.  To address this issue, we created a static 

coarse grained structure of a 20 nm vesicle and plasma membrane with a partially opened 

SNARE at its equilibrium configuration as shown in the figure below.   We found that distance 

between the outer surface of the membranes is actually about ~1nm further apart than the 

distance between Syb89 and Syx256.   We have therefore added this distance when comparing 

the attractive force on the SNARE to the repulsive force on the vesicle.  Adding the initial 

separation between Syb89 and Syx256, the minimum distance allowed between the membranes 

at the point of force application is about 2nm.  Another related effect is that inter-SNARE-bundle 

repulsion can increase the minimum lateral separation.  We have considered two additional cases 

where we take lateral SNARE bundle width to be 2 and 4 nm (an additional Debye screening 

length increase in radius in the latter case).  The larger lateral spacing makes the effect of number 

of SNAREs significantly stronger but the minimum separation and the number of SNAREs 

needed to achieve it does not change much. 

 
Figure S8.  Drawing of a vesicle near a plane along with a model for the SNARE bundle. 

 

 

9. Choice of SNARE Model 

 

The CG simulation model was built using the SNARE X-ray crystal structure 1N7S that includes 

Syb (27-89), Syx (189-256), SN1 (5-83), and SN2 (139-204).   We recognize that this structure 

only includes part of the Syb linker domain (85-95) and none of the linker domain of Syx (256-

266).   However, we believe that our choice of placing the membrane outer surface at residues 89 

and 256 is correct.  Our choice is based on the following papers (9, 10) that show Syb insertion  

in the membrane starts at Trp 89.  Specifically, they show that 89-94 is unstructured but is 

0 / 6S 

0 1T  0 1p 



14 
 

inserted in the membrane.  Similarly, the following paper shows that for Syx, residues after 261 

are in the lipid bilayer.  Specifically, 261-266 are unstructured but inside the lipid bilayer (11).  

The following study (12) also concludes that the linker domains (256-266) and (85-95) are 

buried in the top layer of the membrane.   Because the reference distance from the hydration 

repulsion is the outer surface of the membrane, to be consistent we believe that it is quite 

appropriate to define SNARE displacement from 88 for Syb to 256 for Syx, within some 

uncertainty of a just a few residues.   

Whether or not the linker domains have unraveled is debatable.  It was shown in Gao et 

al’s optical tweezer experiment that the Syb linker domain unravels at 10-13 pN.  Because the 

equilibrium SNARE end-end distances of interest in this work are <~ 3nm), our maximum force 

only reaches (<5pN) and neglecting helix unraveling in our model is justifiable.  Nevertheless, in 

order to check the robustness of our solution against unraveling, we did melt two helical turns of 

Syb (including up to residue 91).  The principal effect is that the minimum equilibrium 

separation increases from 2 nm to 2.5 nm for both hydration and electrostatic repulsion with a 

constant charge. 

 

10. Robustness of Model Results 

To judge the sensitivity of our main conclusions on the various assumptions we have made, we 

carried out a number of other simulations.  Our main conclusion is that the principal results of 

our model are quite robust with respect to uncertainty in the assumptions made.   

10.1. Electrostatics: We explored how electrostatics would affect the vesicle to plasma 

membrane repulsion. Fig. S9 shows results for the case where hydration repulsion is replaced by 

electrostatics using a fixed surface charge of -0.025 C/m
2
 on the vesicle and the membrane. 

Evidently, with these parameters the electrostatic repulsion is weaker than the hydration 

repulsion.  For one SNARE the end separation is ~2.4nm, which is smaller than the 3 nm seen 

for the hydration repulsion case (Fig. 4 B). However, when more than 1 SNARE is added to the 

system, the equilibrium SNARE end separation is constant at ~2 nm for 2-13 SNAREs, that is, it 

would be completely zippered shut. 

 

 
FIGURE S9 (A) The force in the membrane/vesicle system is shown as a function of SNARE 

end separation for a vesicle radius of 20nm with electrostatic repulsion with a fixed surface 

charge. (B) The corresponding contour plot of total energy as a function of SNARE end 
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separation distance and the number of SNAREs.  Gray circles correspond to global energy 

minima representing the equilibrium SNARE end separation for a given number of SNAREs. 

 

10.2. Larger vesicles:Although our primary interest is in the smaller synaptic vesicles, the 

model can also be applied to study larger vesicles.  Fig. S10 shows results for the case of a 100 

nm vesicle.  

 
FIGURE S10 The force in the membrane/vesicle system is shown as a function of SNARE end 

separation for a vesicle radius of 100nm with (A) hydration repulsion and (C) electrostatic 

repulsion with a fixed surface charge. Contour plots of total energy as a function of SNARE end 

separation distance and the number of SNAREs are shown for a vesicle radius of 100nm with (B) 

hydration repulsion and (D) electrostatic repulsion with a fixed surface charge.  Gray circles 

correspond to global energy minima representing the equilibrium SNARE end separation for a 

given number of SNAREs. 

 

For the hydration repulsion case the minima are significantly larger than those found for the 

20nm case shown in Fig. 4 B. For four or more SNAREs the equilibrium separation is ~2.5nm 

which is different from the 20nm case where the separation is ~2nm and the SNARE bundle can 

be nearly fully zippered.  For the case of electrostatic repulsion, for larger number of SNAREs 

the repulsion is still insufficient to open the SNARE except when there is are three or fewer 

SNAREs.   
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10.3. Fixed Potential: We also carried out computations assuming a fixed potential of -25 mV 

on the vesicle and on the membrane as opposed to the fixed surface charge case that was 

assumed in the majority of the paper. The resulting force separation curves for the 20nm and 

100nm vesicle cases are very similar to the case of fixed charge.  This is not unexpected because 

the electrostatic force for fixed charge versus fixed potential cases becomes nearly the same for 

separations greater than the Debye screening length.  

10.4. Unraveling of Syb: Several other modifications were made to the cases shown in Fig. 4.  

There is some question about whether part of the syb helix unravels.  We have argued that the 

forces are small enough that the helical structure should be preserved.  However, to test the effect 

on our prediction of potential unraveling, we allowed 2 helical turns to unravel and be 

represented by elasticity of a worm-like chain coil. Because the Syb helix touches the membrane 

at residue 91 and the CG model only contains up to residue 89, an extra 2 residues were added to 

the unraveled portion of Syb. The force displacement curve for the melted portions of Syb were 

modeled using a worm like chain model following Gao et al.(3) The force extension relationship 

was calculated using the Marko-Siggia formula 
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                          (S16)  

                

where 𝑃𝑚𝑒𝑙𝑡 is the persistence length of the melted segment (0.6 nm) and  𝑥𝑚𝑒𝑙𝑡 is the end to end 

distance of the melted segment. 𝐿𝑚𝑒𝑙𝑡, the maximum end to end distance of the melted segment, 

was calculated assuming a 0.365 nm contour length per residue (3) which totaled to 1.3 nm due 

to ~2 helical turns being melted. The master force displacement curve was slightly adjusted by 

deleting the portions of the curve that corresponded to the 7 residues that are now accounted for 

using the WLC model. The SNARE end separation, 𝑥𝑆𝑁𝐴𝑅𝐸, was defined by 

 

( ) ( ) ( )SNARE melt bundlex F x F x F BW                            (S17)  

         

where 𝑥𝑚𝑒𝑙𝑡 is the end to end distance of the melted portion of Syb, 𝑥𝑏𝑢𝑛𝑑𝑙𝑒 is described using 

the manipulated master force curve described in this section, and BW is the width of the SNARE 

bundle or the distance between the Syb and Syx C-termini when no external force is being 

applied.  The corresponding results are shown is shown in Fig. S11 A for a 20nm vesicle with 

hydration repulsion and Fig. S12 A for a 20nm vesicle with electrostatic repulsion and a fixed 

surface charge. 
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FIGURE S11 For a 20nm vesicle with hydration repulsion, contour plots of normalized total 

energy as a function of SNARE end separation distance and the number of SNAREs are shown.  

Gray circles correspond to energy minima representing the equilibrium SNARE end separation 

for a given number of SNAREs.  Several cases are shown: (A) 2 helical turns unraveled, (B) Syx 

frozen, (C) SNAP25 frozen, and (D) Syx and SNAP25 frozen. 
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FIGURE S12 For a 20nm vesicle with electrostatic repulsion assuming a fixed surface charge, 

contour plots of normalized total energy as a function of SNARE end separation distance and the 

number of SNAREs are shown.  Gray circles correspond to energy minima representing the 

equilibrium SNARE end separation for a given number of SNAREs.  Several cases are shown: 

(A) 2 helical turns unraveled, (B) Syx frozen, (C) SNAP25 frozen, and (D) Syx and SNAP25 

frozen. 

 

In both cases, the results differ from those seen in Fig. 4 when unraveling was not permitted. For 

the case of hydration repulsion, the minimum separation is somewhat larger (~2.4 nm) than that 

shown in Fig. 4 B (~2.1 nm). There is a similar difference for the case of electrostatic repulsion.  

10.5. Freezing SNAP25 or Syx: In our simulations we allowed SNAP25 helices to be free to 

adjust their orientation.  This mimics the optical tweezers experiment used to calibrate our 

model.  However, the situation in vivo is likely different with SNAP25 and/or Syx constrained 

against motion. In order to see the effects of the positioning of SNAP25 in relation to the 

SNARE bundle we studied three variations: freezing Syx, freezing SNAP25, and freezing both 

Syx and SNAP25. When Syx was frozen, SNAP25 still remained associated with Syb. Anytime 

that SNAP25 was frozen at all, it remained associated with Syx. The energy calculations were 

repeated for the hydration repulsion case (Fig. S11) and the electrostatic repulsion case with 

fixed surface charge (Fig. S12). The freezing of helices in all of these cases has little effect on 

the minimum distance and number of SNAREs. The principal difference occurs for the one-

SNARE case where the equilibrium distance reduces significantly.   



19 
 

 

10.6. High Osmotic Pressure and Low Pretension Limit 

Figs. 2 and S7 show cases of low osmotic pressure and plasma membrane tension where 

the plasma membrane bulges near the axis of symmetry because the attractive forces draw the 

two membranes to each other at their point of application but near the axis of symmetry only 

repulsion acts.  Experiments suggest that prior to vesicle to membrane fusion, the vesicle retains 

its spherical shape while the plasma membrane surface conforms when the two are in contact 

(13, 14).  The continuum model was recalculated using high osmotic pressure in the vesicle and 

low pretension in the plasma membrane with constant potential. The resulting structures are 

shown for 10 and 15 SNAREs in Fig. S16. 

 

 
FIGURE S13 For a 20nm vesicle with high osmotic pressure and low pretension in the plasma 

membrane with constant potential the vesicle and plasma membrane structures are shown 

including their bilayer thickness for (A) 10 SNAREs and (B) 15 SNAREs.  

 

Under the conditions of high osmotic pressure and low pretension when 10 SNAREs are present 

there is little bulging of the plasma membrane and the vesicle remains spherical when the vesicle 

and plasma membrane are brought together. The separation is relatively constant which is 

consistent with the Malsam et al.(13) and Hernandez et al. (14).  As the number of SNAREs is 

increased to 15, there is some bulging in the plasma membrane at the axis of symmetry.  The 

vesicle has retained its spherical shape while the plasma membrane bends to conform to it. 

The energy surface for this case is shown in Fig. S14.  We note that there is little 

difference between these and those of Fig. 4 B.  This suggests that our model is robust with 

respect to this uncertainty. (In particular, the value of vesicle osmotic pressure is difficult to 

estimate.) 
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FIGURE S14 Contour of normalized total energy as a function of SNARE end separation and 

number of SNAREs for a 20nm vesicle with high osmotic pressure and low pretension in the 

plasma membrane, and with constant potential on the vesicle and plasma membrane. White 

circles correspond to energy minima representing the equilibrium SNARE end separation for a 

given number of SNAREs. 

 

10.7. High Vesicle Pressure, High Membrane Tension Vesicle-Membrane Model 

In order to display the effects of the deformation considered in the continuum model, a more 

simplified analytical model of the Vesicle-Membrane system based on Bykhovskaia et al.(15) 

was calculated. The parameters used in the analytical model were consistent with those used in 

the continuum model as described in Section 2.3.  Consider the case in which vesicle pressure Po 

and the membrane tension T are sufficiently large such that neither the vesicle nor the membrane 

deform as they approach each other. In this case Bykhovskaia et al.(15) have shown that the 

force between the vesicle and membrane is given by  
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for fixed surface potential and 
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for fixed charge.  The force separation curves are shown for the vesicle-plasma membrane for 

several cases using this model in Figs. S15 and S16. 
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FIGURE S15 For the high vesicle pressure high membrane tension limiting case, the net applied 

force in the membrane/vesicle system is shown as a function of SNARE end separation for a 

vesicle with a (A) 20nm radius with fixed charge, (B) 20nm radius with fixed surface potential, 

(C) 100nm radius with fixed charge, and (D) 100nm radius with fixed surface potential. 
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FIGURE S16 For the high vesicle pressure high membrane tension limiting case, the net applied 

force in the membrane/vesicle system is shown as a function of SNARE end separation for a 

radius for a vesicle with a 20nm radius with fixed charge when (A) the SNARE bundle diameter 

is 2nm and (B) the SNARE bundle diameter is 2nm. 

 

10.8. Effect of Lateral Bundle Width: Figure S17 shows results of a test of the sensitivity of the 

solution to the location of the SNAREs when the lateral size of the SNARE bundle was varied 

from 2nm in Fig. S17 A to 4nm in Fig. S17 B (the base case used is 3nm, Fig. 4 B). Increasing 

the lateral width of the SNARE bundle seems to have a significant effect on the solution. There 

is a minimum separation at 4 SNAREs. With the addition of more than 5 SNAREs the 

equilibrium separation again begins to increase all the way up to ~3nm with 13 SNAREs. 

 

 
FIGURE S17 For the high pressure high tension limiting case, contour plots of normalized total 

energy as a function of SNARE end separation distance and the number of SNAREs are shown.  

Gray circles correspond to energy minima representing the equilibrium SNARE end separation 

for a given number of SNAREs.  Several cases are shown for the vesicle with a radius of 20nm 

and fixed charge. The size of the SNARE bundle was varied to (A) 2nm and (B) 4nm. 
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