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Varun Bhaskar,1 Jérôme Basquin,1 and Elena Conti1,*
1Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Munich, Germany

*Correspondence: conti@biochem.mpg.de

http://dx.doi.org/10.1016/j.str.2015.03.011
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
SUMMARY

The Ccr4-Not complex regulates eukaryotic gene
expression at multiple levels, including mRNA turn-
over, translational repression, and transcription. We
have studied the ubiquitylation module of the yeast
Ccr4-Not complex and addressed how E3 ligase
binds cognate E2 and how it is tethered to the com-
plex. The 2.8-Å resolution crystal structure of the
N-terminal RING domain of Not4 in complex with
Ubc4 shows the detailed interactions of this E3-E2
complex. The 3.6-Å resolution crystal structure of
the C-terminal domain of the yeast Not4 in complex
with the C-terminal domain of Not1 reveals how a
largely extended region at the C-terminus of Not4
wraps around a HEAT-repeat region of Not1. This
C-terminal region of Not4 is only partly conserved
in metazoans, rationalizing its weaker Not1-binding
properties. The structural and biochemical data
show how Not1 can incorporate both the ubiquityla-
tion module and the Not2-Not3/5 module concomi-
tantly in the Ccr4-Not complex.

INTRODUCTION

The Ccr4-Not complex is a crucial player in the regulation of eu-

karyotic gene expression (reviewed in Wahle andWinkler, 2013).

Ccr4-Not was originally discovered as a transcriptional regulator

in yeast (Collart and Struhl, 1994; Draper et al., 1994). Subse-

quent experiments revealed its fundamental function in cyto-

plasmic mRNA turnover, as a deadenylase that shortens the

poly(A) tail at the 30 end of mRNAs (Daugeron et al., 2001; Tucker

et al., 2002). More recently, Ccr4-Not was also shown to act as a

translational repressor (reviewed in Chapat and Corbo, 2014)

and to be implicated in co-translational quality control (Pana-

senko, 2014; Matsuda et al., 2014).

Purification of the Ccr4-Not core complex from endogenous

sources has revealed the presence of a large macromolecular

assembly containing several evolutionary conserved proteins

and a few proteins that are instead species specific (Chen

et al., 2001; Lau et al., 2009; Temme et al., 2010; Erben et al.,

2014). Ccr4-Not is assembled around Not1, a �240 kDa protein

that is built by consecutive helical domains. The individual do-

mains of Not1 recruit the other core components of the complex
forming structurally and functionally distinct modules. The Not1

N-terminal domain is an elongated HEAT-repeat fold (Basquin

et al., 2012) and appears to bind species-specific subunits

(CNOT10-CNOT11 in metazoans, Caf130 in yeast) (Chen et al.,

2001; Mauxion et al., 2013; Bawankar et al., 2013). The Not1

central MIF4G domain is next and recruits Caf1 (also known as

Pop2 in yeast) and Ccr4, forming the deadenylase module of

the complex (Draper et al., 1994; Bai et al., 1999). This is followed

by the Not1 helical bundle domain, which binds Caf40 (Bawan-

kar et al., 2013). Last is the Not1 C-terminal domain, an elon-

gated HEAT-repeat fold that binds Not2 and Not5 (and in yeast

also the paralog Not3), forming the Not module of the complex

(Bai et al., 1999). The C-terminal domain of Not1 also binds

Not4, another core component of the yeast Ccr4-Not complex

(Bai et al., 1999). Finally, several peripheral proteins are recruited

to the core complex, such as DDX6, Nanos, tristetraprolin, and

GW182 in metazoans (Maillet and Collart, 2002; Suzuki et al.,

2010; Sandler et al., 2011; Braun et al., 2011; Chekulaeva

et al., 2011; Fabian et al., 2011).

In the past few years, most of the conserved interactions of the

core complex as well as the interactions with several peripheral

factors have been elucidated at the structural level (Basquin

et al., 2012; Petit et al., 2012; Fabian et al., 2013; Boland et al.,

2013; Bhaskar et al., 2013; Bhandari et al., 2014; Chen et al.,

2014; Mathys et al., 2014), with the exception of Not4. Not4 is

an evolutionarily conserved protein that contains an N-terminal

RING domain, a central RRM domain and a C-terminal domain

predicted tobeunstructured. As shown for both the yeast andhu-

man orthologs, the Not4 RING domain harbors an E3 ubiquitin

ligase activity (Albert et al., 2002; Mulder et al., 2007a). Consis-

tently, Not4 has been reported to ubiquitylate a wide range of

substrates (Laribee et al., 2007; Mulder et al., 2007b; Mersman

et al., 2009; Cooper et al., 2012; Gulshan et al., 2012), including

ribosome-associated factors (Panasenko et al., 2006; Pana-

senko and Collart, 2012). Although the exact function is currently

debated, the enzymatic activity of Not4 has been linked to pro-

teasomal degradation in particular in the context ofmRNAquality

control pathways that respond to halted translation (Dimitrova

et al., 2009; Matsuda et al., 2014). The activity of the Not4 E3

ligase depends on its interaction with a specific E2, which has

been identified as Ubc4/5 in yeast and the ortholog UbcH5B in

humans (Albert et al., 2002; Mulder et al., 2007a). Structural

studies have shown how the RING domain of human CNOT4

folds via an unusual C4C4 motif whereby eight cysteine

residues coordinate two zinc ions (Hanzawa et al., 2001). Amodel

of the human CNOT4-UbcH5B complex has been proposed

based on chemical shift nuclear magnetic resonance restraints,
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computational docking approaches, and mutational analysis

(Dominguez et al., 2004) but no crystal structure has been re-

ported as yet.

Binding of yeast Not4 to the Ccr4-Not complex does not

require the N-terminal RING domain but rather the C-terminal

domain (Panasenko and Collart, 2011). The C-terminal domain

of Not4, however, is the least conserved portion of the molecule.

In addition, although Not4 is a bona fide Ccr4-Not subunit in

yeast, it is not stably associated with the complex in human

and Drosophila cells (Lau et al., 2009; Temme et al., 2010). The

molecular basis for the Not1-Not4 interaction in yeast and the

reason for the weaker association in higher eukaryotes are

currently unknown. Also unknown is whether Not4 can bind

Not1 in the context of the Not module, as Not2, Not3, and

Not5 also dock to the same domain of Not1. Here, we report a

structural and biochemical study that sheds light on how the

E3 ligase of Not4 binds specifically its cognate E2 and how it is

recruited to the Ccr4-Not complex.

RESULTS AND DISCUSSION

Overall Structure of Saccharomyces cerevisiae Not4N

Bound to Ubc4
The N-terminal RING domain of Not4 (Not4N, residues 30–83 in

S. cerevisiae) has been shown to interact with Ubc4 (Figure 1A)

(Albert et al., 2002; Mulder et al., 2007a). To obtain crystals of

the complex, we used a strategy that had been reported for

another E3-E2 complex (Hodson et al., 2014) and connected

the two proteins covalently via a 10-residue linker. The structure

of the Not4N-Ubc4 fusion protein was determined by a combi-

nation of zinc-based single-wavelength anomalous dispersion

(SAD) and molecular replacement, and was refined to 2.8-Å

resolution with Rfree of 27.1%,Rfactor of 22.0%, and good stereo-

chemistry (Table 1). The final model of Not4N-Ubc4 has well-

defined electron density for most of the polypeptide, except for

the connecting linker (Figure 1B).

The structure of yeast Not4N bound to Ubc4 is very similar to

that of the human CNOT4 ortholog in isolation (Hanzawa et al.,

2001). The RING domain of Not4 contains two a-helices (the

short a1 helix and the long a2 helix) and two zinc ions (Figure 1B).

The zinc ions are coordinated in cross bracing fashion by

cysteine residues that protrude from helix a2 and from the three

loops regions L1, L2, and L3. The structure of yeast Ubc4 bound

to Not4N is very similar to a previously determined structure of

Ubc4 in isolation (Cook et al., 1993). Briefly, Ubc4 is centered

at a four-stranded antiparallel b-sheet flanked by an N-terminal

a-helix (a1) and by three C-terminal a-helices (a2, a3, a4) (Fig-

ure 1B). When compared with the previously proposed model

of the human CNOT4-UbcH5B complex (Dominguez et al.,

2004), the experimentally determined structure of yeast Not4N-

Ubc4 shows localized differences (Figure S1A).

Specific Interaction Network between the Not4N RING
E3 and the Ubc4 E2
In the crystal structure, the Not4 helix a2 and the zinc-binding

loops L1, L2, and L3 interact with two loops of Ubc4 that precede

and follow the fourth strand of the b-sheet (L4 and L5) (Figure 1B).

The central hotspot of the interaction is formed by Phe63 of

Ubc4, which wedges into a hydrophobic pocket formed by
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Leu35, Ile56, Cys60, Asn63, Leu70, and Pro75 of Not4 and by

Pro62 and Pro96 of Ubc4 (Figure 1C). In addition, Ile37 of Not4

is involved in hydrophobic interactions with the aliphatic portion

of the side chain of Lys5 and Lys9 in the helix a1 of Ubc4. This

hydrophobic hotspot is surrounded by polar and electrostatic

contacts: a hydrogen-bond interaction involving Not4 Arg78

and Ubc4 Gln93 and two salt bridge interactions between Not4

Glu38 and Ubc4 Lys5 and between Not4 Glu69 and Ubc4

Lys64 (Figure 1C). In addition, Ubc4 Lys64 is engaged in an

intra-molecular salt bridge with Ubc4 Asp60. The Glu69-Lys64-

Asp60 network effectively pulls the L3 loop of Not4 toward

Ubc4, closing the hydrophobic core. The interaction interface

is formed by evolutionary conserved residues (Figures 1D and

1E) and is consistent with the effects of mutations previously

reported (Mulder et al., 2007a).

To understand the specificity of yeast Not4 toward Ubc4/5

enzymes, we structurally aligned the known yeast E2 proteins

on Ubc4 and analyzed if residues at the Not4-binding interface

are conserved (Figure S1B). The Ubc2 and Ubc9 E2 proteins

lack a hydrophobic residue at the corresponding position of

Ubc4 Phe63. Ubc3, Ubc7, Ubc10, Ubc12, and Ubc13 lack a

positively charged residue at the corresponding position of

Ubc4 Lys64. Ubc1, Ubc6, Ubc8, and Ubc11 lack the equivalent

of Ubc4 Gln93. These subtle differences appear to weaken

the interaction network observed in the Not4N-Ubc4 structure,

driving the specificity of Not4N toward Ubc4/5 (Albert et al.,

2002; Mulder et al., 2007a).

Overall Structure of Not4C Bound to Not1C

The C-terminal domain of S. cerevisiae Not4 (specifically resi-

dues 430–480) has been shown to interact with the C-terminal

domain of Not1 by yeast two-hybrid and co-immunoprecipita-

tion (co-IP) studies (Albert et al., 2002; Panasenko and Collart,

2011). To ensure the identification of the correct domain bound-

aries that would include all the determinants of the interaction,

we used secondary structure predictions to engineer larger re-

gions of the interacting proteins than those mapped from the

co-IP experiment. We purified a complex encompassing Not1

residues 1348–2093 and Not4 residues 418–587 (Not4 D417).

Limited proteolysis of this complex and subsequent gel filtration

resulted in stable fragments that were characterized by N-termi-

nal sequencing and mass spectrometry analysis as encompass-

ing residues 418–477 of Not4 (Not4C) and residues 1541–2093 of

Not1 (the C-terminal domain of Not1, or Not1C) (Figures 2A and

S2). Consistent with the proteolysis results, GST-tagged Not4C
was able to precipitate Not1C in pull-down assays (Figure 2B,

lane 3). We purified the Not1C-Not4C minimal complex and ob-

tained crystals diffracting to 3.6-Å resolution containing six

copies of the complex in the asymmetric unit. We determined

the structure by molecular replacement, using the previously

determined structure of Not1C as the search model (Bhaskar

et al., 2013). The model was built and refined to Rfree of 31.9%,

Rfactor of 26.6%, and good stereochemistry (Table 1). The six in-

dependent copies of the complex in the crystals are essentially

identical and include residues 1568–2078 of Not1 (with the major

exception of two loops between 1791–1800 and 2065–2071) and

residues 420–469 of Not4 (Figure 2C).

The HEAT-repeat structure of Not1C in the Not4C-bound com-

plex is similar to that in the Not2-Not5C-bound complex (Bhaskar



Figure 1. Structure of the Complex between the Not4 RING E3 and the Ubc4 E2

(A) A schematic diagram of the domain architecture of S. cerevisiae Not4 and Ubc4. The colored rectangles indicate the regions present in the crystal structure.

The gray rectangle represents another folded domain, while the empty boxes represent low-complexity regions.

(B) Cartoon representation of the structure of yeast Not4N (in blue) bound to Ubc4 (in purple). The N- and C-terminal residues of the two proteins ordered in the

electron density are indicated. The secondary structure elements are labeled. The two zinc ions are shown as spheres and the cysteine residues that coordinate

them are shown in stick representation. This structure figure and all others in the article were generated using PyMOL (The PyMOL Molecular Graphics System,

Version 1.2r3pre, Schrödinger, LLC).

(C) Close-up view of the interaction interface between Not4N and Ubc4. Interacting residues are shown and labeled.

(D and E) Structure-based sequence alignment of Not4N and Ubc4 from different species, including S. cerevisiae (Sc), Mus musculus (Mm) and Homo sapiens

(Hs), highlighting the interacting residues. The secondary structure elements are shown above the sequence.

See also Figure S1.
et al., 2013). HEAT repeats consist of two antiparallel a-helices

(termed A and B) and pack side by side in a regular fashion.

The ten HEAT repeats of Not1C are organized in two units. The

first unit is made of six HEAT repeats and is arranged in a perpen-

dicular fashionwith respect to the secondunit,which iscomposed
of the four C-terminal repeats (Figure 2C). The loop connecting

HEATs7 and 8 is in anextendedconformation, likely due tocrystal

contacts. Not4C folds into an a-helix (residues 426–439) that is

flanked by extended regions lacking defined secondary structure

elements (residues 420–425 and 440–469) (Figure 2C).
Structure 23, 921–928, May 5, 2015 ª2015 The Authors 923



Table 1. Data Collection and Refinement Statistics

Not4N-Ubc4

Not1C-Not4CZinc SAD Native

Wavelength (Å) 1.2819 1 1

Resolution

range (Å)a
37.33–2.48 53.56–2.80

(2.90–2.80)

75.66–3.62

(3.75–3.62)

Space group P1 R3H P3221

Unit cell 62.45, 62.96,

65.43

107.11, 107.11,

62.20

173.66, 173.66,

262.61

a, b, g (�) 108.50,

107.40,

108.09

90, 90, 120 90, 90, 120

Total reflectionsa 95,124

(13,582)

67,241

(6,289)

352,483

(34,067)

Unique reflectionsa 52,704

(7,634)

6,541 (628) 52,676 (5,095)

Multiplicitya 1.84 (1.77) 10.30 (10.00) 6.70 (6.70)

Completeness (%)a 92.5 (83.2) 99.4 (95.2) 99.7 (98.6)

Mean I/s(I)a 14.66 (4.78) 29.35 (2.10) 11.26 (1.37)

SigAnoa 1.31 (0.95)

CC1/2
a 0.997 (0.949) 1 (0.911) 1 (0.733)

Rmerge (%)a 5.6 (97.1) 11.2 (149.8)

Rwork (%)a 22.0 (45.1) 26.6 (38.7)

Rfree (%)a 27.1 (50.8) 31.9 (42.7)

Number of non-

hydrogen atoms

1,575 24,555

Macromolecules 1,573 24,555

Ligands 2 0

Protein residues 204 3,223

RMS (bonds) 0.002 0.010

RMS (angles) 0.52 0.64

Ramachandran

favored (%)

97 94

Ramachandran

outliers (%)

0 0.064

Average B-factor 103.00 124.80

Macromolecules 103.10 124.80

Ligands 94.60

SigAno = mean anomalous difference in units of its estimated standard

deviation. (jF(+) � F(�)j/s). F(+), F(�) are structure factor estimates

obtained from the merged intensity observations in each parity class.
aStatistics for the highest-resolution shell are shown in parentheses.
Extensive Interaction Network between Yeast Not1C

and Not4C

Not4C binds on the surface of the first three HEAT repeats of

Not1C, extending about 100 Å in length and burying a surface

area of approximately 1500 Å2 (Figure 2C). The contacts be-

tween Not4C and Not1C can be described as divided into three

segments. In the first segment, the a-helix of Not4C packs

against the A helices of HEAT 2 and 3 of Not1C. This interface

is mainly dominated by hydrophobic interactions between

Leu430, Leu434, and Leu437 of Not4C and Leu1613, Val1671,

and Val1675 of Not1C (Figures 3A and S3A). In the second

segment, residues 442–452 of Not4 interact extensively with
924 Structure 23, 921–928, May 5, 2015 ª2015 The Authors
two loops of Not1C connecting HEAT 1 to 2 and HEAT 2 to 3.

The interactions are mediated by a salt bridge and few hydro-

phobic contacts (Figure 3B). In the third segment, residues

462–469 of Not4 are in extended conformation and pack

between the A and B helices of the first HEAT repeat of

Not1C. This interface involves hydrophobic contacts between

Leu463, Phe464, and Trp466 of Not4 and Val1575, Leu1582,

Ile1592, Phe1596, Leu1600, and Val1605 of Not1 (Figures 3C

and S3B).

To test the relevance of the interacting regions, we engineered

deletion mutants of Not4C and carried out pull-down assays. As

the second segment of the Not1C-Not4C interface appeared the

weakest from an analysis using the PISA server (Krissinel and

Henrick, 2007), we constructed versions of Not4C lacking either

the first hydrophobic segment (Not4C-DN) or the C-terminal hy-

drophobic segment (Not4C-DC). GST-tagged Not4C-DN precip-

itated Not1C to a similar extent as GST-Not4C (Figure 3D, lanes 2

and 3). In contrast, GST-tagged Not4C-DC failed to interact with

Not1C in the pull-down assay (Figure 3D, lane 4). Next, we intro-

duced specific mutations in the C-terminal segment of Not4C
and tested them for their ability to interact with Not1C in GST

pull-down assays. Mutations of Not4C either at Leu463 and

Phe464 (L463E F464E) or at Phe464 and Trp466 (F464E

W466E) failed to precipitate Not1C (Figure 3E, lanes 3 and 4).

Altogether, these results suggest that the C-terminal segment

of Not4C makes the most significant contribution to the Not1-

Not4 interaction while the first and second segments of Not4C
have a minor role.

Not4 Binding to Not1 Is Partially Conserved in Metazoa
To date, S. cerevisiae is the only species in which a stable as-

sociation of Not4 within the Ccr4-Not core complex has been

detected. This raises the question as to whether the interac-

tions observed in the Not1C-Not4C crystal structure are likely

to occur in other species, particularly as in metazoa the incor-

poration of Not4 in the endogenous Ccr4-Not core complex

has been barely detectable (Lau et al., 2009; Temme et al.,

2010). In the case of Not1, many Not4-binding residues are

evolutionarily conserved in higher eukaryotes (Figure S3C).

In Not4, the first hydrophobic segment of the Not1-binding

region is conserved. Human CNOT4, for example, features

Ile419, Leu423, and Gln426 at the equivalent positions of

S. cerevisiae Leu430, Leu434, and Leu437, respectively (Fig-

ure 3F). However, the third Not1-binding segment of Not4 is

not present in human CNOT4. Since the third segment is

essential for stable binding of Not4 to Not1 in yeast (Figures

3D and 3E), such differences rationalize the weaker in vivo

association in higher eukaryotes (Lau et al., 2009; Temme

et al., 2010).

Not4 Binding to Not1 Is Independent of the Not Module
Next, we compared the structure of the ubiquitylation module

with that of the Not module. We superposed the structure

of yeast Not1C-Not4C with those of yeast Not1C-Not2-Not5C
(Bhaskar et al., 2013) and human CNOT1C-CNOT2C-CNOT3C
(Boland et al., 2013). While Not4C binds the side surface of

the first HEAT-repeat unit of Not1C, yeast Not2-Not5C and hu-

man CNOT2C-CNOT3C bind the top and the bottom surfaces

(Figure 4A). Although there is a small overlap between the



Figure 2. Structure of the Complex between Not4C and Not1C
(A) A schematic diagram of the domain architecture of S. cerevisiae Not1 C-terminal region and Not4. The colored rectangles indicate the regions present in the

structure. The gray rectangles represent other folded domains, while the empty boxes represent low-complexity regions.

(B) Protein co-precipitation by GST pull-down experiments. GST-Not4C, GST-Not5C-Not2 (positive control), or GST alone (negative control) were incubated with

untagged Not1C in a buffer containing 150mMNaCl before co-precipitation with GSH-Sepharose beads, as indicated. Input (upper panel) and precipitates (lower

panel) were analyzed on Coomassie stained 4%–12% Bis-Tris gradient gel (NuPage, Invitrogen). The proteins are labeled on the right.

(C) Structure of theNot1C-Not4C complex shown in cartoon representation in two orientations. Not1C is colored in yellow andNot4C in blue. TheN- andC-terminal

residues of both proteins are marked. Disordered loops are indicated as dotted lines.

See also Figure S2.
N-terminal helix of Not4C and the N-terminal region of Not5C as

observed in the yeast Not1C-Not2-Not5C complex, the struc-

tural analysis indicates that the interactions of Not4C and

Not2-Not5C occur at largely separate surfaces of Not1C.

Indeed, pull-down assays showed that GST-tagged Not4C
could precipitate Not2-Not5C in the presence of Not1C (Fig-

ure 4B). Thus, the ubiquitylation module and the Not module

can form simultaneously on the C-terminal domain of Not1.

Finally, Not4C binds at a completely different surface compared

with the protein Nanos, which in metazoa is recognized by the

C-terminal HEAT-repeat unit of CNOT1C. Thus, the interactions

of metazoan CNOT1 with CNOT2-CNOT3, CNOT4, and Nanos

can in principle also occur simultaneously (Figure 4C). Whether

and how bringing these proteins into close proximity by their

concomitant interaction on the Not1C platform affects the regu-

lation or coordination of their functions are open questions for

future studies.
EXPERIMENTAL PROCEDURES

Protein Purification

All proteins were cloned, expressed, and purified as previously described

(Bhaskar et al., 2013) (see Supplemental Experimental Procedures).
Crystallization and Structure Determination

All crystals were obtained by vapor diffusion at room temperature. All

data were collected at the PXII and PXIII beamlines of the Swiss Light

Source, processed using XDS (Kabsch, 2010), and scaled and merged using

Aimless (Evans and Murshudov, 2013). The structures were obtained

after iterative rounds of model building using the program Coot (Emsley

et al., 2010) and/or BUCCANEER (Cowtan, 2006) and refined using PHE-

NIX.REFINE (Adams et al., 2010). The Not4N-Ubc4 complex was crystallized

at 48 mg ml�1 (see Supplemental Experimental Procedures). Synchrotron

data collected at the zinc edge (wavelength 1.28 Å) were used to solve

the structure by molecular replacement-SAD in Phaser using the Ubc4

structure as a search model for molecular replacement and anomalous

signal from the zinc atom (Cook et al., 1993; McCoy et al., 2007). The final
Structure 23, 921–928, May 5, 2015 ª2015 The Authors 925



Figure 3. Not4C Wraps around the N-termi-

nal HEAT Repeats of Not1C
(A–C) Close-up view of different segments of

Not4C that form the Not1C interacting region. The

position of each individual segment in the context

of the complex is shown on the top left. The resi-

dues involved in interactions are shown as sticks

and labeled.

(D and E) Pull-down experiments with GST-tagged

versions of Not4 and untagged Not1C, carried out

as described in Figure 2B.

(F) Structure-based sequence alignment of Not4C
from different species, as mentioned in Figure 1D.

The secondary structure elements are shown

above the sequence.

See also Figure S3.
model was refined against a 2.8-Å resolution native dataset (collected at 1 Å

wavelength).

Not1C-Not4C was crystallized at 12 mg ml�1 (see Supplemental Experi-

mental Procedures). The crystals belong to space group P3221 with six

copies in an asymmetric unit related by translational noncrystallographic

symmetry (NCS). The structure was determined by molecular replacement

using Not1C from the Not1C-Not2-Not5C structure as the search model (Bhas-

kar et al., 2013). The model was refined for individual sites and individual

B-factors along with torsion angle NCS restraints (in the initial rounds of

refinement) that allow local conformational changes between the NCS-related

copies.

Pull-down Assays

Pull-down assays of GST-tagged Not4 constructs with untagged Not1C and/or

Not2-Not5C complex were performed as described in Bhaskar et al. (2013)

(see Supplemental Experimental Procedures).
926 Structure 23, 921–928, May 5, 2015 ª2015 The Authors
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Figure 4. Not4C Binds Not1C Independently

of Not2 and Not5

(A) Superposition of the yeast Not1C-Not4C and

Not1C-Not2-Not5C structures. Not1C is in yellow,

Not2 in magenta, Not5C in green, and Not4C in

blue.

(B) Pull-down experiments with GST-tagged

Not4C with untagged Not1C and/or Not2-Not5C,

carried out as described in Figure 2B.

(C) Schematic diagram of the C-terminal domain

of Not1 with the positions of the interacting

proteins Not4, Not2-Not5 (or CNOT2-CNOT3 in

humans), and Nanos.
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SUPPLEMENTAL FIGURES AND LEGENDS 

 

 
 

Figure S1  

Detailed analysis of the Not4N-Ubc4 crystal structure (Related to Figure 1) 

(A) Not4N-Ubc4 crystal structure and CNOT4-UbcH5B model are shown in similar orientation 

in the top panels. Superposition of the same is shown in the bottom panel. The difference in 



the orientation of helix α1 of E2 and the loop regions of E3 at the interface are highlighted by 

arrows.  
(B) Structure-based sequence alignment of all the E2 enzymes in S. cerevisiae. Not4 

interacting residues of Ubc4 are indicated with blue dots. Residues providing specificity for 

this E2-E3 interaction are highlighted. The secondary structure elements are shown above 

the sequence. 

 

  



 

 
 

Figure S2 

Identification of the Not1C-Not4C minimal complex (Related to Figure 2) 

Not1 (1348-2093)-Not4 Δ417 complex is shown in lane1. Limited proteolysis of Not1 (1348-

2093)-Not4 Δ417 was carried out by incubating the complex at 0.6 mg ml-1 with elastase 

(Roche) for 60 minutes on ice at an enzyme to protein ratio of 1:10 and is shown in lane2. 

The mixture was then subjected to size-exclusion chromatography in a buffer containing 20 

mM Tris-Cl pH 7.5, 250 mM NaCl and 2 mM DTT. The peaks were analyzed on 4-12% Bis-

Tris NuPage gel with MES-SDS as the running buffer. The interacting fragments were 

identified by N-terminal sequencing and Liquid chromatography-Mass spectrometry (LC-MS) 

analysis. Not1C-Not4C complex that was used for structural studies is shown in lane4. 

  



 
 

Figure S3 

Detailed analysis of the Not1C-Not4C crystal structure (Related to Figure 3) 

(A-B) 2FO-FC electron density of Not4C at the hydrophobic interaction segments contoured at 

0.9σ (corresponding to Figure 3A and 3C).  

(C) Structure-based sequence alignment of Not1C from different species, including 

S. cerevisiae (Sc), M. musculus (Mm) and H. sapiens (Hs), highlighting the interacting 

residues with blue dots. The secondary structure elements are shown above the sequence.  



SUPPLEMENTAL EXPERIMENTAL PROCEDURE 

Protein purification 

All proteins were cloned and expressed in E. coli BL21 pLysS cells (Stratagene) in TB 

medium with 0.5 mM IPTG induction overnight at 18 ˚C. Not1 constructs were expressed as 

previously described in (Bhaskar et al., 2013). Not4N and full-length Ubc4 were expressed as 

a fusion protein (connected by the linker TGSTGSTETG) with a N-terminal His-SUMO tag 

cleavable by Senp2 protease. The Not4C, Not4C–ΔN and Not4C–ΔC (Not4 residues 418-477, 

442-477 and 418-462, respectively) constructs were expressed as N-terminal His-GST fusion 

proteins followed by a 3C cleavage site. The proteins were purified using similar protocols as 

previously described (Bhaskar et al., 2013). Briefly, a first step of Nickel-based affinity 

chromatography was followed by tag cleavage and size-exclusion chromatography. For pull-

down experiments, the GST-tagged proteins were purified with the same protocol but omitting 

the tag cleavage step. 

 

Crystallization 

The Not4N-Ubc4 complex was crystallized at 48 mg ml-1 by vapour diffusion using 10% (w/v) 

PEG 8000, 0.02 M L-Na-Glutamate, 0.02 M Alanine (racemic), 0.02 M Glycine, 0.02 M Lysine 

HCl (racemic), 0.02 M Serine (racemic), 0.1 M Bicine/Tris-Cl pH 8.5 and 20% (w/v) ethylene 

glycol as crystallization buffer at room temperature. 

Not1C-Not4C complex was crystallized at 12 mg ml-1 by vapour diffusion using 10% (w/v) PEG 

4000, 0.02 M 1,6-Hexanediol, 0.02 M 1-Butanol, 0.02 M 1,2-Propanediol (racemic), 0.02 M 2-

Propanol, 0.02 M 1,4-Butanediol, 0.02 M 1,3-Propanediol, 0.1 M MOPS/Hepes-Na 7.5 and 

20% Glycerol as crystallization buffer at room temperature. 

 

Pull-down assays 

100 pmol of GST-tagged protein was incubated with 200 pmol of the untagged prey protein 

for 1hr at 4 °C in the binding buffer (BB150 – 20 mM Tris-Cl pH 7.5, 150 mM NaCl, 2 mM 

DTT, 12.5% (v/v) glycerol and 0.1% (w/v) NP40). 400 µL of BB150 buffer and 20 µL of 50% 

GSH-Sepharose resin were added to the protein mix and incubated for 1 hr with gentle 

rocking at 4 °C. The resin was washed 3 times with BB150 and the proteins were eluted with 

15 µL of BB150 containing 20 mM Glutathione. Input and precipitate were mixed with 3X SDS 

loading dye and resolved on 4-12% Bis-Tris NuPage gel (Invitrogen) using MES-SDS as 

running buffer, and visualized by Coomassie blue staining. 
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