## Supplementary Information S1 Pdf File: Structure analysis from 103 species diagnostic SNP markers

## Table A: Estimation of the best number of subpopulation in structure analysis based on 103 SNP markers.

Population structure was inferred using the Structure program version 2.3.4 (Pritchard Lab, 2014). No a priori population structure was defined. The linkage model option was used, with allele frequencies correlated and computed probability of the data for K estimating. Analyses were made with K value (number of subpopulations) varying from 1–10. The statistics used to select the correct K value were as in Evanno *et al.* (2005): the mean likelihood, L(K); the mean difference between successive likelihood values of K, L'(K); the absolute value of this difference, L''(K) ; and  $\Delta K$ , which is the mean of the absolute values of L''(K) divided by the standard deviation of L(K). The likelihood distribution L(K) and  $\Delta K$  were the main values used to choose the optimal K value of the population. Analysis of delta K indicated that optimal results were obtained with K = 4.

|      | MEDIA    | DESVEST | L'(K)   | IL''(K)I | ΔΚ         |
|------|----------|---------|---------|----------|------------|
| K=1  | -6889.08 | 0.14757 |         |          |            |
| K=2  | -4895.27 | 6.56236 | 1993.81 | 819.56   | 124.888017 |
| K=3  | -3721.02 | 38.9405 | 1174.25 | 509.27   | 13.0781418 |
| K=4  | -3056.04 | 1.19555 | 664.98  | 626.73   | 524.220165 |
| K=5  | -3017.79 | 2.26296 | 38.25   | 10.42    | 4.60458327 |
| K=6  | -2989.96 | 18.6591 | 27.83   | 14.29    | 0.76584788 |
| K=7  | -2976.42 | 17.5488 | 13.54   | 14.03    | 0.79948594 |
| K=8  | -2948.85 | 18.2035 | 27.57   | 13.84    | 0.76029357 |
| K=9  | -2935.12 | 20.7344 | 13.73   | 2.25     | 0.10851511 |
| K=10 | -2923.64 | 13.4779 | 11.48   | 11.48    | 0.85176659 |



## Table B: Means and confidence interval of the contribution of the four basic taxa estimated from 103 SNP markers (from 10 permuted and aligned independent Structure software run cluster outputs)

| Genotype                   | Missing<br>Data (%) | C. micrantha      | Citron            | Mandarin          | Pummelo           |
|----------------------------|---------------------|-------------------|-------------------|-------------------|-------------------|
| Fuzhu mandarin             | 0                   | $0.003 \pm 0.000$ | 0.002 ± 0.000     | 0.963 ± 0.000     | 0.030 ± 0.000     |
| Beauty mandarin            | 0                   | $0.002 \pm 0.000$ | $0.003 \pm 0.000$ | 0.991 ± 0.000     | $0.003 \pm 0.000$ |
| Shekwasha mandarin         | 0                   | $0.006 \pm 0.000$ | 0.051 ± 0.000     | 0.931 ± 0.000     | $0.010 \pm 0.000$ |
| Cleopatra mandarin         | 0                   | $0.003 \pm 0.000$ | $0.003 \pm 0.000$ | 0.992 ± 0.000     | $0.002 \pm 0.000$ |
| Dancy mandarin             | 0                   | $0.003 \pm 0.000$ | 0.002 ± 0.000     | 0.963 ± 0.000     | $0.030 \pm 0.000$ |
| King mandarin              | 0                   | 0.012 ± 0.001     | $0.004 \pm 0.000$ | 0.750 ± 0.002     | 0.234 ± 0.002     |
| Nanfengmijuu mandarin      | 0                   | $0.004 \pm 0.000$ | $0.004 \pm 0.000$ | 0.984 ± 0.000     | 0.006 ± 5.666     |
| Ponkan mandarin            | 0                   | $0.003 \pm 0.000$ | $0.002 \pm 0.000$ | 0.958 ± 0.000     | 0.035 ± 0.000     |
| Satsuma mandarin           | 0                   | $0.003 \pm 0.000$ | $0.003 \pm 0.000$ | 0.722 ± 0.002     | 0.269 ± 0.002     |
| Sunki mandarin             | 0                   | $0.003 \pm 0.000$ | $0.002 \pm 0.000$ | 0.991 ± 0.000     | $0.003 \pm 0.000$ |
| Willoleaf mandarin         | 1                   | $0.003 \pm 0.000$ | $0.002 \pm 0.000$ | 0.953 ± 0.000     | $0.040 \pm 0.000$ |
| Citrus daoxianensis        | 3                   | $0.002 \pm 0.000$ | $0.002 \pm 0.000$ | 0.991 ± 0.000     | $0.002 \pm 0.000$ |
| Carvalhal mandarin         | 0                   | $0.003 \pm 0.000$ | 0.003 ± 0.000     | 0.815 ± 0.001     | 0.178 ± 0.001     |
| Ladu mandarin              | 0                   | $0.002 \pm 0.000$ | $0.002 \pm 0.000$ | 0.991 ± 0.000     | $0.003 \pm 0.000$ |
| Se Hui Gan mandarin        | 0                   | $0.002 \pm 0.000$ | $0.003 \pm 0.000$ | 0.991 ± 0.000     | $0.003 \pm 0.000$ |
| Szibat mandarin            | 0                   | $0.003 \pm 0.000$ | $0.002 \pm 0.000$ | 0.991 ± 0.000     | $0.003 \pm 0.000$ |
| San Hu Hong Chu mandarin   | 0                   | $0.003 \pm 0.000$ | $0.002 \pm 0.000$ | 0.991 ± 0.000     | $0.003 \pm 0.000$ |
| Chandler pummelo           | 0                   | $0.003 \pm 0.000$ | $0.002 \pm 0.000$ | $0.003 \pm 0.000$ | 0.991 ± 0.000     |
| Da Xanh pummelo            | 0                   | $0.003 \pm 0.000$ | $0.004 \pm 0.000$ | $0.008 \pm 0.000$ | 0.983 ± 0.000     |
| Deep Red pummelo           | 0                   | $0.003 \pm 0.000$ | $0.003 \pm 0.000$ | $0.003 \pm 0.000$ | 0.991 ± 0.000     |
| Kao Pan pummelo            | 30                  | $0.003 \pm 0.000$ | $0.003 \pm 0.000$ | $0.003 \pm 0.000$ | $0.989 \pm 0.000$ |
| Nam Roi pummelo            | 4                   | $0.003 \pm 0.000$ | $0.003 \pm 0.000$ | $0.004 \pm 0.000$ | $0.989 \pm 0.000$ |
| Pink pummelo               | 3                   | $0.003 \pm 0.000$ | $0.003 \pm 0.000$ | $0.003 \pm 0.000$ | 0.991 ± 0.000     |
| Tahiti pummelo             | 1                   | $0.003 \pm 0.000$ | $0.003 \pm 0.000$ | $0.003 \pm 0.000$ | 0.991 ± 0.000     |
| Timorese pummelo           | 0                   | $0.003 \pm 0.000$ | $0.003 \pm 0.000$ | $0.003 \pm 0.000$ | 0.991 ± 0.000     |
| Corsican citron            | 0                   | $0.002 \pm 0.000$ | 0.991 ± 0.000     | $0.002 \pm 0.000$ | $0.003 \pm 0.000$ |
| Buddha's hand citron       | 0                   | $0.003 \pm 0.000$ | 0.991 ± 0.000     | $0.002 \pm 0.000$ | $0.003 \pm 0.000$ |
| Etrog citron               | 0                   | $0.003 \pm 0.000$ | 0.991 ± 0.000     | $0.002 \pm 0.000$ | $0.003 \pm 0.000$ |
| Humpang citron             | 0                   | $0.003 \pm 0.000$ | $0.990 \pm 0.000$ | $0.003 \pm 0.000$ | $0.003 \pm 0.000$ |
| Poncire citron             | 2                   | $0.003 \pm 0.000$ | 0.991 ± 0.000     | $0.002 \pm 0.000$ | $0.003 \pm 0.000$ |
| Mac Veu de montagne citron | 2                   | $0.003 \pm 0.000$ | 0.991 ± 0.000     | $0.002 \pm 0.000$ | $0.003 \pm 0.000$ |
| Citrus micrantha           | 0                   | $0.991 \pm 0.000$ | $0.003 \pm 0.000$ | $0.002 \pm 0.000$ | $0.003 \pm 0.000$ |
| Citrus micrantha           | 0                   | $0.991 \pm 0.000$ | $0.003 \pm 0.000$ | $0.002 \pm 0.000$ | $0.003 \pm 0.000$ |
| Combava                    | 0                   | $0.722 \pm 0.003$ | $0.003 \pm 0.000$ | $0.032 \pm 0.003$ | 0.241 ± 0.002     |
| Alemow                     | 0                   | $0.486 \pm 0.002$ | $0.505 \pm 0.002$ | $0.003 \pm 0.000$ | $0.004 \pm 0.000$ |
| Excelsa lime               | 0                   | $0.440 \pm 0.003$ | $0.549 \pm 0.003$ | $0.004 \pm 0.000$ | $0.006 \pm 0.000$ |
| Mexican lime               | 0                   | $0.503 \pm 0.002$ | $0.490 \pm 0.002$ | $0.003 \pm 0.000$ | $0.003 \pm 0.000$ |
| Sweet Palestinian lime     | 0                   | $0.003 \pm 0.000$ | $0.468 \pm 0.003$ | $0.319 \pm 0.004$ | $0.208 \pm 0.005$ |
| Eureka lemon               | 0                   | 0.013 ± 0.001     | $0.502 \pm 0.006$ | $0.334 \pm 0.005$ | $0.149 \pm 0.005$ |
| Lisbon lemon               | 4                   | $0.014 \pm 0.001$ | $0.520 \pm 0.007$ | $0.325 \pm 0.007$ | $0.140 \pm 0.003$ |
| Marrakech limonette        | 0                   | $0.012 \pm 0.001$ | $0.496 \pm 0.005$ | $0.337 \pm 0.004$ | $0.152 \pm 0.004$ |
| Meyer lemon                | 0                   | $0.003 \pm 0.000$ | $0.506 \pm 0.006$ | $0.326 \pm 0.006$ | $0.163 \pm 0.003$ |
| Rangpur lime               | 0                   | $0.003 \pm 0.000$ | $0.495 \pm 0.002$ | $0.496 \pm 0.002$ | $0.004 \pm 0.000$ |
| Volckamer lemon            | 0                   | $0.003 \pm 0.000$ | $0.475 \pm 0.002$ | 0.516 ± 0.002     | $0.005 \pm 0.000$ |
| Tarocco sweet orange       | 0                   | $0.003 \pm 0.000$ | $0.003 \pm 0.000$ | $0.600 \pm 0.003$ | $0.393 \pm 0.003$ |
| Valencia late sweet orange | 0                   | $0.003 \pm 0.000$ | $0.003 \pm 0.000$ | $0.602 \pm 0.002$ | $0.390 \pm 0.002$ |

Curk F, Ancillo G, Ollitrault F, Perrier X, Jacquemoud-Collet JP, Garcia-Lor A, Navarro L and Ollitrault P. Nuclear species-diagnostic SNP markers mined from 454 amplicon sequencing reveal admixture genomic structure of modern Citrus varieties. PLOS ONE 2015

| Washington navel sweet orange | 0  | $0.003 \pm 0.000$ | $0.003 \pm 0.000$ | $0.602 \pm 0.002$ | 0.391 ± 0.001     |
|-------------------------------|----|-------------------|-------------------|-------------------|-------------------|
| Bouquet de fleurs sour orange | 1  | $0.003 \pm 0.000$ | $0.003 \pm 0.000$ | $0.485 \pm 0.002$ | $0.507 \pm 0.002$ |
| Citrus myrtifolia             | 2  | $0.003 \pm 0.000$ | $0.003 \pm 0.000$ | 0.483 ± 0.001     | 0.510 ± 0.001     |
| Sevillan sour orange          | 0  | $0.003 \pm 0.000$ | $0.003 \pm 0.000$ | $0.483 \pm 0.003$ | $0.509 \pm 0.003$ |
| Duncan grapefruit             | 0  | $0.003 \pm 0.000$ | $0.003 \pm 0.000$ | 0.378 ± 0.002     | $0.615 \pm 0.002$ |
| Marsh grapefruit              | 1  | $0.003 \pm 0.000$ | $0.003 \pm 0.000$ | $0.368 \pm 0.002$ | $0.624 \pm 0.002$ |
| Star Ruby grapefruit          | 1  | $0.003 \pm 0.000$ | $0.003 \pm 0.000$ | 0.364 ± 0.001     | $0.629 \pm 0.001$ |
| Fallglo mandarin              | 0  | $0.003 \pm 0.000$ | $0.002 \pm 0.000$ | 0.713 ± 0.001     | 0.280 ± 0.001     |
| Fortune mandarin              | 0  | $0.003 \pm 0.000$ | $0.004 \pm 0.000$ | $0.740 \pm 0.001$ | 0.251 ± 0.001     |
| Fremont mandarin              | 0  | $0.003 \pm 0.000$ | $0.002 \pm 0.000$ | 0.746 ± 0.001     | 0.246 ± 0.001     |
| Wilking mandarin              | 0  | $0.004 \pm 0.000$ | $0.003 \pm 0.000$ | $0.893 \pm 0.000$ | $0.097 \pm 0.000$ |
| Clemenules clementine         | 0  | $0.003 \pm 0.000$ | $0.002 \pm 0.000$ | $0.758 \pm 0.003$ | $0.235 \pm 0.003$ |
| Fina clementine               | 0  | $0.003 \pm 0.000$ | $0.003 \pm 0.000$ | $0.759 \pm 0.001$ | 0.233 ± 0.001     |
| Afourer tangor                | 0  | $0.003 \pm 0.000$ | $0.002 \pm 0.000$ | $0.869 \pm 0.001$ | $0.124 \pm 0.001$ |
| Ellendale tangor              | 0  | $0.007 \pm 0.000$ | $0.003 \pm 0.000$ | $0.890 \pm 0.001$ | $0.098 \pm 0.001$ |
| Kiyomi tangor                 | 1  | $0.003 \pm 0.000$ | $0.003 \pm 0.000$ | $0.631 \pm 0.002$ | $0.362 \pm 0.002$ |
| Murcott tangor                | 0  | $0.003 \pm 0.000$ | $0.002 \pm 0.000$ | 0.844 ± 0.001     | $0.149 \pm 0.001$ |
| Ortanique tangor              | 0  | $0.003 \pm 0.000$ | $0.003 \pm 0.000$ | 0.713 ± 0.001     | $0.28 \pm 0.001$  |
| Temple Tangor                 | 0  | $0.003 \pm 0.000$ | $0.003 \pm 0.000$ | $0.766 \pm 0.002$ | $0.227 \pm 0.002$ |
| Minneola tangelo              | 0  | $0.003 \pm 0.000$ | $0.003 \pm 0.000$ | $0.710 \pm 0.002$ | $0.282 \pm 0.002$ |
| Nova tangelo                  | 0  | $0.003 \pm 0.000$ | $0.002 \pm 0.000$ | $0.688 \pm 0.002$ | $0.305 \pm 0.002$ |
| Orlando tangelo               | 0  | $0.003 \pm 0.000$ | $0.003 \pm 0.000$ | 0.714 ± 0.001     | $0.279 \pm 0.002$ |
| Triumph orangelo              | 30 | $0.003 \pm 0.000$ | $0.003 \pm 0.000$ | $0.322 \pm 0.003$ | $0.670 \pm 0.003$ |
| Citrus amblycarpa             | 1  | $0.478 \pm 0.002$ | $0.005 \pm 0.000$ | 0.511 ± 0.003     | $0.005 \pm 0.000$ |



Figure A: Structure analysis of 70 Citrus cultivars from genotyping data with 103 SNP markers. Red, blue, yellow, and green correspond to the inferred contributions of C. reticulata, C. maxima, C. medica, and C. micrantha, respectively