γ , δ , ϵ -C(sp³)–H Functionalization through A Directed Radical H-Abstraction

Tao Liu, Tian-Sheng Mei and Jin-Quan Yu*

Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037

Table of Contents

1 General Information	2
2 Experimental Section	3
2.1 Synthesis of Starting Materials	3
2.2 Optimization of Lactamization Reaction	
2.3 General Procedure for Directed Radical Reaction	14
2.4 Procedure for Ring Opening of Lactams	23
3 Reference	
4 NMR Spectra of New Compounds	27
5 X-Ray Crystallographic Analysis	
5.1 X-Ray Crystallographic Analysis of Iodo Lactam 3a	55
5.2 X-Ray Crystallographic Analysis of Vinyl Lactam 7a	61

1 General Information

Octafluorotoluene and TMSN₃ were obtained from Oakwood Chemical. Other solvents and chemicals were from Sigma-Aldrich, Acros and Alfa Aesar and used directly without further purification. Analytical thin layer chromatography was performed on 0.25 mm silica gel 60-F254. Visualization was carried out with UV light and Vogel's permanganate. Preparative TLC was performed on 1.0 mm silica gel (Analtech). Columns for flash chromatography (FC) contained silica gel (32–63μ, Dynamic Adsorbents, Inc.). ¹H NMR spectra were recorded on Bruker AV-400 instrument (400 MHz) or Varian Inova 400 (400 MHz), Bruker DRX-600 instrument (600 MHz). Chemical shifts were quoted in parts per million (ppm) referenced to 0.0 ppm for tetramethylsilane. ¹³C NMR spectra were recorded on Bruker DRX-600 instrument (150 MHz), and were fully decoupled by broad band proton decoupling. Chemical shifts were reported in ppm referenced to the center line of a triplet at 77.0 ppm of chloroform-*d*. In the ¹³C NMR analysis, peaks that correspond to those of the polyfluoroarylamide auxiliary appeared as nearly invisible, complex sets of multiplets; they are omitted in the following spectroscopic analysis. High-resolution mass spectra (HRMS) were recorded on an Agilent Mass spectrometer using ESI-TOF (electrospray ionization-time of flight).

2 Experimental Section

2.1 Synthesis of Starting Materials

General Procedure for the Preparation of Amide Substrates from 4-Trifluoromethyl benzenesulfonamide:

Amide substrates are prepared from benzenesulfonamides according to the literature¹ with minor modifications. 4-Trifluoromethyl benzenesulfonamide (5 mmol), triethylamine (12.5 mmol) and DMAP (0.025 mmol) were added into isopropyl acetate (10 mL) under nitrogen at room temperature. The mixture was heated to 55 °C. A toluene (3 mL) solution of acid chloride (5.5 mmol), prepared from corresponding carboxylic acid and oxalyl chloride, was added slowly over 1h. After the addition was completed, the mixture was maintained at 55 °C for one hour. After cooling to room temperature, the reaction was quenched with water (1.1 mL) and treated with 0.7 M HCl (16.90 mL). Aqueous phase was extracted with ethyl acetate. Combined organic phases were dried with anhydrous Na₂SO₄, concentrated under reduced pressure, and purified by flash column chromatography (silica gel, hexane/EtOAc 10/1 to 5/1).

General Procedure for the Preparation of Amide Substrates from 2,3,5,6-Tetrafluoro-4-(trifluoromethyl)aniline:

An acid chloride (10 mmol), prepared from the corresponding carboxylic acid and oxalyl chloride, was added to a solution of 2,3,5,6-tetrafluoro-4-(trifluoromethlyl)aniline (10 mmol) in toluene (10 mL). The reaction mixture was stirred for 12 h under reflux. After cooling to room temperature, the product mixture was concentrated in vacuum and was recrystallized from ethyl acetate/hexane to give desired amide.

4-Methyl-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)pentanamide (1a)

¹H NMR (400 MHz, CDCl₃) δ 7.01 (s, 1H), 2.30–2.24 (m, 2H), 1.56–1.40 (m, 3H), 0.89 (d, *J* = 6.4 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 170.15, 34.00, 32.43, 26.99, 21.63. HRMS (ESI-TOF) Calcd for C₁₃H₁₁F₇NO [M-H]⁻: 330.0734; found: 330.0738.

N-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)pentanamide (1b)

¹H NMR (400 MHz, CDCl₃) δ 7.01 (s, 1H), 2.30–2.24 (m, 2H), 1.68–1.30 (m, 4H), 0.93 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 169.93, 33.91, 30.27, 21.90, 19.40. HRMS (ESI-TOF) Calcd for C₁₂H₉F₇NO [M-H]⁻: 316.0578; found: 316.0581.

4-Methyl-*N*-((4-(trifluoromethyl)phenyl)sulfonyl)pentanamide (1c)

¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 8.21 (d, *J* = 8.0 Hz, 2H), 7.87 (d, *J* = 8.0 Hz, 2H), 2.36–2.25 (m, 2H), 1.60–1.43 (m, 3H), 0.87 (d, *J* = 6.4 Hz, 6H).¹³C NMR (150 MHz, CDCl₃) δ 170.22, 141.43, 135.12 (q, *J* = 33.0 Hz), 128.60, 125.68 (q, *J* = 3.6 Hz), 122.60 (q, *J* = 279.0 Hz), 34.00, 32.43, 26.99, 21.63. HRMS (ESI-TOF) Calcd for C₁₃H₁₅F₃NO₃S [M-H]⁻: 322.0730; found: 322.0726.

4-Methyl-*N*-((4-(trifluoromethyl)phenyl)sulfonyl)hexanamide (1d)

¹H NMR (400 MHz, CDCl₃) δ 8.39 (s, 1H), 8.23 (d, *J* = 7.6 Hz, 2H), 7.84 (d, *J* = 7.6, 2H), 2.36–2.20 (m, 2H), 1.42–1.38 (m, 1H), 1.32–1.29 (m, 3H), 1.17–1.08 (m, 1H), 0.86–0.82 (m, 6H).¹³C NMR (150 MHz, CDCl₃) δ 170.90, 141.90, 135.81 (q, *J* = 33.3 Hz), 129.11, 126.28 (q, *J* = 3.6 Hz), 122.90 (q, *J* = 271.0 Hz), 33.80, 33.30, 30.24, 28.55, 18.24, 10.72. HRMS (ESI-TOF) Calcd for C₁₄H₁₇F₃NO₃S [M-H]⁻: 336.0887; found: 336.0871.

4-Methyl-*N*-((4-(trifluoromethyl)phenyl)sulfonyl)octanamide (1e)

¹H NMR (400 MHz, CDCl₃) δ 8.42 (s, 1H), 8.24 (d, *J* = 8.2 Hz, 2H), 7.5 (d, *J* = 8.2 Hz, 2H), 2.36–2.20 (m, 2H), 1.64–1.59 (m, 1H), 1.45–1.32 (m, 2H), 1.30–1.17 (m, 5H), 1.13–1.07 (m, 1H), 0.88 (t, *J* = 7.1 Hz, 3H), 0.83 (d, *J* = 6.4 Hz, 3H).¹³C NMR (150 MHz, CDCl₃) δ 170.34, 141.43, 134.90 (q, *J* = 33.6 Hz), 128.26, 125.48 (q, *J* = 3.6 Hz), 122.19 (q, *J* = 274.0 Hz), 35.73, 33.76, 31.68, 30.64, 28.57, 22.39, 18.73, 13.58. HRMS (ESI-TOF) Calcd for C₁₆H₂₁F₃NO₃S [M-H]⁻: 364.1200; found: 364.1196.

4-Ethyl-N-((4-(trifluoromethyl)phenyl)sulfonyl)hexanamide (1f)

¹H NMR (400 MHz, CDCl₃) δ 8.39 (s, 1H), 8.24 (d, *J* = 8.3 Hz, 2H), 7.85 (d, *J* = 8.3 Hz, 2H), 2.29–2.22 (m, 2H), 1.58–1.50 (m, 2H), 1.28–1.19 (m, 4H), 1.16–1.10 (m, 1H), 0.82 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 170.35, 141.43, 135.02 (q, *J* = 33.0 Hz), 128.30, 125.48 (q, *J* = 3.7 Hz), 122.20 (q, *J* = 33.0 Hz), 128.30, 125.48 (q, *J* = 3.7 Hz), 122.20 (q, *J* = 33.0 Hz), 128.30, 125.48 (q, *J* = 3.7 Hz), 122.20 (q, *J* = 33.0 Hz), 128.30, 125.48 (q, *J* = 3.7 Hz), 122.20 (q, *J* = 33.0 Hz), 128.30 (q, *J* = 3.7 Hz), 122.20 (q, *J* = 33.0 Hz), 128.30 (q, *J* = 3.7 Hz), 122.30 (q, *J* = 3.5 Hz), 128.30 (q, *J* = 3.7 Hz), 128.30 (q, J) = 3.7 Hz), 128.30 (q,

= 278.0 Hz), 39.19, 33.53, 26.63, 24.51, 10.19. HRMS (ESI-TOF) Calcd for $C_{15}H_{19}F_3NO_3S$ [M-H]⁻: 350.1043; found: 350.1038.

3-Cyclopentyl-N-((4-(trifluoromethyl)phenyl)sulfonyl)propanamide (1g)

¹H NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H), 8.24 (d, *J* = 8.1 Hz, 2H), 7.99 (d, *J* = 8.1 Hz, 2H), 2.39–2.20 (m, 2H), 1.76–1.66 (m, 4H), 1.63–1.56 (m, 4H), 1.53–1.46 (m, 2H), 1.08–0.98 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 170.36, 141.49, 135.22 (q, *J* = 33.5 Hz), 128.58, 125.60 (q, *J* = 3.6 Hz), 122.32 (q, *J* = 280.0 Hz), 38.86, 35.30, 31.85, 29.90, 24.54. HRMS (ESI-TOF) Calcd for C₁₅H₁₇F₃NO₃S [M-H]⁻: 348.0887; found: 348.0885.

3-Cyclohexyl-*N***-((4-(trifluoromethyl)phenyl)sulfonyl)propanamide (1h)**

¹H NMR (400 MHz, CDCl₃) δ 8.41 (s, 1H), 8.23 (d, *J* = 7.9 Hz, 2H), 7.97 (d, *J* = 7.9 Hz, 2H), 2.34–2.21 (m, 2H), 1.71–1.59 (m, 6H), 1.51–1.45 (m, 2H), 1.19–1.11 (m, 3H), 0.84–0.82 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 170.49, 141.87, 135.29 (q, *J* = 33.2 Hz), 128.56, 125.78 (q, *J* = 3.6 Hz), 122.60 (q, *J* = 274.80 Hz), 36.46, 33.55, 32.38, 31.07, 25.87, 25.59. HRMS (ESI-TOF) Calcd for C₁₆H₁₉F₃NO₃S [M-H]⁻: 362.1043; found: 362.1041.

3-Methyl-N-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)cyclohexane-1-carboxamide (1i)

¹H NMR (400 MHz, CDCl₃) δ 6.97 (s, 1H), 2.45 (tt, *J* = 12.1, 3.5 Hz, 1H), 2.07–1.95 (m, 2H), 1.93–1.91 (m, 1H), 1.79–1.72 (m, 1H), 1.68–1.60 (m, 1H), 1.52–1.47 (m, 1H), 1.38–1.32 (m, 1H), 1.28–1.17 (m,

1H), 0.99 (d, J = 6.6 Hz, 3H), 0.99–0.94 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 180.19, 45.11, 37.33, 33.72, 31.71, 28.66, 24.99, 22.09. HRMS (ESI-TOF) Calcd for C₁₅H₁₃F₇NO [M-H]⁻: 356.0891; found: 356.0886.

3,4-Dimethyl-N-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)pentanamide (1j)

¹H NMR (400 MHz, CDCl₃) δ 7.01 (s, 1H), 2.56 (dd, *J* = 14.3, 5.1 Hz, 1H), 2.23 (dd, *J* = 14.3, 9.5 Hz, 1H), 2.04–1.96 (m, 1H), 1.72–1.67 (m, 1H), 0.99 (d, *J* = 6.8 Hz, 3H), 0.95 (d, *J* = 6.8 Hz, 3H), 0.92 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 170.15, 40.85, 36.01, 31.66, 19.38, 17.83, 15.15. HRMS (ESI-TOF) Calcd for C₁₄H₁₃F₇NO [M-H]⁻: 344.0891; found: 344.0892.

(S)-4-Methyl-1-oxo-1-((2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)amino)pentan-2-yl acetate (1k)

¹H NMR (400 MHz, CDCl₃) δ 7.67 (s, 1H), 5.41 (dd, J = 8.8, 4.7 Hz, 1H), 2.24 (s, 3H), 1.92–1.88 (m, 1H), 1.86–1.76 (m, 2H), 1.02 (d, J = 6.4 Hz, 3H), 1.00 (d, J = 6.3 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 169.53, 167.60, 72.35, 39.93, 24.03, 22.46, 21.45, 20.39. HRMS (ESI-TOF) Calcd for C₁₅H₁₃F₇NO3 [M-H]⁻: 388.0789; found: 388.0784.

(S)-4-Methyl-2-(4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl)-N-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)pentanamide (11)

¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 5.18 (dd, J = 10.9, 5.7 Hz, 1H), 2.47–2.12 (m, 2H), 1.60–1.51 (m, 1H), 1.06–0.95 (m, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 165.99, 163.08, 140.60, 129.94, 126.44, 53.79, 37.21, 24.86, 22.38, 20.95. HRMS (ESI-TOF) Calcd for C₂₁H₁₀C₁₄F₇N₂O₃ [M-H]⁻: 610.9339; found:610.9343.

5-Methyl-*N*-((4-(trifluoromethyl)phenyl)sulfonyl)hexanamide (6a)

¹H NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H), 8.24 (d, *J* = 8.2 Hz, 2H), 7.89 (d, *J* = 8.2 Hz, 2H), 2.31–2.22 (m, 2H), 1.63–1.55 (m, 2H), 1.51–1.46 (m, 1H), 1.17–1.08 (m, 2H), 0.85 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 170.15, 141.93, 136.00 (q, *J* = 33.0 Hz), 128.21, 125.14 (q, *J* = 3.5 Hz), 121.91 (q, *J* = 276.1 Hz), 37.50, 36.17, 27.22, 21.87, 21.69. HRMS (ESI-TOF) Calcd for C₁₄H₁₇F₃NO₃S [M-H]⁻: 336.0887; found:336.0885.

5-Methyl-N-((4-(trifluoromethyl)phenyl)sulfonyl)heptanamide (6b)

¹H NMR (400 MHz, CDCl₃) δ 8.39 (s, 1H), 8.24 (d, *J* = 8.1 Hz, 2H), 7.93 (d, *J* = 8.1 Hz, 2H), 2.29–2.23 (m, 2H), 1.59–1.49 (m, 2H), 1.28–1.10 (m, 4H), 1.08–1.04 (m, 1H), 0.84–0.80 (m, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 170.13, 141.33, 135.78 (q, *J* = 33.2 Hz), 128.91, 125.48 (q, *J* = 3.6 Hz), 121.94 (q, *J* = 279.0 Hz), 36.26, 35.16, 33.59, 28.70, 21.44, 18.47, 10.77. HRMS (ESI-TOF) Calcd for C₁₅H₁₉F₃NO₃S [M-H]⁻: 350.1043; found: 350.1040.

4-Cyclopentyl-*N*-((4-(trifluoromethyl)phenyl)sulfonyl)butanamide (6c)

¹H NMR (400 MHz, CDCl₃) δ 8.75 (s, 1H), 8.39 (d, *J* = 8.3 Hz, 2H), 7.85 (d, *J* = 8.3 Hz, 2H), 2.26–2.21 (m, 2H), 1.69–1.60 (m, 2H), 1.54–1.48 (m, 4H), 1.28–1.21 (m, 3H), 1.07–0.93 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 170.52, 141.72, 135.51 (q, *J* = 33.2 Hz), 128.76, 125.36 (q, *J* = 3.6 Hz), 122.41 (q, *J* = 271.0 Hz), 39.22, 36.17, 34.82, 32.04, 24.62, 23.04. HRMS (ESI-TOF) Calcd for C₁₆H₁₉F₃NO₃S [M-H]⁻: 362.1043; found: 362.1041.

(1r,4r)-4-Methyl-N-((4-(trifluoromethyl)phenyl)sulfonyl)cyclohexane-1-carboxamide (6d)

¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 8.23 (d, *J* = 8.2, 2H), 7.84 (d, J = 8.3, 2H), 2.09 (tt, *J* = 12.2, 3.5 Hz, 1H), 1.91–1.82 (m, 2H), 1.81–1.74 (m, 2H), 1.39–1.35 (m, 2H), 1.34–1.29 (m, 2H), 0.89 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 172.96, 141.12, 135.03 (q, *J* = 33.4 Hz), 128.17, 125.70 (q, *J* = 3.6 Hz), 122.54 (q, *J* = 268.0 Hz), 44.66, 33.39, 31.24, 28.23, 21.79. HRMS (ESI-TOF) Calcd for C₁₅H₁₇F₃NO₃S [M-H]⁻: 348.0887; found: 348.0890.

2.2 Optimization of Lactamization Reaction

General: The reactions were conducted using 0.1 mmol of substrate in the indicated conditions in solvents. The temperature was detected from oil bath.

Radical Initiator Screening^{*a,b*}

Me Me Me 1a	Y ^H , _{C7F7} −	DCE (0.2 M) 120 °C, 14 h, air	Me Me 2a
Entry	Radical Initiator	Amount (equiv)	NMR Yield (%)
1	<i>t</i> BuOOH	2.0	0
2	<i>(t</i> BuO) ₂	2.0	0
3	NIS	2.0	67
4	NBS	2.0	37
5	NCS	2.0	15
6	PhI(OAc) ₂	2.0	Trace
7	PhI(OTFA) ₂	2.0	Trace
8	I_2	2.0	0
9	PhI(OAc) ₂ +I ₂	1.5 + 1.5	66
10	PhI(OTFA) ₂ +I ₂	1.5 + 1.5	43
11	NIS	3.0	76
12	NIS	4.0	56

^{*a*} Conditions: **1a** (0.1 mmol), radical initiator, DCE (0.5 mL), 120 $^{\circ}$ C, air, 14 h. ^{*b*} All yields were determined by ¹H NMR using CH₂Br₂ as the internal standard.

Solvent Screening^{*a,b*}

Me Me Me 1a	$ \begin{array}{c} H \\ N \\ C_7 F_7 \\ O \\ \end{array} $ NIS (3 economic of the second se	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \begin{array}{c} \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \hline \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $
Entry	Solvent	NMR Yield (%)
1	$C_6F_5CF_3$	62
2	PhCF ₃	41
3	C_6F_6	57
4	Hexane	20
5	Toluene	15
6	DCE	76
7	HFIP	Trace
8	<i>t</i> -BuOH	Trace
9	DMF	12
10	DMSO	14
11	EA	59
12	THF	Trace
13 ^c	DCE	74
14 ^d	DCE	61

^{*a*} Conditions: **1a** (0.1 mmol), NIS (3 equiv.), solvent (0.5 mL), 120 °C, air, 14 h. ^{*b*} All yields were determined by ¹H NMR using CH₂Br₂ as the internal standard. ^{*c*} Reaction was carried out in N₂ (1 atm). ^{*d*} Reaction was carried out in O₂ (1 atm).

Concentration Screening^{*a,b*}

Me Me 1a	₩ N ^N C ₇ F ₇	NIS (3 equiv DCE 120 ^o C, 14 h,	/) air	Me Me 2a
Entry	Conce	ntration (M)	NMR Y	ield (%)
1		0.2	7	6
2		0.1	8	2
3		0.05	5	64
4	(0.025	2	3

^{*a*} Conditions: **1a** (0.1 mmol), NIS (3 equiv.), DCE, 120 $^{\circ}$ C, air, 14 h. ^{*b*} All yields were determined by ¹H NMR using CH₂Br₂ as the internal standard.

Optimization of Temperature^{*a,b*}

Me Me 1a	H NS (3.0 equ DCE (0.1N 14 h, air	
Entry	Temperature (^o C)	NMR Yield (%)
1	120	82
2	110	87
3	100	92
4	90	79
Me Me 1a	$\int_{0}^{10} C_7 F_7 = \frac{Phl(OAc)_2 (1.5 e)}{I_2 (1.5 e)}$	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
Entry	Temperature (^o C)	NMR Yield (%)
1	120	66
2	90	71
3	60	73
4	r.t.	79
5 ^c	r.t.	89

^{*a*} Conditions: **1a** (0.1 mmol), NIS (3 equiv.) or PhI(OAc)₂ (1.5 equiv.) and I₂ (1.5 equiv.), DCE (1.0 mL), air, 14 h. ^{*b*} All yields were determined by ¹H NMR using CH₂Br₂ as the internal standard. ^{*c*} 48 h.

2.3 General Procedure for Directed Radical Reaction

To an oven dried microwave tube (5 mL) equipped with a magnetic stir bar was added substrate (0.1 mmol), NIS (69.2mg, 0.4 mmol) and 1 mL of DCE followed by $TMSN_3$ (53 uL, 0.4 mmol). The mixture was covered with safety shield, then was heated to 100 °C for 14 hours under vigorous stirring. Upon completion, the reaction mixture was cooled to room temperature. The reaction mixture was diluted with 4 mL dichloromethane and then treated with 5 mL saturated aqueous $Na_2S_2O_3$ solution. Aqueous phase was extracted with 5 mL dichloromethane twice. Combined organic phases were dried with Na_2SO_4 . The solvents were removed under reduced pressure and the resulting mixture was purified by preparative TLC using hexane/EtOAc as the eluent.

To a 50 mL pressure vessel equipped with a magnetic stir bar was added substrate (0.5 g or 1.0 g), NIS (4 equiv) and DCE (0.1 M) followed by addition of TMSN₃ (4 equiv). Pressure vessel was covered with safety shield, then was heated to 100 $^{\circ}$ C for 14 hours under vigorous stirring. Upon completion, the reaction mixture was cooled to room temperature. The reaction mixture was diluted with 40 mL dichloromethane and then treated with saturated aqueous Na₂S₂O₃ solution. Aqueous phase was extracted with dichloromethane twice. Combined organic phases were dried with Na₂SO₄. The solvents were

removed under reduced pressure and the resulting mixture was purified by flash column chromatography (silica gel, hexane/EtOAc 10/1 to 3/1).

5,5-Dimethyl-1-((4-(trifluoromethyl)phenyl)sulfonyl)pyrrolidin-2-one (2c)

Substrate was treated with standard reagents for 2 hours. After purification by preparative TLC (eluent: hexane/EtOAc = 5/1), compound was obtained as a white solid (25.7 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.2 Hz, 2H), 7.82 (d, *J* = 8.2 Hz, 2H), 2.28 (t, *J* = 7.6 Hz, 2H), 1.46 (t, *J* = 7.6 Hz, 2H), 0.81 (s, 3H), 0.81 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ . 171.39, 141.82, 135.59 (q, *J* = 34.2 Hz), 128.96, 126.17 (q, *J* = 3.5 Hz), 123.00 (q, *J* = 275.0 Hz), 34.38, 32.84, 27.42, 22.030, 22.027. HRMS (ESI-TOF) Calcd for C₁₃H₁₅F₃NO₃S [M+H]⁺: 322.0719; found: 322.0715.

5-(Iodomethyl)-5-methyl-1-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)pyrrolidin-2-one (3a)

Substrate was treated with standard condition. After purification by preparative TLC (eluent: hexane/EtOAc = 5/1), compound was obtained as a white solid (37.7 mg, 83%). ¹H NMR (400 MHz, CDCl₃) δ 3.43 (d, *J* = 10.2 Hz, 1H), 3.24 (d, *J* = 10.2 Hz, 1H), 2.77–2.60 (m, 2H), 2.50 (ddd, *J* = 13.2, 9.4, 5.5 Hz, 1H), 2.22 (ddd, *J* = 13.2, 9.5, 7.9 Hz, 1H), 1.52 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -56.69 (t, *J* = 21.7 Hz, 3F), -138.81 – -138.97 (m, 2F), -139.33 – -139.48 (m, 2F). ¹³C NMR (150 MHz, CDCl₃) δ 174.55, 65.70, 33.89, 29.77, 24.77, 12.87. HRMS (ESI-TOF) Calcd for C₁₃H₁₀F₇INO [M+H]⁺: 455.9690; found: 455.9700.

5-(Iodomethyl)-5-methyl-1-((4-(trifluoromethyl)phenyl)sulfonyl)pyrrolidin-2-one (3c)

Substrate was treated with standard condition. After purification by preparative TLC (eluent: hexane/EtOAc = 5/1), compound was obtained as a white solid (32.1 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, *J* = 8.3 Hz, 2H), 7.81 (d, *J* = 8.3 Hz, 2H), 4.01 (d, *J* = 10.6 Hz, 1H), 3.73 (d, *J* = 10.6 Hz, 1H), 2.59 (ddd, *J* = 18.0, 10.2, 6.6 Hz, 1H), 2.46–2.37 (m, 1H), 2.30 (ddd, *J* = 13.2, 10.2, 6.6 Hz, 1H), 2.00 (ddd, *J* = 13.2, 10.1, 6.7 Hz, 1H), 1.92 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 173.82, 141.92, 135.51 (q, *J* = 33.6 Hz), 129.90, 125.75 (q, *J* = 3.6 Hz), 122.63 (q, *J* = 274.1 Hz), 68.35, 34.32, 29.68, 26.13, 16.20. HRMS (ESI-TOF) Calcd for C₁₃H₁₄F₃INO₃S [M+H]⁺: 447.9686; found:447.9690.

5-(1-Iodoethyl)-5-methyl-1-((4-(trifluoromethyl)phenyl)sulfonyl)pyrrolidin-2-one (3d)

Substrate was treated with standard condition. After purification by preparative TLC (eluent: hexane/EtOAc = 10/1), two diastereomers were obtained as white solids (15.0 mg, 10.6 mg, 3:2, 71% in total).

¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.3 Hz, 2H), 7.81 (d, *J* = 8.3 Hz, 2H), 5.14 (q, *J* = 7.0 Hz, 1H), 2.54–2.47 (m, 1H), 2.46–2.38 (m, 2H), 2.00 (d, *J* = 7.0 Hz, 3H), 1.97–1.92 (m, 4H).¹³C NMR (150 MHz, CDCl₃) δ 174.49, 141.62, 135.58 (q, *J* = 34.1 Hz), 129.75, 125.88 (q, *J* = 3.7 Hz), 123.02 (q, *J* = 279.1 Hz), 72.58, 34.02, 30.73, 30.00, 29.10, 23.67. HRMS (ESI-TOF) Calcd for C₁₄H₁₆F₃INO₃S [M+H]⁺: 461.9842; found: 461.9848.

¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, *J* = 8.3 Hz, 2H), 7.80 (d, *J* = 8.3 Hz, 2H), 5.38 (q, *J* = 7.1 Hz, 1H), 2.72 – 2.62 (m, 1H), 2.49–2.41 (m, 2H), 2.17 (s, 3H), 1.97 (d, *J* = 7.1 Hz, 3H), 1.94–1.91 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 173.78, 141.68, 135.44 (q, *J* = 34.1 Hz), 130.42, 125.49 (q, *J* = 3.5 Hz), 123.12 (q, *J* = 279.4 Hz), 73.30, 38.00, 30.63, 29.90, 24.07, 23.87. HRMS (ESI-TOF) Calcd for C₁₄H₁₆F₃INO₃S [M+H]⁺: 461.9842; found: 461.9844

5-(1-Iodobutyl)-5-methyl-1-((4-(trifluoromethyl)phenyl)sulfonyl)pyrrolidin-2-one (3e)

Substrate was treated with standard condition. After purification by preparative TLC (eluent: hexane/EtOAc = 10/1), two diastereomers were obtained as white solids (14.0 mg, 12.0 mg, 7:6, 53% in total).

¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.3 Hz, 2H), 7.81 (d, *J* = 8.3 Hz, 2H), 4.97–4.93 (m, 1H), 2.55–2.48 (m, 1H), 2.44–2.39 (m, 2H), 2.02–1.97 (m, 1H), 1.95 (s, 3H), 1.78–1.67 (m, 3H), 1.49–1.41 (m, 1H), 0.98 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 174.70, 141.81, 135.59 (q, *J* = 32.8 Hz), 129.69, 125.87 (q, *J* = 3.7 Hz), 123.02 (q, *J* = 282.0 Hz), 72.65, 44.84, 36.25, 31.16, 29.90, 29.59, 23.12, 13.05. HRMS (ESI-TOF) Calcd for C₁₆H₂₀F₃INO₃S [M+H]⁺: 490.0155; found:490.0159.

¹H NMR (400 MHz, CDCl₃) δ 8.33 (d, *J* = 8.3 Hz, 2H), 7.79 (d, *J* = 8.3 Hz, 2H), 5.21–5.18 (m, 1H), 2.71–2.50 (m, 1H), 2.48–2.38 (m, 2H), 1.94 (s, 3H), 1.93-1.89 (m, 1H), 1.80–1.69 (m, 3H), 1.51–1.46 (m, 1H), 1.01 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 173.89, 141.72, 135.43 (q, *J* = 33.1 Hz), 130.49, 125.44 (q, *J* = 3.6 Hz), 123.14 (q, *J* = 275.0 Hz), 73.24, 49.34, 36.69, 31.15, 29.97, 25.13, 24.18, 13.25. HRMS (ESI-TOF) Calcd for C₁₆H₂₀F₃INO₃S [M+H]⁺: 490.0155; found:490.0148.

5-Ethyl-5-(1-iodoethyl)-1-((4-(trifluoromethyl)phenyl)sulfonyl)pyrrolidin-2-one (3f)

Substrate was treated with standard condition. After purification by preparative TLC (eluent: hexane/EtOAc = 5/1), compound was obtained as a white solid (29.9 mg, 63%). ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 8.0 Hz, 2H), 7.81 (d, *J* = 8.0 Hz, 2H), 5.11 (q, *J* = 7.0 Hz, 1H), 2.46–2.32 (m, 5H), 2.08–1.99 (m, 1H), 1.96 (d, *J* = 7.1 Hz, 3H), 0.83 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 175.12, 141.03, 135.69 (q, *J* = 33.1 Hz), 130.16, 125.69 (q, *J* = 3.0 Hz), 123.00 (q, *J* = 285.0 Hz), 76.39, 34.68, 33.16, 30.49, 27.31, 23.63, 8.97. HRMS (ESI-TOF) Calcd for C₁₅H₁₈F₃INO₃S [M+H]⁺: 475.9999; found:475.9994.

(5R,6R)-6-Iodo-1-((4-(trifluoromethyl)phenyl)sulfonyl)-1-azaspiro[4.4]nonan-2-one (3g)

Substrate was treated with standard condition. After purification by preparative TLC (eluent: hexane/EtOAc = 5/1), compound was obtained as a white solid (22.7 mg, 48%). ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, *J* = 8.3 Hz, 2H), 7.81 (d, *J* = 8.3 Hz, 2H), 5.25 (dd, *J* = 11.4, 8.0 Hz, 1H), 2.87–2.79 (m, 1H), 2.71–2.64 (m, 1H), 2.48– 2.39 (m, 3H), 2.11–1.88 (m, 4H), 1.84–1.77 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 174.32, 141.85, 135.45 (q, *J* = 34.0 Hz), 129.92, 125.71 (q, *J* = 3.4 Hz), 122.61 (q, *J* = 283.0 Hz), 76.79, 33.82, 33.08, 33.07, 32.82, 29.45, 21.10. HRMS (ESI-TOF) Calcd for C₁₅H₁₆F₃INO₃S [M+H]⁺: 473.9842; found: 473.9842.

(5*R*,6*R*)-6-Iodo-1-((4-(trifluoromethyl)phenyl)sulfonyl)-1-azaspiro[4.5]decan-2-one (3h)

Substrate was treated with standard condition. After purification by preparative TLC (eluent: hexane/EtOAc = 5/1), compound was obtained as a white solid (34.2 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, *J* = 8.3 Hz, 2H), 7.79 (d, *J* = 8.3 Hz, 2H), 5.41 (dd, *J* = 12.8, 4.3 Hz, 1H), 2.84 (td, *J* = 12.6, 4.2 Hz, 1H), 2.71-2.62 (m, 1H), 2.58-2.54 (m, 1H), 2.44-2.36 (m, 2H), 2.18–2.03 (m, 4H), 1.92 (d, J = 10.0 Hz, 1H), 1.54-1.46 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 173.55, 141.41, 135.42 (q, *J* = 35.1 Hz), 129.95, 125.03 (q, *J* = 3.7 Hz), 122.69 (q, *J* = 279.8 Hz), 73.73, 40.23, 36.99, 36.17, 29.41, 28.22, 27.40, 22.30. HRMS (ESI-TOF) Calcd for C₁₆H₁₈F₃INO₃S [M+H]⁺: 487.9999; found: 488.0006.

(1*S*,4*R*,5*R*)-4-Iodo-5-methyl-6-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)-6azabicyclo[3.2.1]octan-7-one (3i)

Substrate was treated with standard condition. After purification by preparative TLC (eluent: hexane/EtOAc = 5/1), compound was obtained as a white solid (34.7 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ 4.65 (d, *J* = 5.3 Hz, 1H), 2.91 (d, *J* = 11.7 Hz, 1H), 2.84–2.82 (m, 1H), 2.70–2.64 (m, 1H), 2.29 (dd, *J* = 16.3, 5.3 Hz, 1H), 2.24-2.21 (m, 1H), 2.03–1.97 (m, 1H), 1.93–1.88 (m, 1H), 1.38 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -56.62 (t, *J* = 21.7 Hz, 3F), -139.22 – -139.36 (m, 2F), -139.93 – -140.07 (m, 1F), -142.29 (dd, J = 22.6, 7.9 Hz, 1F). ¹³C NMR (150 MHz, CDCl₃) δ 175.78, 67.70, 41.85, 41.26, 33.25, 31.58, 23.54, 21.02. HRMS (ESI-TOF) Calcd for C₁₅H₁₀F₇INO [M-H]⁻: 479.9701; found: 479.9693.

(5*S*)-5-(Iodomethyl)-4,5-dimethyl-1-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)pyrrolidin-2-one (3j)

Substrate was treated with standard condition. After purification by preparative TLC (eluent: hexane/EtOAc = 5/1), a mixture of inseparable diastereomers was obtained as a colorless oil (28.7 mg, 3:2, 61%). ¹H NMR (400 MHz, CDCl₃) δ 3.49-3.32 (m, 1H), 3.32-3.20 (m, 1H), 2.91–2.80 (m, 1H), 2.80–2.60 (m, 1H), 2.60-2.27 (m, 1H), 2.55–2.30 (m, 3H), 1.39-1.21 (m, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ - 56.59 – -56.72 (m, 3F), -138.77 – -138.88 (m, 1F), -139.19 – -140.24 (m, 3F). ¹³C NMR (150 MHz, CDCl₃) δ 173.81, 173.19, 67.00, 66.58, 39.56, 39.19, 37.51, 37.18, 25.24, 19.80, 15.61, 14.60, 12.78, 7.91. HRMS (ESI-TOF) Calcd for C₁₄H₁₂F₇INO [M+H]⁺: 469.9846; found: 469.9845

(3*S*,5*S*)-5-(Iodomethyl)-5-methyl-2-oxo-1-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)pyrrolidin-3-yl acetate (3k)

Substrate was treated with standard condition. After purification by preparative TLC (eluent: hexane/EtOAc = 5/1), a mixture of inseparable mixture of diastereomers was obtained as a white solid (31.8 mg, 3:2, 62%). ¹H NMR (400 MHz, CDCl₃) δ 5.75–5.52 (m, 1H), 3.52–3.40 (m, 1H), 3.12–3.06 (m, 1H), 2.78-2.72 (m, 1H), 2.40-2.35 (m, 1H), 2.22-2.18 (m, 3H), 1.59-1.58 (m, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -56.62 – -56.75 (m, 3F), -138.42 – -138.94 (m, 4F). ¹³C NMR (150 MHz, CDCl₃) δ 170.19, 169.83, 69.36, 69.04, 63.76, 63.50, 41.25, 40.57, 25.91, 24.83, 20.72, 13.04, 12.52. HRMS (ESI-TOF) Calcd for C₁₅H₁₂F₇INO₃ [M+H]⁺: 513.9745; found:513.9740

4,5,6,7-Tetrachloro-2-((3*S*,5*S*)-5-(iodomethyl)-5-methyl-2-oxo-1-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)pyrrolidin-3-yl)isoindoline-1,3-dione (3l)

One-pot procedure: to an oven dried microwave tube (5 mL) equipped with a magnetic stir bar was added substrate (0.1 mmol), NIS (34.6 mg, 0.2 mmol) and 1 mL of DCE was added. The mixture was covered with safety shield, then was heated to 100 °C for 8 hours under vigorous stirring. The reaction mixture was then cooled to room temperature. I₂ (76.2 mg, 0.3 mmol) and TMSN₃ (53 uL, 0.4 mmol) was added. The mixture was covered with safety shield, then was heated to 100 °C for 14 hours under vigorous stirring. After workup as described in general procedures, a mixture of inseparable diastereomers was obtained as a yellow solid (53.0 mg, 2:1, 72%). ¹H NMR (400 MHz, CDCl₃) δ 5.47-5.25 (m, 1H), 3.70–3.52 (m, 1H), 3.40-3.31 (m, 1H), 3.03-2.67 (m, 2H), 1.70-1.69 (m, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ - 56.62 – -56.75 (m, 3F), -136.37 – -137.63 (m, 1F), -138.54 – -139.01 (m, 3F). ¹³C NMR (150 MHz, CDCl₃) δ 168.82, 162.38, 140.74, 130.19, 127.23, 63.72, 63.05, 49.17, 49.10, 38.66, 37.26, 25.72, 24.70, 13.21, 12.29. HRMS (ESI-TOF) Calcd for C₂₁H₉Cl₄F₇IN₂O₃ [M+H]⁺: 736.8295; found:736.8292

5-(Prop-1-en-2-yl)-1-((4-(trifluoromethyl)phenyl)sulfonyl)pyrrolidin-2-one (7a)

Substrate was treated with standard condition. After purification by preparative TLC (eluent: hexane/EtOAc = 5/1), compound was obtained as a white solid (23.7 mg, 71%). ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, *J* = 8.2 Hz, 2H), 7.79 (d, *J* = 8.3 Hz, 2H), 4.92 (d, *J* = 26.9 Hz, 2H), 4.86 (d, *J* = 8.5 Hz, 1H), 2.62–2.51 (m, 1H), 2.46–2.29 (m, 2H), 1.92–1.86 (m, 1H), 1.66 (s, 3H). ¹³C NMR (150 MHz, CDCl₃)

δ 173.11, 142.03, 141.29, 135.00 (q, *J* = 32.4 Hz), 128.76, 125.35 (q, *J* = 3.9 Hz), 120.83 (q, *J* = 289.0 Hz), 113.05, 63.88, 30.10, 24.12, 18.07. HRMS (ESI-TOF) Calcd for C₁₄H₁₅F₃NO₃S [M+H]⁺: 334.0719; found:334.0717.

(E)-5-(But-2-en-2-yl)-1-((4-(trifluoromethyl)phenyl)sulfonyl)pyrrolidin-2-one (7b)

Substrate was treated with standard condition. After purification by preparative TLC (eluent: hexane/EtOAc = 5/1), a mixture of inseparable region isomers was obtained as a colorless oil (20.2 mg, 5:1, 58%). ¹H NMR (400 MHz, CDCl₃) δ 8.15 (m, 2H), 7.78 (d, *J* = 8.3 Hz, 2H), 5.45 (q, *J* = 6.8 Hz, 1H), 4.84 (d, *J* = 9.0 Hz, 1H), 2.57–2.42 (m, 2H), 2.41–2.30 (m, 1H), 1.86–1.80 (m, 1H), 1.59 (d, *J* = 6.8 Hz, 3H), 1.37-1.26 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) Major isomer δ 173.70, 141.93, 135.32 (q, *J* = 34.8 Hz), 132.95, 129.07, 125.76 (q, *J* = 3.7 Hz), 123.18 (q, *J* = 273.0 Hz), 120.38, 66.13, 30.92, 24.29, 13.09, 11.82. HRMS (ESI-TOF) Calcd for C₁₅H₁₇F₃NO₃S [M+H]⁺: 348.0876; found:348.0876.

5-(Cyclopent-1-en-1-yl)-1-((4-(trifluoromethyl)phenyl)sulfonyl)pyrrolidin-2-one (7c)

Substrate was treated with standard condition. After purification by preparative TLC (eluent: hexane/EtOAc = 5/1), compound was obtained as a colorless oil (15.8 mg, 44%). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.2 Hz, 2H), 7.78 (d, *J* = 8.3 Hz, 2H), 5.67 (s, 1H), 5.13 (d, *J* = 8.4 Hz, 1H), 2.57–2.52 (m, 1H), 2.48–2.43 (m, 1H), 2.37–2.31 (m, 2H), 2.22–2.17 (m, 1H), 1.92–1.86 (m, 2H), 1.82–1.77 (m, 1H), 1.68–1.63 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 173.35, 142.01, 141.43, 135.36 (q, *J* = 33.0

Hz), 129.98, 129.04, 125.76 (q, J = 3.6 Hz), 123.00 (q, J = 279.8 Hz), 120.38, 60.11, 32.01, 31.00, 29.69, 24.49, 23.07. HRMS (ESI-TOF) Calcd for C₁₆H₁₇F₃NO₃S [M+H]⁺: 360.0876; found: 360.0877.

(5*R*)-4-Methyl-6-((4-(trifluoromethyl)phenyl)sulfonyl)-6-azabicyclo[3.2.1]oct-3-en-7-one (7d)

Substrate was treated with standard condition. After purification by preparative TLC (eluent: hexane/EtOAc = 5/1), a mixture of inseparable region isomers was obtained as a colorless oil (18.7 mg, 3:1, 54%). ¹H NMR (400 MHz, CDCl₃) δ 8.19–8.14 (m, 2H), 7.79–7.77 (d, *J* = 8.2 Hz, 2H), 5.30–5.10 (m, 1H), 4.94–4.47 (m, 1H), 2.80–2.67 (m, 1H), 2.53–2.35 (m, 2H), 2.26–2.18 (m, 1H), 1.98 (m, 1H), 1.99-1.93 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 175.53, 174.91, 142.28 (q, *J* = 42.0 Hz), 137.95, 135.22 (q, *J* = 32.8 Hz), 128.84, 128.58, 125.94 (q, *J* = 3.5 Hz), 125.92 (q, *J* = 3.3 Hz), 122.13 (d, *J* = 286.0 Hz), 112.00, 64.51, 59.64, 41.72, 40.53, 36.95, 33.44, 27.84, 27.17, 26.31, 21.88. HRMS (ESI-TOF) Calcd for C₁₅H₁₅F₃NO₃S [M+H]⁺: 346.0719; found:346.0721

2.4 Procedure for Ring Opening of Lactams

To an oven dried microwave tube (5 mL) equipped with a magnetic stir bar was added substrate (0.1 mmol) and 1 mL of THF. After frozen with a dry ice/acetone bath, the mixture was treated with *n*BuLi (1.05 equiv, 1.6 M in hexane) slowly. The microwave tube was kept in dry ice/acetone bath for 30 min, then was warmed to room temperature. The reaction mixture was diluted with 5 mL ether and quenched with 5 mL saturated ammonium chloride solution. Aqueous phase was extracted with 5 mL ether twice. Combined organic phases are directly dried with Na₂SO₄. The solvents were removed under reduced pressure and the resulting mixture was purified by preparative TLC using hexane/EtOAc (20/1) as the eluent.

To an oven dried microwave tube (5 mL) equipped with a magnetic stir bar was added substrate (0.1 mmol) and 1 mL of methanol. The mixture was then treated with NaOMe (5.0 equiv, 5.4 M in methanol) slowly. After two hours, reaction mixture was quenched with 5 mL saturated ammonium chloride solution. Aqueous phase was extracted with 10 mL ethyl acetate three times. Combined organic phases were dried with Na₂SO₄. The solvents were removed under reduced pressure and the resulting mixture was purified by preparative TLC using hexane/EtOAc (10/1) as the eluent.

4-Methyl-N-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)pent-4-enamide (4a)

Substrate was treated with standard condition. After purification by preparative TLC (eluent: hexane/EtOAc = 10/1), compound was obtained as a white solid (29.8 mg, 91%). ¹H NMR (400 MHz, CDCl3) δ 7.24 (s, 1H), 4.85 (s, 1H), 4.79 (s, 1H), 2.65 (t, *J* = 7.5 Hz, 2H), 2.46 (t, *J* = 7.5 Hz, 2H), 1.79 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 170.26, 143.68, 111.40, 34.42, 32.75, 22.36. HRMS (ESI-TOF) Calcd for C₁₃H₁₁F₇NO [M+H]⁺: 330.0723; found: 330.0729.

Substrate was treated with standard condition. After purification by preparative TLC (eluent: hexane/EtOAc = 10/1), compound was obtained as a white solid (29.9 mg, 93%). ¹H NMR (400 MHz, CDCl3) δ 8.21 (d, *J* = 8.5 Hz, 2H), 7.82 (d, *J* = 8.5 Hz, 2H), 4.74 (s, 1H), 4.61 (s, 1H), 2.42 (t, *J* = 7.5 Hz, 2H), 2.28 (t, *J* = 7.5 Hz, 2H), 1.68 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 169.84, 143.09, 141.83, 135.63 (q, *J* = 33.6 Hz), 129.10, 126.15 (q, *J* = 3.1 Hz), 123.25 (q, *J* = 294.0 Hz), 111.42, 34.56, 31.76, 22.33. HRMS (ESI-TOF) Calcd for C₁₃H₁₅F₃NO₃S [M+H]⁺: 322.0719; found: 322.0719.

Methyl 5-methoxy-4-methyl-4-((4-(trifluoromethyl)phenyl)sulfonamido)pentanoate (5)

Substrate was treated with standard condition. After purification by preparative TLC (eluent: hexane/EtOAc = 5/1), compound was obtained as a colorless oil (31.4 mg, 82%). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 8.2 Hz, 2H), 7.76 (d, J = 8.3 Hz, 2H), 5.23 (s, 1H), 3.67 (s, 3H), 3.19 (s, 3H), 3.17–3.09 (m, 2H), 2.42–2.33 (m, 2H), 2.03–1.97 (m, 1H), 1.85 (ddd, *J* = 14.8, 9.1, 6.3 Hz, 1H), 1.15 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 173.83, 146.61, 134.02 (q, *J* = 32.0 Hz), 127.46, 126.04 (q, *J* = 3.4 Hz), 123.24 (q, *J* = 279.0 Hz), 78.03, 58.90, 58.80, 51.79, 33.29, 28.64, 21.30. HRMS (ESI-TOF) Calcd for C₁₅H₁₉F₃NO₅S [M-H]⁻: 382.0942; found: 382.0946.

Methyl 5-methyl-4-((4-(trifluoromethyl)phenyl)sulfonamido)hex-5-enoate (8)

Substrate was treated with standard condition. After purification by preparative TLC (eluent: hexane/EtOAc = 5/1), compound was obtained as a colorless oil (32.1 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.2 Hz, 2H), 7.74 (d, *J* = 8.2 Hz, 2H), 5.20–5.19 (m, 1H), 4.75–4.72 (m, 2H), 3.87 (q, *J* = 7.5 Hz, 1H), 3.67 (s, 3H), 2.36–2.32 (m, 2H), 1.86–1.49 (m, 2H), 1.49 (d, *J* = 1.5 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 173.75, 144.43, 142.38, 134.16 (q, *J* = 33.9 Hz), 127.62, 125.94 (q, *J* = 4.0

Hz), 123.22 (q, J = 269.6 Hz), 114.04, 59.42, 51.87, 30.23, 28.58, 17.54. HRMS (ESI-TOF) Calcd for $C_{15}H_{17}F_3NO_4S$ [M-H]⁻: 364.0836; found: 364.0841.

3 Reference

1. Yates, M.; Kallman, N.; Ley, C.; Wei, J. Org. Process Res. Dev., 2009, 13, 255.

4 NMR Spectra of New Compounds

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

150 140 130 120 110 100 90 80 f1 (ppm) ò

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

S36

^{220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} f1 (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 50 80 70 60 50 40 30 20 10 0 fl (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

$\begin{array}{c} 5.55 \\ 5.575 \\ 5.572 \\ 5.577 \\ 5.577 \\ 5.577 \\ 5.577 \\ 5.557 \\ 5.557 \\ 5.557 \\ 5.557 \\ 5.557 \\ 5.557 \\ 5.557 \\ 5.577 \\ 5.573 \\ 5.573 \\ 5.572 \\$

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

7.554 7.554 7.554 7.554 7.554 7.555 7.255

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

5 X-Ray Crystallographic Analysis

5.1 X-Ray Crystallographic Analysis of Iodo Lactam 3a

Experimental Summary

A colorless crystal was affixed to a Cryo-Loop and cooled to 100K. Data were collected and refined as given in Table S1-S5. A Bruker D8 platform diffractometer with an Ultra rotating-anode source equipped with microfocus optics was used to collect the data. All processing of the data was by standard routines and proceeded without complication. H atoms were idealized as isotropic contributions. All software is contained in the current SHELXTL library maintained by Bruker XRD (Madison, WI).

Table S1. Crystal data and structure refinement	t for yu33.		
Identification code	yu33		
Empirical formula	C13 H9 F7 I N O		
Formula weight	455.11		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 21/c		
Unit cell dimensions	a = 6.1326(4) Å	<i>α</i> = 90°.	
	b = 27.1761(14) Å	$\beta = 103.6510(10)^{\circ}.$	
	c = 8.9213(5) Å	$\gamma = 90^{\circ}.$	
Volume	1444.82(14) Å ³		
Z	4		
Density (calculated)	2.092 Mg/m ³		
Absorption coefficient	2.297 mm ⁻¹		
F(000)	872		
Crystal size	0.290 x 0.230 x 0.080 mm ³		
Theta range for data collection	2.466 to 28.295°.		
Index ranges	-7<=h<=8, -36<=k<=36, -11	l<=l<=11	
Reflections collected	19340		
Independent reflections	3580 [R(int) = 0.0282]		
Completeness to theta = 25.000°	99.9 %		
Absorption correction	Multi-scan		
Refinement method	Full-matrix least-squares on	F ²	
Data / restraints / parameters	3580 / 0 / 209		
Goodness-of-fit on F ²	1.224		
Final R indices [I>2sigma(I)]	R1 = 0.0493, wR2 = 0.1166		
R indices (all data)	R1 = 0.0498, wR2 = 0.1168		
Extinction coefficient	n/a		
Largest diff. peak and hole	4.310 and -1.099 e.Å ⁻³		

Table S1. Crystal data and structure refinement for yu33.

Х	у	Z	U(eq)	
4410(1)	4262(1)	-817(1)	26(1)	
9448(5)	3501(1)	7387(3)	27(1)	
7559(5)	4127(1)	5178(3)	24(1)	
606(5)	3319(1)	4597(3)	26(1)	
2510(6)	2664(1)	6736(4)	32(1)	
6428(7)	2229(1)	7982(4)	43(1)	
6306(10)	2787(2)	9624(4)	68(2)	
9219(7)	2705(2)	8808(6)	61(1)	
3069(6)	4670(1)	5737(4)	23(1)	
2972(6)	4111(1)	3792(4)	17(1)	
7033(10)	2690(2)	8363(6)	31(1)	
6034(9)	3049(2)	7090(5)	22(1)	
3785(9)	3018(2)	6345(6)	23(1)	
2810(8)	3355(2)	5240(5)	20(1)	
4037(8)	3739(2)	4806(5)	17(1)	
2515(8)	4092(2)	2070(5)	19(1)	
4761(8)	4182(2)	1640(5)	22(1)	
7279(8)	3433(2)	6676(5)	20(1)	
6304(8)	3766(2)	5547(5)	20(1)	
2605(7)	4567(2)	4371(5)	18(1)	
1552(8)	4889(2)	3017(5)	23(1)	
909(8)	4535(2)	1666(6)	24(1)	
1457(9)	3609(2)	1438(6)	27(1)	
	$\begin{array}{c} x\\ 4410(1)\\ 9448(5)\\ 7559(5)\\ 606(5)\\ 2510(6)\\ 6428(7)\\ 6306(10)\\ 9219(7)\\ 3069(6)\\ 2972(6)\\ 7033(10)\\ 6034(9)\\ 3785(9)\\ 2810(8)\\ 4037(8)\\ 2515(8)\\ 4761(8)\\ 7279(8)\\ 6304(8)\\ 2605(7)\\ 1552(8)\\ 909(8)\\ 1457(9)\end{array}$	xy4410(1)4262(1)9448(5)3501(1)7559(5)4127(1)606(5)3319(1)2510(6)2664(1)6428(7)2229(1)6306(10)2787(2)9219(7)2705(2)3069(6)4670(1)2972(6)4111(1)7033(10)2690(2)6034(9)3049(2)3785(9)3018(2)2810(8)3355(2)4037(8)3739(2)2515(8)4092(2)4761(8)4182(2)7279(8)3433(2)6304(8)3766(2)2605(7)4567(2)1552(8)4889(2)909(8)4535(2)1457(9)3609(2)	xyz $4410(1)$ $4262(1)$ $-817(1)$ $9448(5)$ $3501(1)$ $7387(3)$ $7559(5)$ $4127(1)$ $5178(3)$ $606(5)$ $3319(1)$ $4597(3)$ $2510(6)$ $2664(1)$ $6736(4)$ $6428(7)$ $2229(1)$ $7982(4)$ $6306(10)$ $2787(2)$ $9624(4)$ $9219(7)$ $2705(2)$ $8808(6)$ $3069(6)$ $4670(1)$ $5737(4)$ $2972(6)$ $4111(1)$ $3792(4)$ $7033(10)$ $2690(2)$ $8363(6)$ $6034(9)$ $3049(2)$ $7090(5)$ $3785(9)$ $3018(2)$ $6345(6)$ $2810(8)$ $3355(2)$ $5240(5)$ $4037(8)$ $3739(2)$ $4806(5)$ $2515(8)$ $4092(2)$ $2070(5)$ $4761(8)$ $4182(2)$ $1640(5)$ $7279(8)$ $3433(2)$ $6676(5)$ $6304(8)$ $3766(2)$ $5547(5)$ $2605(7)$ $4567(2)$ $4371(5)$ $1552(8)$ $4889(2)$ $3017(5)$ $909(8)$ $4535(2)$ $1666(6)$ $1457(9)$ $3609(2)$ $1438(6)$	xyzU(eq) $4410(1)$ $4262(1)$ $-817(1)$ $26(1)$ $9448(5)$ $3501(1)$ $7387(3)$ $27(1)$ $7559(5)$ $4127(1)$ $5178(3)$ $24(1)$ $606(5)$ $3319(1)$ $4597(3)$ $26(1)$ $2510(6)$ $2664(1)$ $6736(4)$ $32(1)$ $6428(7)$ $2229(1)$ $7982(4)$ $43(1)$ $6306(10)$ $2787(2)$ $9624(4)$ $68(2)$ $9219(7)$ $2705(2)$ $8808(6)$ $61(1)$ $3069(6)$ $4670(1)$ $5737(4)$ $23(1)$ $2972(6)$ $4111(1)$ $3792(4)$ $17(1)$ $7033(10)$ $2690(2)$ $8363(6)$ $31(1)$ $6034(9)$ $3049(2)$ $7090(5)$ $22(1)$ $3785(9)$ $3018(2)$ $6345(6)$ $23(1)$ $2810(8)$ $3355(2)$ $5240(5)$ $20(1)$ $4037(8)$ $3739(2)$ $4806(5)$ $17(1)$ $2515(8)$ $4092(2)$ $2070(5)$ $19(1)$ $4761(8)$ $4182(2)$ $1640(5)$ $22(1)$ $7279(8)$ $3433(2)$ $6676(5)$ $20(1)$ $6304(8)$ $3766(2)$ $5547(5)$ $20(1)$ $2605(7)$ $4567(2)$ $4371(5)$ $18(1)$ $1552(8)$ $4889(2)$ $3017(5)$ $23(1)$ $909(8)$ $4535(2)$ $1666(6)$ $24(1)$ $1457(9)$ $3609(2)$ $1438(6)$ $27(1)$

Table S2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$ for yu33. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

I(1)-C(7)	2.162(5)	C(1)-C(2)	1.512(7)
F(1)-C(8)	1.345(5)	C(2)-C(3)	1.385(7)
F(2)-C(9)	1.335(5)	C(2)-C(8)	1.395(7)
F(3)-C(4)	1.342(5)	C(3)-C(4)	1.374(7)
F(4)-C(3)	1.337(5)	C(4)-C(5)	1.394(6)
F(5)-C(1)	1.328(6)	C(5)-C(9)	1.393(6)
F(6)-C(1)	1.330(7)	C(6)-C(13)	1.514(7)
F(7)-C(1)	1.306(7)	C(6)-C(7)	1.534(7)
O(1)-C(10)	1.216(6)	C(6)-C(12)	1.544(7)
N(1)-C(10)	1.382(6)	C(8)-C(9)	1.379(6)
N(1)-C(5)	1.410(5)	C(10)-C(11)	1.508(6)
N(1)-C(6)	1.496(6)	C(11)-C(12)	1.520(7)
C(10)-N(1)-C(5)	119.7(4)	N(1)-C(6)-C(13)	111.9(4)
C(10)-N(1)-C(6)	114.0(4)	N(1)-C(6)-C(7)	106.9(4)
C(5)-N(1)-C(6)	125.5(4)	C(13)-C(6)-C(7)	112.1(4)
F(7)-C(1)-F(5)	108.2(5)	N(1)-C(6)-C(12)	99.6(3)
F(7)-C(1)-F(6)	105.2(5)	C(13)-C(6)-C(12)	113.3(4)
F(5)-C(1)-F(6)	105.9(5)	C(7)-C(6)-C(12)	112.3(4)
F(7)-C(1)-C(2)	114.4(5)	C(6)-C(7)-I(1)	112.9(3)
F(5)-C(1)-C(2)	112.1(4)	F(1)-C(8)-C(9)	117.7(4)
F(6)-C(1)-C(2)	110.5(5)	F(1)-C(8)-C(2)	121.4(4)
C(3)-C(2)-C(8)	117.6(4)	C(9)-C(8)-C(2)	121.0(4)
C(3)-C(2)-C(1)	120.2(5)	F(2)-C(9)-C(8)	119.1(4)
C(8)-C(2)-C(1)	122.1(5)	F(2)-C(9)-C(5)	119.3(4)
F(4)-C(3)-C(4)	119.0(5)	C(8)-C(9)-C(5)	121.6(4)
F(4)-C(3)-C(2)	119.7(4)	O(1)-C(10)-N(1)	124.0(4)
C(4)-C(3)-C(2)	121.3(4)	O(1)-C(10)-C(11)	128.6(4)
F(3)-C(4)-C(3)	118.8(4)	N(1)-C(10)-C(11)	107.3(4)
F(3)-C(4)-C(5)	119.4(4)	C(10)-C(11)-C(12)	104.4(4)
C(3)-C(4)-C(5)	121.7(4)	C(11)-C(12)-C(6)	106.1(4)
C(9)-C(5)-C(4)	116.8(4)		
C(9)-C(5)-N(1)	121.8(4)		
C(4)-C(5)-N(1)	121.1(4)		

Table S3. Bond lengths [Å] and angles [°] for yu33.

	U11	U ²²	U33	U ²³	U ¹³	U12	
I(1)	30(1)	30(1)	18(1)	-2(1)	8(1)	-2(1)	
F(1)	22(1)	30(2)	24(1)	3(1)	-4(1)	0(1)	
F(2)	22(1)	23(1)	27(1)	7(1)	4(1)	-4(1)	
F(3)	20(1)	30(2)	29(2)	4(1)	4(1)	-5(1)	
F(4)	33(2)	25(2)	38(2)	11(1)	11(1)	-6(1)	
F(5)	56(2)	22(2)	43(2)	9(1)	-6(2)	-1(2)	
F(6)	132(5)	52(2)	26(2)	17(2)	27(2)	26(3)	
F(7)	44(2)	49(2)	74(3)	37(2)	-18(2)	-4(2)	
O(1)	28(2)	24(2)	17(2)	0(1)	6(1)	6(1)	
N(1)	21(2)	18(2)	12(2)	3(1)	4(1)	2(1)	
C(1)	43(3)	22(2)	24(2)	8(2)	3(2)	2(2)	
C(2)	34(3)	17(2)	15(2)	3(2)	6(2)	4(2)	
C(3)	30(3)	19(2)	21(2)	2(2)	9(2)	-2(2)	
C(4)	18(2)	22(2)	20(2)	0(2)	4(2)	-1(2)	
C(5)	21(2)	17(2)	13(2)	2(2)	2(2)	3(2)	
C(6)	21(2)	19(2)	16(2)	2(2)	4(2)	1(2)	
C(7)	23(2)	25(2)	18(2)	2(2)	6(2)	0(2)	
C(8)	21(2)	20(2)	15(2)	-1(2)	1(2)	3(2)	
C(9)	23(2)	21(2)	16(2)	2(2)	6(2)	-1(2)	
C(10)	17(2)	21(2)	18(2)	3(2)	7(2)	4(2)	
C(11)	26(2)	26(2)	19(2)	4(2)	5(2)	10(2)	
C(12)	23(2)	31(2)	19(2)	2(2)	5(2)	5(2)	
C(13)	35(3)	26(2)	19(2)	-1(2)	2(2)	-8(2)	

Table S4. Anisotropic displacement parameters (Å²x 10³) for yu33. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

	х	У	Z	U(eq)
H(9)	5780	3902	2016	26
H(8)	5459	4483	2166	26
H(1)	2634	5138	2828	28
H(4)	211	5060	3199	28
H(3)	1081	4694	703	29
H(2)	-669	4428	1525	29
H(5)	2519	3340	1790	41
H(7)	1073	3620	308	41
H(6)	92	3554	1807	41

Table S5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for yu33.

5.2 X-Ray Crystallographic Analysis of Vinyl Lactam 7a

Experimental Summary

A colorless crystal was affixed to a Cryo-Loop and cooled to 100K. Data were collected and refined as given in Table S6-S10. A Bruker D8 platform diffractometer with an Ultra rotating-anode source equipped with microfocus optics was used to collect the data. All processing of the data was by standard routines and proceeded without complication. H atoms were idealized as isotropic contributions. All software is contained in the current SHELXTL library maintained by Bruker XRD (Madison, WI).

Table S6. Crystal data and structure refinement	t for yu37.			
Identification code	yu37			
Empirical formula	C15 H14 F3 N O3 S			
Formula weight	345.33			
Temperature	100(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P 21/n			
Unit cell dimensions	a = 8.2394(5) Å	<i>α</i> = 90°.		
	b = 16.8092(7) Å	$\beta = 106.356(2)^{\circ}.$		
	c = 10.9777(5) Å	$\gamma = 90^{\circ}$.		
Volume	1458.86(13) Å ³			
Z	4			
Density (calculated)	1.572 Mg/m ³			
Absorption coefficient	0.270 mm ⁻¹			
F(000)	712			
Crystal size	$0.300 \ x \ 0.270 \ x \ 0.240 \ mm^3$			
Theta range for data collection	2.282 to 25.344°.			
Index ranges	-6<=h<=9, -20<=k<=18, -12	2<=l<=13		
Reflections collected	8451			
Independent reflections	2664 [R(int) = 0.0215]			
Completeness to theta = 25.000°	99.7 %			
Absorption correction	Multi-scan			
Refinement method	Full-matrix least-squares on	F ²		
Data / restraints / parameters	2664 / 0 / 200			
Goodness-of-fit on F ²	1.095			
Final R indices [I>2sigma(I)]	R1 = 0.0382, wR2 = 0.0915			
R indices (all data)	R1 = 0.0434, $wR2 = 0.0944$			
Extinction coefficient	n/a			
Largest diff. peak and hole	0.667 and -0.412 e.Å ⁻³			

T-1-1 1.1 f: nt fo 0 a ~ 1 27

	х	у	Z	U(eq)	
	6773(1)	7063(1)	206(1)	19(1)	
F(1)	7762(2)	10693(1)	-1845(1)	35(1)	
F(2)	5378(2)	10860(1)	-1454(1)	37(1)	
F(3)	7692(2)	10991(1)	37(1)	42(1)	
O(1)	5954(2)	6663(1)	-947(1)	24(1)	
O(2)	8404(2)	6812(1)	955(1)	24(1)	
O(3)	7071(2)	7715(1)	2809(1)	27(1)	
N(1)	5423(2)	7026(1)	1082(2)	21(1)	
C(1)	6921(3)	10550(1)	-988(2)	26(1)	
C(2)	6883(3)	9683(1)	-676(2)	22(1)	
C(3)	8106(3)	9374(1)	363(2)	23(1)	
C(4)	8098(3)	8569(1)	651(2)	22(1)	
C(5)	6851(2)	8093(1)	-121(2)	19(1)	
C(7)	3728(2)	6652(1)	664(2)	23(1)	
C(8)	3782(3)	5763(1)	887(2)	24(1)	
C(9)	2133(3)	5357(2)	246(2)	36(1)	
C(10)	5646(3)	9197(1)	-1450(2)	24(1)	
C(11)	5625(3)	8391(1)	-1162(2)	22(1)	
C(12)	5749(3)	7393(1)	2270(2)	24(1)	
C(13)	4169(3)	7300(1)	2695(2)	29(1)	
C(14)	2784(3)	7107(1)	1479(2)	28(1)	
C(15)	5132(3)	5377(1)	1573(2)	29(1)	

Table S7. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$ for yu37. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

S(1)-O(1)	1.4236(15)	C(2)-C(3)	1.392(3)
S(1)-O(2)	1.4279(15)	C(3)-C(4)	1.389(3)
S(1)-N(1)	1.6640(17)	C(4)-C(5)	1.387(3)
S(1)-C(5)	1.773(2)	C(5)-C(11)	1.388(3)
F(1)-C(1)	1.338(2)	C(7)-C(8)	1.513(3)
F(2)-C(1)	1.335(3)	C(7)-C(14)	1.543(3)
F(3)-C(1)	1.348(3)	C(8)-C(15)	1.324(3)
O(3)-C(12)	1.211(3)	C(8)-C(9)	1.506(3)
N(1)-C(12)	1.398(3)	C(10)-C(11)	1.394(3)
N(1)-C(7)	1.482(2)	C(12)-C(13)	1.509(3)
C(1)-C(2)	1.500(3)	C(13)-C(14)	1.527(3)
C(2)-C(10)	1.392(3)		
O(1)-S(1)-O(2)	120.43(9)	C(4)-C(5)-S(1)	120.20(16)
O(1)-S(1)-N(1)	105.68(9)	C(11)-C(5)-S(1)	117.34(15)
O(2)-S(1)-N(1)	109.27(9)	N(1)-C(7)-C(8)	112.72(17)
O(1)-S(1)-C(5)	108.39(9)	N(1)-C(7)-C(14)	101.26(16)
O(2)-S(1)-C(5)	108.82(9)	C(8)-C(7)-C(14)	113.12(17)
N(1)-S(1)-C(5)	102.82(9)	C(15)-C(8)-C(9)	123.1(2)
C(12)-N(1)-C(7)	113.12(17)	C(15)-C(8)-C(7)	123.89(19)
C(12)-N(1)-S(1)	122.58(14)	C(9)-C(8)-C(7)	112.98(19)
C(7)-N(1)-S(1)	124.19(14)	C(2)-C(10)-C(11)	119.1(2)
F(2)-C(1)-F(1)	106.72(18)	C(5)-C(11)-C(10)	119.00(19)
F(2)-C(1)-F(3)	106.20(18)	O(3)-C(12)-N(1)	124.2(2)
F(1)-C(1)-F(3)	105.86(17)	O(3)-C(12)-C(13)	129.1(2)
F(2)-C(1)-C(2)	112.76(18)	N(1)-C(12)-C(13)	106.65(18)
F(1)-C(1)-C(2)	112.54(18)	C(12)-C(13)-C(14)	104.42(18)
F(3)-C(1)-C(2)	112.25(18)	C(13)-C(14)-C(7)	103.75(17)
C(10)-C(2)-C(3)	121.16(19)		
C(10)-C(2)-C(1)	119.27(19)		
C(3)-C(2)-C(1)	119.55(19)		
C(4)-C(3)-C(2)	120.08(19)		
C(5)-C(4)-C(3)	118.23(19)		
C(4)-C(5)-C(11)	122.47(19)		

Table S8. Bond lengths [Å] and angles [°] for yu37.

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
S (1)	19(1)	20(1)	19(1)	0(1)	6(1)	-1(1)	
F(1)	43(1)	26(1)	47(1)	7(1)	29(1)	1(1)	
F(2)	30(1)	25(1)	60(1)	9(1)	17(1)	6(1)	
F(3)	62(1)	23(1)	39(1)	-6(1)	10(1)	-8(1)	
O(1)	26(1)	26(1)	20(1)	0(1)	6(1)	-6(1)	
O(2)	22(1)	25(1)	27(1)	1(1)	7(1)	2(1)	
O(3)	24(1)	34(1)	23(1)	-6(1)	4(1)	-4(1)	
N(1)	20(1)	23(1)	19(1)	0(1)	6(1)	-3(1)	
C(1)	26(1)	24(1)	31(1)	0(1)	13(1)	-1(1)	
C(2)	23(1)	19(1)	27(1)	-2(1)	13(1)	0(1)	
C(3)	22(1)	24(1)	26(1)	-5(1)	9(1)	-4(1)	
C(4)	21(1)	25(1)	21(1)	-1(1)	7(1)	0(1)	
C(5)	19(1)	21(1)	21(1)	1(1)	11(1)	0(1)	
C(7)	16(1)	27(1)	24(1)	3(1)	4(1)	-3(1)	
C(8)	26(1)	26(1)	22(1)	-1(1)	11(1)	-5(1)	
C(9)	32(1)	33(1)	43(1)	-5(1)	10(1)	-11(1)	
C(10)	23(1)	24(1)	26(1)	1(1)	7(1)	1(1)	
C(11)	21(1)	24(1)	23(1)	-3(1)	9(1)	-4(1)	
C(12)	27(1)	23(1)	21(1)	3(1)	7(1)	3(1)	
C(13)	30(1)	30(1)	30(1)	0(1)	15(1)	1(1)	
C(14)	24(1)	24(1)	38(1)	5(1)	14(1)	1(1)	
C(15)	35(1)	23(1)	28(1)	2(1)	9(1)	-5(1)	

Table S9. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for yu37. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

	Х	У	Z	U(eq)	
H(5)	8946	9713	875	28	
H(6)	8924	8351	1358	26	
H(11)	3194	6768	-255	27	
H(14)	2231	4787	440	54	
H(2)	1866	5434	-674	54	
H(1)	1230	5586	555	54	
H(3)	4828	9413	-2164	29	
H(4)	4785	8049	-1671	26	
H(7)	3908	7798	3083	35	
H(8)	4300	6863	3319	35	
H(10)	2262	7599	1047	33	
H(9)	1893	6772	1661	33	
H(12)	5088	4818	1679	34	
H(13)	6145	5660	1959	34	

Table S10. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for yu37.