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SUPPORTING INFORMATION 

Description of Exponential Random Graph Models (ERGMs). We applied Exponential Random Graph Models 

(ERGMs) to model the one-mode network structure while taking into account nodal attributes and the two-

mode network structure. In the following, we provide a description of our ERGM specifications. 

ERGMs treat network structures as collective results from endogenous network processes represented by 

graph configurations following various dependence assumptions among network ties (1, 2). Let X denote a 

random variable for directed networks that involve n nodes; there are )1(2 nn  possible network instances (x) 

within this graph space Ω. Let ijX  denote a random variable for network ties, where 1ijX  if there is a tie 

between node i and node j ; otherwise 0ijX . The order of the indices (i, j) represents the direction of the tie, 

i.e., ijX =1 represents a tie sent by node i to node j. The network random variable X can be seen as a collection 

of network tie variables, i.e., X }{ ijX , and its instance x }{ ijx . ERGMs assign probabilities to networks with 

the following general form: 


Q

QQ xzxX )(exp
)(

1
)Pr( 


   

where Q  is a network configuration of type Q  comprising tie variables that are conditionally dependent, given 

the rest of the network.  
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)(xzQ  is a graph statistic that corresponds to the network configuration Q . It can be expressed as





x QX

ijQ

ij

Xxz )( . The configurations used in our model are described below.  

Q  is the parameter associated with )(xzQ . Given other effects in a model, a positive estimate of Q suggests 

that there are more configurations of type Q in network x than we would expect by chance and vice versa. )(  

is a normalizing constant based on the number of possible graphs and the actual model specification. As )(  is 

not tractable for large networks, the maximum likelihood estimations of ERGM parameters rely on Markov 

Chain Monte Carlo (MCMC) simulations (3). 

A hierarchy of tie dependence assumptions that provides a systematic way of developing ERGM 

specifications was proposed (4). The current ERGM specifications follow the social circuit dependence 

assumption, which states that two tie variables are conditionally dependent if they are part of a four-cycle (5, 6). 

Based on the social circuit dependence assumption, Robins and colleagues proposed ERGM specifications for 

directed networks (7). Such a model specification is shown to be robust for model convergence and to provide 

adequate fit to empirical network data (6, 8). We follow Robins and colleagues’ (7) ERGM specification to 

model the structure of the one-mode network among drug-using MSWs and associates. 

 

Model Specification. Our ERGM specified a one-mode network with attributes of Actors (MSWs and 

associates) as covariates under the assumption that the existence of network ties depends on the attribute values 

of the nodes involved (9). In addition, we included the two-mode Actors for the venue affiliation network as 

covariates to test whether the venue affiliations affect the one-mode network structure. Let X denote the one-

mode network among n Actors; let A denote the random variable that represents Actors’ attributes, and its 
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realization is denoted as a; let Y denote the two-mode network variable with n Actors and m Venues, and our 

observed two-mode network is denoted as y. Thus, the ERGM with covariates can be expressed as: 

 

 

 

where  is a graph statistic corresponding to the network configuration  within which all the tie variables 

are considered conditionally dependent, and  is the parameter associated with .  represents 

configurations that involve interactions of nodal attributes (a) and the one-mode network (x), and  is its 

corresponding parameter. represents configurations of interactions between the one-mode (x) and two-

mode networks (y), and  is its corresponding parameter. The statistic  and its parameter  

represent interactions among nodal attributes (a), the one- (x) and two-mode (y) networks. They provide 

indications of how both nodal attributes and the two-mode network may affect the one-mode structure.  

Mathematical expressions, structural configurations, and configurations with attributes/behavior and 

venues included in our model are described in Table 1S that was created based on the PNet manual (10). 

 

Table 1S: ERGM configurations and mathematical expressions 
 

Statistics Configurations Mathematical expressions 
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12 ),( is the number of two-paths between node i and j in network X. 

Structural effects with attributes/behaviors and venues as external covariates 
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Venue-mediated 
weak ties 
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Circles represent MSWs, and squares represent Venues. The one-mode network is labeled X or x. The two-mode 

network is labeled Y or y. The nodal attributes are labeled A or a. The attribute for node i is labeled iA . 

jk

m

k ikYYjiyL  


12 ),,( is the number of two-paths between node i and node j in the two-mode network y. 

 

Interpretations. The Arc (density) configuration represents the baseline network density. The Reciprocity 

configuration provides indications of the likelihood of forming reciprocal ties. The Non-receiver (Source) 

statistic is the number of nodes without any incoming ties. The Isolate configuration is the number of isolated 

nodes. 

The Alternating-in-star (AinS) and Alternating-out-star (AoutS) capture centralization effects for 

incoming ties (popularity) and outgoing ties (activity). The alternating signs and the geometric weighting 

applied make the model more robust (6). Based on experience, we use 0.2 , which has been found to provide 

an adequate fit for empirical networks and to our network data. The estimates of Alternating-in-star and 

Alternating-out-star parameters indicate whether there are highly popular/active nodes in the network. Positive 

estimates generally suggest that incoming or outgoing ties are centralized on certain high degree nodes. 

The Alternating-two-path (A2P) represents the tendency for nodes to share multiple partners. It also 

represents the precondition for network closures represented by the Alternating-triangle. The Alternating-

triangle (AT) represents the tendency for transitive closure, where multiple two-paths are closed by a network 

tie. It also may represent a hierarchical structure, as the configuration is a closure formed by a high out-degree 

node and a high in-degree node, both of which are connected.  
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For the interaction between the one-mode network and nodal attributes, i.e. ),( axzU , some possible 

configurations were proposed under social selection models (9). In our data, we included binary 

attributes/behavior coded as “1/0s,” such as indicators for HIV positive, as well as continuous attributes, such as 

age. The Sender’s having attributes/behavior and Receiver’s having attributes/behavior effects share the same 

expressions for binary and continuous attributes. Positive effects suggest nodes with an attribute coded as “1,” 

or nodes with greater attribute values tend to send or receive more ties respectively. A positive Sender’s having 

attributes/behavior” effect suggests that individuals who have the corresponding attribute/behavior tend to make 

more nominations than did others.  A positive Receiver’s having attributes/behavior” effect indicates that 

individuals who had the corresponding attribute/behavior tend to receive more nominations than others.  A 

negative Sender’s having attributes/behavior” effect and a negative Receiver’s having attributes/behavior effect 

indicate the opposite. The Homophily on binary attributes/behavior effect for binary attributes/behavior 

represents the tendency for a pair of nodes to both have the attributes/behavior coded as “1” to nominate one 

another. The Homophily on continuous attributes/behavior configuration for continuous attributes/behavior 

represents a homophily effect; i.e., a negative Homophily on continuous attributes/behavior effect suggests that 

nodes with similar attribute values tend to nominate each other, since the graph statistic representing homophily 

are defined based on the differences in attribute values of pairs of nodes.  

For ),( yxzV , some one- and two-mode interaction configurations under ERGMs for multilevel 

networks (11). The Venue-mediated weak ties configuration provides an understanding of whether nodes 

affiliated with the same venue tend to nominate each other or, reciprocally, by Venue-mediated strong ties. The 

Venue-mediated weak ties among sex workers configuration provides indications of the tendency for sex 

workers affiliated with common venues to nominate each other or, reciprocally, by Venue-mediated strong ties 

among sex workers.  
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Results of parameter estimates for recruitment status of sampling design (Wave IDs). To take into consideration 

the sampling strategy, dummy variables representing recruitment status of sampling design also were created by 

coding focal participants (seeds) as “Wave 1,” secondary contacts as “Wave 2,” and tertiary contacts as “Wave 

3.” Sender, Receiver, and Homophily effects were estimated using these dummy variables as covariates. Results 

were reported in Table 2S. Individuals in Wave 2 both sent and received more nominations. However, they 

tended not to nominate each other, whereas, in Wave 3, individuals tended to nominate within the wave, but 

there was no tendency toward sending or receiving more nominations. This may be due to the fact that nodes in 

Wave 2 are “in transit” between the seed nodes in Wave 1 and the nodes in the final Wave 3.  

 

Table 2S: ERGM parameter estimates for Wave IDs of recruitment status (significant parameters  

(p < .05) are bolded) 

ERGM components Sampling effects Parameter estimates Standard errors 

Control for sampling strategy Sender (Wave 2) 1.742 0.21 

Receiver (Wave 2) 1.575 0.187 

Homophily (Wave 2) -2.812 0.245 

Sender (Wave 3) -0.007 0.195 

Receiver (Wave 3) -0.216 0.182 

Homophily (Wave 3) 0.775 0.192 

 

Goodness-of-fit (GOF) Results. We examined the adequacy of our model to our dataset. Under MPNet, there 

are 274 non-zero graph statistics included in our model. With the aim to fit most of these statistics with a small 

number of parameters, we started with the usual baseline ERGM, that is, a model with Arc (density), 

Reciprocity, Alternating-in-star, Alternating-out-star, Alternating-Triangle, and Alternating-two-path 

parameters to model the one-mode network. Then we added the nodal attributes/behavior and venues as 
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exogenous covariates. For each addition of model parameters, we performed a model GOF test based on the 

comparison of the observed network and a simulated graph distribution of 10,000 graph samples from a 100-

million iteration simulation with the fitted model. That is, every 10,000th simulated network was taken as part 

of the network sample distribution. All graph statistics are calculated on the samples, and the graph statistic 

distributions were compared with the observed network by t-ratios. T-ratios smaller than 2.0 in absolute values 

suggest adequate fit to the statistics and, hence, the corresponding features of the network structure. Our model 

provides an adequate fit to almost all of the tested graph statistics but under-fits the in-degree centralization, 

with the exception that there are more two- and three-in-stars (where a node is nominated by two or three 

others) in the observed network than in the simulated graph distribution with t-ratios of 2.68 and 5.21 

respectively. The network in-degree distribution has a greater standard deviation and is more skewed compared 

to the model distribution with t-ratios of 3.07 and 5.22. Although we have positive Alternating-in-star parameter 

estimates, the GOF test suggests that our model still under-fits the popularity effects such that there are more 

hub-like nodes with high in-degrees in the network than the model predicted. The full table of model GOF test 

results can be provided upon request.   
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