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Figure S1, Related to Figure1. Graphical description of FAST’s actin filament 
tracking algorithm.  A. Fast performs the analysis of in vitro motility movies in 3 steps. 
The first step is the filament extraction from each frame in stack. Filament extraction for 
individual frames is performed in parallel on multiple CPUs. The second step involves 
the comparison of filament traces between adjacent frames to build actin-gliding paths. 
The final step involves the analysis of filament length-velocity data along the paths built 
in the second step. (B, C, D, E, F, and G) Extraction of filaments from individual frames. 
B. Raw image C. Background subtracted image D. Detection of areas containing 
filaments E. Separation of individual filaments F. Skeletonized filaments G. Two 
crossing filaments. (H and I) Path generation for the filaments. H.  The same filament in 
two adjacent frames i and i+1. Filaments are represented as linearly connected vectors. 

Vectors are defined as jv


 and jw


( j {1,2,3,...,N} ) for the filaments in frame i and i+1 

respectively. Yellow dashed lines mark the tips of the filament in frame i. I. Paths 
constructed for the filaments in a movie.          

  



 

 

Figure S2, Related to Figure 2. Actin binding proteins and human cardiac sS1 

designed for loaded in vitro motility. A. The model for utrophin construct structure in 

comparison to sS1 and alpha actinin models. The utrophin model is built from the 

structural coordinates of the actin binding domain and N-terminal first spectrin repeat of 

alpha actinin (pdb id: 1sjj). The sS1 model is based on the human cardiac sS1 structure 

(pdb id: 4db1). Structural coordinates of the missing residues in the sS1 structure are 

modelled from the chicken skeletal S1 structure (pdb id: 2mys). Actin binding domain of 

utrophin and alpha actinin are in red; spectrin repeats are in yellow; C-terminal EF finger 

motifs of alpha actinin are in blue; sS1 is in gray (ELC in green). Alpha actinin and utrophin 



domain definitions are based on the structures of utrophin’s actin binding domain (pdb 

id:1qag) and the first N-terminal spectrin repeat (pdb id: 3uul). B. The composition of the 

constructs designed for loaded in vitro motility. All constructs including sS1 have a C-

terminal tag (Ctag) of eight residues (RGSIDTWV) that binds specifically to the SNAP-

PDZ18 attachment system (Huang et al., 2009). A GSG flexible linker separates the N-

terminal portion of the constructs from the Ctag. The N-terminal portion of the utrophin 

construct is composed of the mouse utrophin actin-binding domain (utrABD) and the first 

N-terminal spectrin repeat (utrSR1), which together corresponds to the first 416 residues 

of mouse utrophin. Utrophin construct has an N-terminal 6X Histag for affinity purification 

via a nickel column. The N-terminal portion of human beta cardiac sS1 is composed of 

the first 808 residues of human beta cardiac myosin (gene id: MYH7), which forms a 

complex with human essential light chain (ELC). The N-terminal Flag-tag of ELC is utilized 

for affinity purification of sS1. The human alpha cardiac sS1 construct is composed of the 

first 810 residues of the human alpha cardiac myosin (gene id: MYH6). The sS1 

constructs for ATPase measurements have an eGFP tag in place of the Ctag. The eGFP 

emission is used for accurate sS1 concentration determination, which is critical for the 

accurate measurement of ATPase rates.  

  



 



Figure S3, Related to Figure 3. Stop model decay rate as a function of utrophin 

concentration and sS1 concentration dependence of loaded motility data. A.  

Simulated percent time mobile (upper) and percent time mobile decay rate (lower) as a 

function of utrophin concentration from the Stop Model. Solid and dashed lines are for 

two myosins with high and low unloaded percent time mobile respectively; but with the 

same KS in the Stop Model (see Eq. 1). The decay rate vs. utrophin profile is linearly 

proportional to the percent time mobile vs. utrophin profile (see Supplemental 

Experimental Procedures). Myosins with higher unloaded percent time mobile values 

have higher apparent decay rates with utrophin as predicted by the Stop Model. B. 

Representative loaded in vitro motility data for beta cardiac sS1 at 0.02 (red) and 0.03 

(blue) mg/ml motor concentrations. Lines show the best Stop Model fit to unfiltered 

percent time mobile loaded motility data. Dashed lines indicate the KS determined from 

the fit. Confidence intervals are the standard error of mean from at least four movie 

replicates. 

 



 



 

Figure S4, Related to Figure 4. Sequence alignment of alpha and beta cardiac sS1 

constructs and alpha and beta cardiac sS1 mixing experiments. A. Sequence 

alignment of alpha and beta cardiac sS1 constructs. Top row in the alignment shows the 

secondary structure of beta cardiac sS1 determined from the cardiac myosin model 

derived from cardiac myosin structure deposited in pdb (pdb id: 4DB1). In the secondary 

structure row, ribbon is for -helix and horizontal arrow is for -strand. Red highlight is 

for identical residues between alpha and beta cardiac sS1. Blue vertical arrow shows 

the insertions in alpha cardiac sS1 with respect to beta cardiac sS1. Both sequences 

end with GSG linker and the affinity clamp recognition sequence. 28 shows the lever 

arm helix which is identical in length for alpha and beta cardiac sS1. Human - and -

cardiac sS1 alignment is performed using clustalW (Larkin et al., 2007). Only the 

relevant portions of the alignment are displayed. B. Representative MVEL data for alpha 

and beta cardiac sS1 mixing experiments. MVEL is from unfiltered mobile filament 

velocity distribution. Confidence intervals are the standard error of mean from at least 

four movie replicates. Solid line shows the best quadratic equation fit to the data. 

Dashed line shows the linear sum of alpha (100% alpha) and beta cardiac sS1 (0% 

alpha) velocities weighted by their ratios in the mix. Downward curvature in solid line 

with respect to the dashed suggests that beta cardiac sS1 generates higher ensemble 

force than alpha cardiac sS1. 



 

 

Figure S5, Related to Figure 7. Residue conservation profiles for positions 531 

and 532. The Hidden Markov Model logo showing the likelihood of observing different 

residues at positions 531 and 532 for the cardiac myosin family (left) and the myosin 

universe (right). The height of each letter is proportional to the probability of observing 

the residue at that position. The logos are generated from multiple alignments retrieved 

from the protein family database PFAM (Finn et al., 2014) using Skylign (Wheeler et al., 

2014).  
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Table S1, Related to Figures 4-6. Unloaded velocity, ATPase, loaded in vitro 

motility and omecamtiv mecarbil binding parameters for human alpha and beta 

cardiac sS1, and the mutants M531R and S532P. 

 TOP5%a PLATEAUa kcatb Km
b KS

c KD
d 

beta 960 

± 80 

900 

± 80 

5.29 

± 0.03 

50.03 

± 5.19 

1.0 0.14 

± 0.04 

alpha 2910 

± 140 

2740 

± 140 

15.44 

± 1.01 

96.22 

± 1.18 

0.18 

± 0.02 

0.17 

± 0.05 

M531R 910 

± 50 

880 

± 50 

8.82 

± 0.1 

16.95 

± 5.32 

1.73 

± 0.29 

- 

S532P 610 

± 30 

530 

± 30 

1.74 

± 0.06 

69.80 

± 15.55 

0.65 

± 0.07 

- 

a TOP5% and PLATEAU are in nm/s. Filaments that are tracked longer than 10 frames 
are included in the analysis. A 20% tolerance filter is applied to eliminate intermittently 
moving filaments with a velocity dispersion higher than 20% of their mean within a 5-
frame window. Each velocity point in the analysis is the average velocity over 5 frames. 
TOP5% is the mean of filament velocities ranking in top 5%. The PLATEAU velocity is 
from the fit of the single exponential decay to maximum filament velocities (see Figure 
1 legend and Experimental Procedures). 95% confidence intervals are the standard 
error of means from at least four replicate movies from three different preparations of 
sS1. 
 
b kcat and Km are in s-1 and µM. kcat and Km are from the fit of the Michaelis-Menten 
equation to ATPase rates measured at different F-actin concentrations. Rates are the 
average of at least three replicates from three different preparations of sS1. For ATPase 
measurements, sS1 with a C-terminal eGFP tag is used, which is different from the 
constructs used for in vitro motility studies. 95% confidence intervals are from 100 
iterations of fitting the Michaelis-Menten equation to bootstrapped ATPase data (see 
Experimental Procedures). 
 



c KS are from the fit of the Stop Model to loaded in vitro motility percent time mobile 

data. KS is in nM. Mutant and -cardiac sS1 KS values are normalized with respect to 

-cardiac sS1values. Each loaded in vitro motility data comparing -cardiac sS1 and 

the mutants with respect to -cardiac sS1 is measured separately with different sS1 
preparations. Each comparison is performed with at least three different sS1 
preparations. 95% confidence intervals are from 100 iterations of fitting the Stop 
Model to bootstrapped loaded in vitro motility data comparing the variant and beta 
cardiac sS1. 
 
d KD is the disassociation constant for omecamtiv mecarbil binding to cardiac sS1 
determined from fitting the binding isotherm to mean velocity data (see Supplemental 
Experimental Procedures). Each omecamtiv mecarbil titration experiment was 
measured separately with three different sS1 preparations. 95% confidence intervals 
are from 100 iterations of fitting the binding isotherm to bootstrapped velocity data. KD 

is only measured for - and -cardiac sS1. KD is in µM. 
 



Supplemental Movies 

 

Movie S1, Related to Figure 2. -cardiac sS1 unloaded in vitro motility.  

Movie S2, Related to Figure 2. -cardiac sS1 loaded in vitro motility at 0.1 nM 

utrophin. 

Movie S3, Related to Figure 2. -cardiac sS1 unloaded in vitro motility.  

Movie S4, Related to Figure 2. -cardiac sS1 loaded in vitro motility at 0.1 nM 

utrophin. 

  



Supplemental Experimental Procedures 

 

A. Fast Automated Spud Trekker (FAST) Algorithm Description 

Fast Automated Spud Trekker (FAST) is written in Python in an object-oriented fashion. 

FAST makes use of existing python libraries such as Numpy (van der Walt et al., 2011) 

for matrix algebra, Matplotlib (Hunter, 2007) for plotting graphs, Scipy (Jones et al., 

2001-) for least squares fitting, and OpenCV (Bradski) and Scikit-Image (van der Walt et 

al., 2014)  for image processing. For parallel processing of movie frames, a unix bash 

shell script, PPSS, is used (louwrentius, 2011). This document is intended to provide a 

brief description of the main algorithms used in FAST. Under each subheading, a 

snippet of code for the algorithm described is provided. For the details of the FAST 

classes and routines, see the FAST package available at 

http://spudlab.stanford.edu/FAST.  

FAST is currently available for Linux OS (Ubuntu 14.04). Academic license for FAST is 

available for free on http://spudlab.stanford.edu/FAST. 

Summary of FAST graphical output 

One feature of FAST is to estimate the ideal or maximum gliding velocity from the in 
vitro motility assay. Maximum velocity is estimated from a distribution that is filtered with 
respect to filaments with fluctuating velocities. In FAST, the filtering method is referred 
to as “tolerance filtering” (see maximal velocities in length-velocity analysis section). 
With tolerance filtering, track segments with velocity dispersion higher than a fraction of 
the average segment velocity are discarded. Filtered and unfiltered distributions are 
displayed in FAST output side by side to show the effect of tolerance filtering. 

FAST provides two measures for maximum unloaded velocity: 1) the maximum plateau 
velocity (PLATEAU) determined from single exponential decay function fit to the 
maximum actin filament velocities as a function of actin filament length (see length-
velocity analysis). 2) the model-independent maximum velocity, TOP5%, is determined 
from the mean velocity of the filament velocities ranking in the top 5%. 

Another feature of FAST is to estimate the percentage of stuck filaments (%STUCK), 
which is one of the non-ideality measures for the assay. Filaments are identified as 
stuck if their effective speed is less than 80 nm/s along their track, 80 nm representing 
one pixel on the camera used. In FAST, stuck filaments are segregated from mobile 
filaments and only mobile filaments contribute to velocity distribution. Together with 
%STUCK, filament length distribution is a useful metric in assessing the quality of 
motility in unloaded conditions. 

For quick assessment of the effect of tolerance filtering on velocity distribution, FAST 
output displays how the mean of the velocity distribution (MVEL) and TOP5% velocities 

change with decreasing tolerance in filtering. For human -cardiac sS1, MVEL 
increases with decreasing tolerance filtering and TOP5% velocity remains relatively 

http://spudlab.stanford.edu/FAST
http://spudlab.stanford.edu/FAST


constant, indicating that low velocity values are contributed by intermittently moving 
filaments and TOP5% velocities are from smoothly moving filaments. 

FAST completes the analysis of in vitro motility movies in 3 steps 

Step 1 - Filament Extraction 

The first step in the execution of FAST is the filament extraction (see Figure S1A). 

Filament extraction involves automated a) background subtraction, b) detection of areas 

containing filaments, c) separation of individual filaments, and d) filtering of crossing 

filaments. Using PPSS parallel processing shell script, filament extraction for each 

frame is performed in parallel by a different processor, thereby utilizing all processors 

operated under the unix environment efficiently. 

a) Background subtraction 

For every pixel in the image (see Figure S1B), the lower 5-percentile intensity is 

subtracted from the 95-percentile value within a disk of 15-pixel radius to get the 

background-subtracted image (see Figure S1C).  

  

#Determine the 95-percentile intensity within a radius of 15 pixels 

img_1         = rank.percentile(self.img,self.disk_win,p0=0.95) 

         

#Determine the 5-percentile intensity within a radius of 15 pixels 

img_0         = rank.percentile(self.img,self.disk_win,p0=0.05) 

         

#Subtract the 5-percentile from 95-percentile map 

self.img_diff = img_1 - img_0  

         

b) Detection of areas containing filaments 

The mean intensity of the background-subtracted image is used as the cutoff to pick 

areas that potentially have filaments (see Figure S1D). Segregated patches that have 

higher pixel intensity are classified as filament islands. Each filament island may have 

more than one filament. 

#Cutoff value is the mean intensity of the background subtracted image  

self.cutoff_diff                     = np.mean(self.img_diff) 

         

#Define a mask for the pixels with intensity higher than cut-off value 

self.mask_diff                       = self.img_diff > self.cutoff_diff 

         

#Label each separate area on the mask with a different number 

self.labels_island,self.num_island   = label(self.mask_diff) 

 

c) Separation of Individual filaments 

In each filament island, the local Otsu threshold value (Otsu, 1975) that maximizes the 

separation between background and filament intensity is used to determine the location 

of filaments (see Figure S1E). After a rough selection of filaments is performed, empty 



pixels in filament representation are filled and filament edges are smoothened. 

Filaments that are within 5 pixels of the frame edges are excluded from further analysis. 

#Pick only pixels with integer intensity values 

valid              = self.img_reduced > 0 

         

#Determine the Otsu threshold value 

cutoff             = threshold_otsu(self.img_reduced[valid]) 

         

#Filament in coarse representation 

self.fil_reduced = self.img_reduced > cutoff 

self.img_fil     = self.fil_reduced*self.img_reduced 

         

#Label the filaments 

fil_labels, fil_features = label(self.fil_reduced) 

         

#In a cluster there may be more than a single filament - each cluster 

corresponds to a filament 

fine_clusters = watershed(self.fil_reduced,fil_labels,mask=self.fil_reduced) 

         

#Start with an empty list of filaments 

self.filaments = [] 

         

for i in range(1,fil_features+1): 

             

    xy_bool       = fine_clusters == i 

    xy            = np.nonzero(xy_bool) 

             

    #If it is a single pixel island - ignore   

    if len(xy[0]) < 2: 

        continue 

     

    #Define a new filament         

    new_filament        = Filament() 

             

    #Assign the label 

    new_filament.label  = self.frame.filament_counter  

             

    #Assign the current to island to the filament 

    new_filament.island = self 

             

    #Shrink the size of the filament image 

    new_filament.reduce_image(xy) 

             

    #Density of the filament in terms of intensity 

    new_filament.fil_density = 

np.sum(1.0*self.img_reduced*xy_bool)/np.sum(xy_bool) 

             

    #Fill in the holes in a filament 

    new_filament.img_reduced = binary_fill_holes(new_filament.img_reduced) 

             

    #Binary opening-closing to remove extra short branches 

    new_filament.img_reduced = 

binary_closing(new_filament.img_reduced,structure=disk_1) 

             

    #Add new filament to the list 



    self.filaments.append(new_filament) 

             

    #Increment filament counter 

    self.frame.filament_counter += 1 

 

d) Filament skeletonization 

Filaments that are individually separated in the previous step are skeletonized for their 

line representation (see Figure S1F).  

 

#Skeletonize the image 

self.img_skeleton = skeletonize(self.img_reduced) 

 

After skeletonization, the number of tips is counted for each filament. Pixels with only 

one neighboring pixel are classified as tips. Filaments with a number of tips higher than 

2 are considered as crossing and eliminated from further analysis (Figure S1G). 

 

Step 2 – Path Generation 

After the line representations of the filaments are extracted for each frame, filaments in 

adjacent frames are compared to construct the paths. To facilitate comparison, each 

skeletonized filament is represented as connected vectors from one tip to the other (see 

Figure S1H).  

Two filaments between adjacent frames are connected based on selection criteria that 

take into account only the geometric features of the filaments. There are three scores 

that together define the selection criteria. 

a) Score 1- Euclidean distance and length difference between filaments  

The first criterion is that two filaments need to be in close proximity with each other and 

the length difference should not be high to be considered for comparison. Only filaments 

that are within a radius of 25 pixels and length difference of 5 pixels are chosen for 

comparison between adjacent frames.  

b) Score 2 - Orthogonal distance between filaments 

Our observations suggest that filaments glide along their axis and displacement 

orthogonal to the filament axis is minimal. To estimate the orthogonal distance between 

filaments, we take the sum of the cross-products of the vectors jv


 and jw


for 

j {1,2,3,...,N}  and normalize by the shorter filament’s length. For filaments that are 

different in length, hence the number of vectors, a cumulative sum is performed shifting 

the shorter filament along longer filament by one pixel at a time. By this approach 

filaments that are different in length are further penalized. 



 

L N

j k j

k 0 j 1

v w

=
N





 






  

In the equation above,   is the orthogonal distance between the filaments, N is the 

length of the shorter filament and L is 1 plus the length difference between the 

filaments. For all i+1th frame-filaments that are compared with the filament in the ith 

frame, the orthogonal distance is quantified. Among all possible candidates, the filament 

that has the lowest orthogonal distance value is selected as the first best choice. If the 

orthogonal distance difference between the first and second best choice is higher than 

100.5 and the orthogonal distance for the first best choice is less than 10, the first best 

choice is passed onto the next test.      

c) Score 3 - Shape overlap between filaments 

The second criterion for filament comparison between adjacent frames is the shape 

overlap. Going from frame i to i+1, we don’t expect filament shape to change drastically. 

To quantify the shape overlap score, the dot product of filament vectors are summed. 

 

L N

j k j

k 0 j 1

v w

overlap=
N L





 




  

The overlap value is 1 for identical filaments oriented in the same direction, 0 for 

filaments that are completely orthogonal to each other, and -1 for identical filaments 

oriented in opposite direction.  Filaments that have an overlap score absolute value 

higher than 0.4 pass the criteria for shape overlap. 

It is possible that one filament in frame i+1 has two matching filaments in frame i based 

on the three selection criteria. In this case, the filament in frame i+1 is linked to the 

filament in frame i with the lowest orthogonal distance. 

d) Determination of filament gliding direction and instantaneous velocity  

Once the two filaments in adjacent frames are connected, the next step is the 

determination of the relative orientation of filaments, filament gliding direction and the 

instantaneous velocity. 

Relative filament orientations are determined based on the sign of the overlap score. If 

the overlap score is positive, filaments are oriented in the same direction. If the overlap 

score is negative, filaments are oriented in opposite direction. Filaments in opposite 

orientation of their reference filament are reversed at this step. The reference filament is 

the filament in the earlier frame. 



Filament gliding direction is determined from the average orientation of distance vectors 

between the filaments with respect to the reference filament axis. The distance vector 

between jv


 and jw


 is defined as j,k j kd v w
  

   . 

 

L N

j k j k,j

k 0 j 1

gliding direction v d


 

 

    

If the value of gliding direction is positive, the filament is moving in the same orientation 

of the filament. If the value of gliding direction is negative, the filament is moving in the 

opposite orientation of the filament. The expression below is for instantaneous velocity. 

 

L N

j k,j

k 0 j 1

d

instantaneous velocity
N L





 







  

e) Connection of broken paths 

As discussed above, crossing filaments are eliminated from the analysis; therefore 

filament crossing leads to new path generation, and the history of the filament is lost. To 

connect broken paths of the same filament, we apply a selection criteria similar to the 

one described for connecting filaments in adjacent frames. 

For each path built, upcoming paths that start within the 5-frame window of the earlier 

path’s final frame are considered for connection. The comparison is made between the 

final filament trace of earlier path and the first filament trace of the upcoming path. If the 

overlap score for the two filaments is higher than 0.4, the orthogonal distance between 

the filaments is less than 1, the Euclidean distance between the filaments is less than d 

x 25 (where d is the number of frames between the paths), and the velocity of travel 

between the connection points of the paths is in between 0.5 and 2 times the average 

velocity of the paths, the two paths are merged as a single path (see Figure S1I).     

 

Length-velocity analysis 

From the constructed filament tracks, several analyses are performed to extract velocity 

measures relevant for different aspects of myosin function.  

a) Maximal velocities 

The first analysis involves determining maximal velocities by filtering out completely 

stuck filaments and filaments that glide with intermittent stops that cause filaments to 

glide at suboptimal velocities. Each “velocity point” in our analysis refers to the average 

of 5 consecutive instantaneous velocities for a single filament. Therefore, in total N-5 

velocity points (gray points in Figure 1A) are measured for a single filament tracked for 

N frames.  



Stuck filaments are determined based on a simple selection criterion. If average 

filament velocity along a path is less than 80 nm/s, the filament is defined as stuck. The 

reason for choosing 80 nm/s is that in our imaging system, 1 pixel is 80 nm and for beta 

cardiac myosin motility movies are taken at 1 frame per second. For our analysis, we 

pick only paths that are longer than or equal to 10 frames, which prevents us from false 

labeling of filaments with short paths. 

To filter out filaments with intermittent stops, we apply a selection criterion that is 

defined as tolerance filtering. With tolerance filtering, only filament path segments with a 

velocity dispersion less than some fraction of the average segment velocity is kept for 

further analysis.  

 i i 1 i N i i 1 i N([V,V ,...,V ]) c. ([V,V ,...,V ])
   

     

In the expression above σ and μ stand for standard deviation and average operators 

respectively for velocities within an N+1 frame window, and c stands for the fraction 

value. Both the size of the segment and the fraction value are user defined. 20% 

tolerance filtering means c is equal to 0.2. For all our analyses, we choose a 5-frame 

window size. 

FAST provides two maximal velocity measurements. The first maximal velocity is called 

TOP5% velocity. TOP5% velocity is the mean of velocities ranking higher than the top 

5-percentile. In all our analyses in this manuscript, we determined the TOP5% of a 

collection of paths that are longer than 10 frames, subjected to 20% tolerance filtering 

with 5-frame averaging window size. The second maximal velocity is called PLATEAU. 

PLATEAU is determined by fitting a single exponential decay function to the “maximum 

instantaneous velocities” of filament paths that pass the 20% tolerance filtering criterion. 

“Maximum instantaneous velocities” (blue points in Figure 1A) are the maximum of 

instantaneous velocities (gray points in Figure 1A) measured for each filament. 

 
L/

PLATEAUV=V -Ae 
  

In the equation above, VPLATEAU is the maximal PLATEAU velocity,  is the decay 

parameter and L is the actin filament length.  

 

b) Velocity histograms 

 

For loaded in vitro motility, we define MVEL as the mean of the unfiltered velocity 

distribution. For filtered velocity distributions, mean velocity is referred as MVELX where 

x is for the percent tolerance parameter (e.g. MVEL20 is the mean of the velocity 

distribution filtered by 20% tolerance filtering). Velocity distributions are from frame-to-

frame instantaneous velocities averaged within a window of a certain number of frames. 

The window size for all of our analyses is 5 frames. For stuck filament paths, frame-to-

frame instantaneous velocities are assigned to 0 and excluded from the velocity 



distribution. Paths contribute in velocity distributions proportional to their length in 

number of frames. 

 

Percent stuck is another parameter relevant for loaded in vitro motility. Percent stuck is 

defined as the fraction of velocities that are equal to 0 in velocity distribution including 

stuck filaments. 

 

N

i

i 1

N

i 1

(V )

percent stuck

1











  

In the expression above, N is the number of velocities in the distribution. δ(Vi) is equal 

to 1 if Vi is equal to 0, and it is equal to 0 otherwise. 

  



B. Loaded In Vitro Motility Model Description 

 

Derivation of percent time mobile from percent mobile filaments and MVEL 

As described in the main text, percent mobile filaments and MVEL alone do not report 

the complete inhibition of actin gliding by utrophin. Percent time mobile is the combined 

parameter that reports complete inhibition. 

Percent time mobile is derived combining percent mobile filaments and MVEL. Percent 

mobile filaments is the time weighted fraction of mobile filaments. Since mobile 

filaments temporarily stop gliding, we need to consider only the time spent gliding to 

determine percent time mobile.  

The mobile fraction of gliding is estimated from the ratio of MVEL and TOP5% 

velocities. If filaments don’t encounter obstacles, they glide at maximum velocity. Due to 

obstacles, filaments stop and temporary stops cause MVEL to be less than TOP5% 

velocity measured in unloaded conditions.    

 mobile stuck mobileMVEL( t t ) TOP5% t       

 mobile

mobile stuck

t MVEL

t t TOP5%




  
  

Percent time mobile is determined from the product of percent mobile filaments and 

MVEL to TOP5% ratio. The ratio of MVEL and unloaded TOP5% is equal to the mobile 

time fraction of gliding filaments, thus multiplying this ratio with percent mobile filaments 

yields the actual mobile time fraction of all filaments. 

 
MVEL

% time mobile % mobile filaments
TOP5%

     

 

Stop Model for percent time mobile 

Percent time mobile is defined as the total duration of filaments in the “mobile” state 

divided by the total duration of filaments in the “stuck” and “mobile” states. 

 
mobile

mobile stuck

t
% time mobile

t t
 


  Eq. S1 

Stuck propensity (Χstuck) is defined as the ratio of stuck and mobile time durations.  

 
stuck

stuck

mobile

t

t
    



We rearrange Eq. S1 dividing the numerator and denominator by mobilet .  

 
stuck

1
% time mobile

1
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 
  Eq. S2 

We observe that there is a linear relationship between stuck propensity and utrophin 

concentration (see Figure 3D). If we assume the linear relationship between stuck 

propensity and utrophin concentration, we reach an expression that is similar to 

thermodynamic association-disassociation equilibrium. 

 
stuck

stuck

mobile S

[F ] [utrophin]

[F ] K
     Eq. S3 

In expression above, Fstuck (i.e. tstuck) and Fmobile (i.e. tmobile) are the concentrations of 

stuck and mobile filaments respectively, [utrophin] is utrophin concentration in nM and 

KS is the disassociation constant for utrophin-actin interaction in nM. We propose that KS 

depends on myosin’s ensemble force; higher ensemble forces rupture utrophin-actin 

interaction more efficiently thus causing KS to be higher. 

In unloaded conditions there is a fraction of stuck filaments, therefore 
STUCK  in the 

absence of utrophin is greater than 0. 

 STUCK STUCK

S

[utrophin]
([u]) (0)

K
      Eq. S4 

We derive the utrophin dependent percent mobile expression by substituting 
STUCK in 

Eq. S2 with Eq. S4. 

 

STUCK

S

1
% time mobile

[utrophin]
1 (0)

K

 

  

  Eq. S5 

For percent mobile in unloaded conditions, we define a new paramter, M0. 

 0

STUCK

1
M

1 (0)


 
  Eq. S6 

Finally, the expression for percent mobile is rearranged by incorporating M0 in Eq, S5.   

 
S 0

S 0

K M
% time mobile

K M [utrophin]
 


  Eq. S7 

We fit Eq. S7 (referred as Eq. 1 in main text) to percent time mobile data to determine 

M0 and KS for mutant and WT human cardiac sS1. 



Parabolic velocity dispersion expression for loaded in vitro motility 

We observe that utrophin causes filaments to glide with intermittent stops causing 

velocities to fluctuate between high and low velocities. Based on this observation, we 

expect a parabolic relationship between velocity dispersion and average velocity, <V>, 

in presence of utrophin. Velocity dispersion is defined as the standard deviation of a 

velocity trajectory with velocities alternating between maximal unloaded velocity Vu and 

0. 

 
2 2velocity dispersion V V        Eq. S8 

 MOVE UV p V    Eq. S9 

 
2 2

MOVE uV p V    Eq. S10 

pMOVE is the fraction of time spent gliding at Vu in a filament’s trajectory. 

We rewrite <V2> as a function of <V> and Vu. 

 
2

uV V V     Eq. S11 

Substituting the expression for <V2> in Eq. S8 with Eq. S11, we derive the expression 

for velocity as a function of average velocity. 

 2

uvelocity dispersion V V V       Eq. S12 

This equation can be further simplified by dividing both sides Vu to yield normalized 

velocity dispersion ranging between 0 and 0.5. 

 normalized velocity dispersion = p
M

-p
M

2   Eq. S13 

Eq. S13 has the maximum value of the normalized velocity dispersion when pm is 0.5. In 

other words velocity dispersion is maximum when <V> is half the Vu. 

SMS velocity decay rate as a function utrophin concentration 

Here, we derive the expression for the decay rate of Stop Model percent time mobile as 

a function of utrophin concentration.  

Percent time mobile decay rate (k) is defined as the relative decay of percent time 

mobile with utrophin. 

 
d % time mobile 1

k([u])
d[u] % time mobile

 
 

 
  Eq. S14 

After some mathematical transformations, we reach the final expression for the decay 

rate.  



 
S

% time mobile
k([u])

K

 
   Eq. S15 

We find that decay rate linearly depends on percent time mobile. As percent time mobile 

decreases, the apparent impact of utrophin on percent time mobile decreases as well. 

  



C. Rest of Supplemental Experimental Procedures 

Expression and purification of utrophin construct 

For expression of the constructs, transformed cells were grown overnight in 20 ml Luria 

Broth at 37oC. In the morning, overnight cultures were transferred into 1L cultures. Cells 

are grown at 37oC for 4-5 hours. Once the OD600 of the culture reached 0.6-0.8, cells 

were induced with 1 mM IPTG. The culture was incubated at 37oC for an additional 4 

hours before cells were harvested. Harvested cells were resuspended in 150 mM NaCl, 

10 mM Imidazole, 25 mM Tris-Cl, 1 mM DTT, pH 8.0 solution (Buffer A). Cells were 

lysed at 4oC using an Emulsiflex (Avestin, Canada) homogenizer for 5 minutes three 

times. Lysed cells were sedimented at 16000 rpm in JA-20 rotor for 10 min at 4oC and 

the pellet retained for an inclusion body preparation. The pellet was resuspended in 8 M 

Urea, 150 mM NaCl, 10 mM Imidazole, 25 mM Tris-Cl, 1 mM DTT, pH 8.0 solution 

(Buffer B) at 4oC and sedimented at 16000 rpm in JA-20 rotor at 4oC. The supernatant 

was passed through a bench-top nickel column at 4oC, and the column was washed 

with buffer B. Denatured protein was refolded on the column by passing buffer A 

through the column. Utrophin bound to the nickel column was eluted with 150 mM NaCl, 

500 mM Imidazole, 25 mM Tris-Cl, 1 mM DTT in single step. The eluted protein was 

concentrated and dialyzed overnight against 150 mM NaCl, 25 mM Tris-Cl, 1 mM DTT, 

pH 8.0 at 4oC. The dialyzed protein was flash frozen in liquid nitrogen and stored at -

80oC.             

Expression and purification of SNAP-PDZ18 

Briefly, Rosetta (DE3) cells were transformed with pHFT2 plasmid carrying SNAP-

PDZ18. A 1L bacterial culture grown in Luria Broth medium at 37oC was induced with 1 

mM IPTG once the OD600 of the culture reached 0.6-0.8. 4-6 hours after induction, cells 

are sedimented by centrifugation and resuspended in 150 mM NaCl, 25 mM Tris-Cl, pH 

8.0 (Buffer X). Resuspended cells were lysed using an Emulsiflex (Avestin, Canada) 

homogenizer. Lysed cells were sedimented and the supernatant loaded onto the bench-

top nickel column. After a column wash with buffer X, protein was eluted off the column 

with 500 mM Imidazole 150 mM NaCl, 25 mM Tris-Cl, pH 8.0 at 4oC. Eluted protein was 

concentrated and the buffer was exchanged to buffer C. The SNAP-PDZ18 was flash 

frozen with liquid nitrogen and stored at -80oC.  

Unloaded and loaded in vitro motility measurements 

Coverslips were coated with 0.2% nitrocellulose (Ernst Fullam) dissolved in amyl 
acetate (Sigma) and air dried for at least 0.5 hour. Using double-sided tape, four 
channels were created between the cover slip and the slide. On each slide, the motility 
assay under four different conditions were performed simultaneously. The reagents 
were loaded into the channels in the following order: 1) 10 μl of 2 µM SNAP-PDZ18 
diluted in Assay Buffer (AB; 25 mM Imidazole (pH 7.5), 25 mM KCl, 4 mM MgCl2, 1 mM 
EGTA, and 1 mM DTT) was loaded and incubated for 2 minutes. 2) 20 μl of 1 mg/ml 
BSA diluted in AB (ABBSA) was loaded to block the surface from nonspecific 
subsequent attachments and incubated for 2 minutes. 3) 10 μl of a mixture of C-tagged 



human cardiac sS1 and utrophin at desired concentrations was loaded and incubated 
for 3 minutes. Prior to mixing myosin and utrophin together, myosin and utrophin 
dilutions were prepared in AB with 0.1 mg/ml BSA. 4) 20 μl of ABBSA was loaded to 
wash the channels. 5) Finally, 10 μl of the GO solution [1-5 nM tetramethylrhodamine 
(TMR)–phalloidin labeled bovine actin, 2 mM ATP, an oxygen scavenging system (0.3–
0.4% glucose, 0.25 μg/mL glucose oxidase, 0.45 μg/mL catalase), and an ATP 
regeneration system (1 mM phosphocreatine, 0.1 mg/mL creatine phosphokinase)] was 
loaded. Movies were obtained at 23°C at a frame rate of 1 Hz for beta-cardiac sS1 and 
3 Hz for alpha cardiac-sS1 using a Nikon Ti-E inverted microscope with Andor 
iXon+EMCCD camera model DU885. Unloaded and loaded in vitro motility assays for 
each cardiac sS1 variant were repeated with at least three fresh protein preparations. At 
each condition at least four movies with a duration of 30 seconds were recorded. At 
high concentrations of utrophin, we observed significant actin filament severing that 
increases with myosin concentration. To minimize filament severing due to utrophin, we 
empirically determined the lowest human cardiac sS1 concentration at which actin 
gliding velocities were as high as the velocities determined at high myosin 
concentration. The loaded in vitro motility assay was performed at this low myosin 
concentration.  
 
Omecamtiv mecarbil titration experiments 
 
KD for omecamtiv mecarbil binding to cardiac sS1 was determined from fitting the 
binding isotherm to mean velocity data. 
 
Mean velocity is defined as the linear sum of the omecamtiv mecarbil bound and 
unbound cardiac sS1 velocities. 

 bound bound bound unboundMVEL f V (1 f )V      Eq. S16 

fbound is the fraction of sS1 bound to omecamtiv mecarbil, Vbound and Vunbound are the 

MVEL of the bound and unbound states respectively. 

fbound is determined from the binding isotherm relationship.  

 bound

D

1
f

1 K / [OM]



  Eq. S17 

KD and [OM] are the disassociation constant and omecamtiv mecarbil concentrations 
respectively. Both parameters are in µM. 
 
Replacing fbound in Eq. S16 with expression in Eq. S17, we get the final expression fitted 
to data. 

 bound unbound

D D

1 1
MVEL V (1 )V

1 K / [OM] 1 K / [OM]
   

 
  Eq. S18 

From the fit KD, Vbound and Vunbound are determined. 
 



Human cardiac sS1 clean up for the in vitro motility assay  

Before starting the in vitro motility assay, cardiac sS1 was cleaned up from partially 
inactive motors that do not release actin in the presence of excess ATP. For the clean-
up, cardiac sS1 was incubated with 20 times more concentrated F-actin (typically ~50 
μM) in 4 mM ATP for 10 minutes. To completely precipitate all F-actin as magnesium 
paracrystals, the myosin F-actin mix was brought to 50 mM MgCl2. Formation of 
magnesium paracrystals are observed as white precipitates. After 10 minutes of 
incubation with MgCl2, the sample was sedimented at 95,000 rpm for 20 minutes using 
a TLA100 rotor. The supernatant was collected and its concentration was measured 
using the Bradford Assay. A mock clean-up procedure without myosin was also 
performed simultaneously with the myosin clean up. The final supernatant from the 
mock clean-up was used as the blank for the Bradford Assay. The quality of the myosin 
clean-up was assessed by the percent of stuck filaments under unloaded conditions. 
We repeated the myosin clean-up procedure until the percent stuck dropped below 
10%. 
 
Homology modeling of human cardiac sS1 structure 
 
The actin-beta cardiac myosin model is built based on an actomyosin model built from 
myosin structure fitted to F-actin cryo-EM data (Mendelson and Morris, 1997). Residues 
missing in the beta cardiac myosin crystal structure (pdb id: 4DB1) are modeled in from 
the chicken skeletal myosin structure (pdb id: 2MYS). 
 
Bootstrapping for confidence interval estimation 
 
To estimate the 95% confidence interval for parameters of a model fitted to 
experimental data, the model was iteratively fitted to bootstrapped data. Bootstrapped 
data was obtained by adding random permutation of residuals from the initial fit to ideal 
data. Ideal data is the expected data based on the fitted parameters. Bootstrapping 
iteration was performed for 100 times for each data set. 95% confidence interval for a 
parameter was estimated to be twice the standard deviation of the fitted parameter 
distribution. Bootstrapping was used to estimate the confidence intervals for KS from 
loaded in vitro motility data and KD from the OM titration data. 
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