Supplementary Figures

Supplementary Figure 1 | HSQC spectra. Spectra showing the side chain methine proton from (a) compound 6a in MeCN- d_3 , (b) compound 6a in benzene- d_6 , (c) compound 6b in MeCN- d_3 , and (d) compound 6b in benzene- d_6 .

Supplementary Figure 2 | HSQC spectra. Spectra showing the side chain methine proton from (a) compound 7a in MeCN- d_3 , (b) compound 7a in benzene- d_6 , (c) compound 7b in MeCN- d_3 , and (d) compound 7b in benzene- d_6 .

Supplementary Figure 3 | HSQC spectra. Spectra showing the side chain methine proton from (a) compound 8a in MeCN- d_3 , (b) compound 8a in benzene- d_6 , (c) compound 8b in MeCN- d_3 , and (d) compound 8b in benzene- d_6 .

Supplementary Figure 4 | HSQC spectra. Spectra showing the side chain methine proton from (a) compound 9a in MeCN- d_3 , (b) compound 9a in benzene- d_6 , (c) compound 9b in MeCN- d_3 , and (d) compound 9b in benzene- d_6 .

Supplementary Figure 5 | HSQC spectra. Spectra showing the side chain methine proton from (a) compound 10a in MeCN- d_3 , (b) compound 10a in benzene- d_6 , (c) compound 10b in MeCN- d_3 , and (d) compound 10b in benzene- d_6 .

Supplementary Figure 6 | The asymmetric unit in crystal 10c. The 50% probability ellipsoid representation was prepared using the Mercury software.¹

Supplementary Figure 7 | The asymmetric unit in crystal 10a. (a) The asymmetric unit. (b) The hexamer generated by imposing crystallographic symmetry. The 50% probability ellipsoid representation was prepared using the Mercury software.¹

b

Supplementary Figure 8 | **Crystal packing of 10c.** (a) Viewed along the helical axis. The helices arrange in a pseudo-trigonal manner. (b) Perpendicular to the helical axis. The figure was prepared using the Mercury software.¹

b

Supplementary Figure 9 | Backbone–side chain distances. (a) Naphthyl–backbone interactions in compound 10a. (b) Naphthyl–backbone interactions in compound 10c.

Supplementary Figure 10 | **CD spectra.** Spectra obtained for the acylated and non-acylated *(S)*-1-(1-naphthyl)ethyl-containing monomers in acetonitrile (60 μ M) at room temperature.

Supplementary Figure 11 | CD spectra. (a) Compound 10a and (b) compound 10b at varying temperatures in acetonitrile (\sim 60 μ M).

Supplementary Figure 12 | CD spectra. (a) Compound 10a and (b) compound 10b at varying temperatures in acetonitrile ($\sim 60 \ \mu$ M) upon cooling the sample back down to room temperature.

Supplementary Figure 13 | CD spectra. (a) Compound 9a, (b) compound 10a, and (c) compound 10b recorded at varying concentrations of methanol (60 μ M solutions). For the hexamers, poor solubility precluded spectra from being obtained at the highest concentrations of MeOH.

Supplementary Figure 14 | CD spectra. Compound 10a recorded at varying concentrations in acetonitrile (60 μ M solutions).

Supplementary Figure 15 | Fluorescence emission spectra. (a) Spectrum recorded for compound 10a in acetonitrile or (b) in MeOH–acetonitrile (3:2). (c) Spectrum recorded for and compound 6a in acetonitrile or (d) in MeOH–acetonitrile (3:2) at room temperature (60 μ M solutions). The intensities are shown in arbitrary units (a.u.).

Supplementary Figure 16 | **UV chromatogram of crude mixture from solid-phase synthesis.** The chromatogram was obtained after sub-unit solid-phase synthesis aimed at compound **10e**. Compounds of four and five residues were identified by UPLC-MS, but were not collected during preparative HPLC purification.

Supplementary Figure 17 | **Molecular dynamics simulation.** Root-mean square deviation (RMSD) and gyrational radius (RGyr) during MD simulation (250 ns) of compound **10a** at 200 K.

Supplementary Figure 18 | **Molecular dynamics simulation.** Root-mean square deviation (RMSD) and gyrational radius (RGyr) during MD simulation (250 ns) of compound **10a** at 250 K.

Supplementary Figure 19 | **Molecular dynamics simulation.** Root-mean square deviation (RMSD) and gyrational radius (RGyr) during MD simulation (250 ns) of compound **10a** at 300 K. Representative conformations are shown to illustrate the folded and unfolded states of the helical structure throughout the simulation.

Supplementary Figure 20 | **Molecular dynamics simulation.** Root-mean square deviation (RMSD) and gyrational radius (RGyr) during MD simulation (250 ns) of compound **10a** at 350 K.

Supplementary Figure 21 | **Molecular dynamics simulation.** Root-mean square deviation (RMSD) and gyrational radius (RGyr) during MD simulation (250 ns) of compound **10a** at 400 K.

Supplementary Figure 22 | HPLC traces of compounds 1a–5b.

Supplementary Figure 23 | HPLC traces of compounds 6a–16.

Supplementary Figure 24 | ¹H NMR spectrum of compound 1a. The spectrum was recorded in benzene- d_6 at room temperature.

Supplementary Figure 25 | ¹H NMR spectrum of compound 1b. The spectrum was recorded in benzene- d_6 at room temperature.

Supplementary Figure 26 | ¹H NMR spectrum of compound 2a. The spectrum was recorded in benzene- d_6 at room temperature.

Supplementary Figure 27 | ¹H NMR spectrum of compound 2b. The spectrum was recorded in benzene d_6 at room temperature.

Supplementary Figure 28 | ¹H NMR spectrum of compound 3a. The spectrum was recorded in benzene- d_6 at room temperature.

Supplementary Figure 29 | ¹H NMR spectrum of compound 3b. The spectrum was recorded in benzene- d_6 at room temperature.

Supplementary Figure 30 | ¹H NMR spectrum of compound 4a. The spectrum was recorded in benzene- d_6 at room temperature.

Supplementary Figure 31 | ¹H NMR spectrum of compound 4b. The spectrum was recorded in benzene d_6 at room temperature.

Supplementary Figure 32 | ¹H NMR spectrum of compound 5a. The spectrum was recorded in benzene d_6 at room temperature

Supplementary Figure 33 | ¹H NMR spectrum of compound 5b. The spectrum was recorded in benzene- d_6 at room temperature.

Supplementary Figure 34 | ¹H NMR spectrum of compound 6a. The spectrum was recorded in benzene- d_6 at room temperature.

Supplementary Figure 35 | ¹H NMR spectrum of compound 6b. The spectrum was recorded in benzene d_6 at room temperature.

Supplementary Figure 36 | ¹H NMR spectrum of compound 7a. The spectrum was recorded in benzene- d_6 at room temperature.

Supplementary Figure 37 | ¹H NMR spectrum of compound 7b. The spectrum was recorded in benzene- d_6 at room temperature.

Supplementary Figure 38 | ¹H NMR spectrum of compound 8a. The spectrum was recorded in benzene- d_6 at room temperature.

Supplementary Figure 39 | ¹H NMR spectrum of compound 8b. The spectrum was recorded in benzene- d_6 at room temperature.

Supplementary Figure 40 | ¹H NMR spectrum of compound 9a. The spectrum was recorded in benzene- d_6 at room temperature.

Supplementary Figure 41 | ¹**H NMR spectrum of compound 9b.** The spectrum was recorded in benzene d_6 at room temperature.

Supplementary Figure 42 | ¹H NMR spectrum of compound 10a. The spectrum was recorded in benzene- d_6 at room temperature.

Supplementary Figure 43 | ¹H NMR spectrum of compound 10b. The spectrum was recorded in benzene d_6 at room temperature.

Supplementary Figure 44 | ¹H NMR spectrum of compound 10c. The spectrum was recorded in chloroform- d_3 at room temperature.

Supplementary Figure 45 | ¹H NMR spectrum of compound 10d. The spectrum was recorded in chloroform- d_3 at room temperature.

Supplementary Figure 46 | ¹H NMR spectrum of compound 10e. The spectrum was recorded in benzene d_6 at room temperature.

Supplementary Figure 47 | ¹H NMR spectrum of compound 11. The spectrum was recorded in benzene- d_6 at room temperature.

Supplementary Figure 48 | ¹H NMR spectrum of compound 12. The spectrum was recorded in chloroform- d_3 at room temperature.

Supplementary Figure 49 | ¹H NMR spectrum of compound 16. The spectrum was recorded in acetonitrile- d_3 at room temperature.

Supplementary Tables

Supplementary Table 1 | Torsion angles for additional residues

N F q y O	ş
$H_3C + H$ 1-Naph	

Compound 10a						
2	¢	θ	Ψ	ω	χ1	χ2
	96.2	172.5	-175.3	-13.7	53.6	-80.5
Compound 10c						
Residue	φ	φ	Ψ	ω	χ1	χ2
3	96.9	166.4	-179.9	-19.4	66.7	-61.5
4	94.3	168	-178.8	-9.5	54.4	-74.2
5	97.4	166	-173.9	-13.4	56.3	-73.8
From DFT calculations previously published (Hofmann et al.) ²						
	95.8	-179.6	-178.2	8.6	n.a.	n.a.

Supplementary Table 2 | Examples of naphthyl-backbone interactions^a

Compound 10a	Distance (Å)	Compound 10c	Distance (Å)
C1–C6	3.31(2)	C22–C62	3.35(2)
C3–C15		C14–C152	3.40(2)
O1–C15	3.54(1)	C152–O14	3.53(2)

^aShown in green in Supplementary Fig. 9.

Comp.	Formula	Yield ^a [%]	MS: m/z for $[M+H]^+$ [calcd./obs.]	HRMS: m/z for $[M+H]^+$ [calcd./obs. (ΔM)]	HPLC [<i>t</i> _R /min]	HPLC [% Purity] ^b
1a	C ₂₈ H ₃₈ N ₂ O ₄	21 (21)	467.3/467.3	467.2904/467.2920 (3.4)	12.50	96
1b	C ₂₈ H ₃₅ N ₂ O ₄	30 (30)	521.3/521.2	521.2622/521.2630 (1.6)	14.11	95
2a	C ₃₉ H ₅₁ N ₃ O ₅	35 (36)	642.4/642.5	642.3901/642.3901 (0.0)	13.32	95
2b	C ₃₉ H ₄₈ F ₃ N ₃ O ₅	25 (16)	696.4/696.4	696.3619/696.3625 (0.9)	15.10	98
3a	C ₅₀ H ₆₄ N ₄ O ₆	34 (16)	817.5/817.5	839.4718/839.4737 ^c (2.3)	14.24	93
3b	C ₅₀ H ₆₁ F ₃ N ₄ O ₆	45 (21)	871.5/871.5	871.4616/871.4658 (4.8)	16.06	95
4a	C ₆₁ H ₇₇ N ₅ O ₇	22 (7)	992.6/992.8	992.5896/992.5935 (4.0)	15.00	97
4b	C ₆₁ H ₇₄ F ₃ N ₅ O ₇	34 (11)	1046.6/1046.7	1046.5613/1046.5646 (3.1)	16.83	95
5a	C72H90N6O8	44 (10)	1167.9/1167.8	1189.6712/1189.6737 ^c (2.1)	16.23	98
5b	$C_{72}H_{87}F_3N_6O_8$	43 (9)	1221.7/1221.7	1243.6430/1243.6429 ^c (0.1)	18.42	97
6a	C ₃₆ H ₄₂ N ₂ O ₄	38 (33)	567.3/567.4	567.3218/567.3242 (4.3)	14.05	96
6b	$C_{36}H_{39}F_3N_2O_4$	36 (32)	621.3/621.2	621.2935/621.2959 (3.8)	16.14	99
7a	C ₅₁ H ₅₇ N ₃ O ₅	39 (12)	792.4/792.4	792.4371/792.4396 (3.1)	18.40	95
7b	$C_{51}H_{54}F_3N_3O_5$	16 (11)	846.4/846.3	846.4089/846.4114 (3.3)	19.41	98
8a	C ₆₆ H ₇₂ N ₄ O ₆	30 (18)	1017.6/1017.5	1017.5526/1017.5566 (3.9)	20.34	99
8b	C ₆₆ H ₆₉ F ₃ N ₄ O ₆	32 (19)	1071.5/1071.5	1071.5242/1071.5287 (4.2)	23.17	97
9a	C ₈₁ H ₈₇ N ₅ O ₇	34 (10)	1242.7/1242.6	1264.6498/1264.6537 ^c (3.2)	24.31	96
9b	$C_{81}H_{84}F_3N_5O_7$	6 (2)	1296.6/1296.4	648.8234/648.8230 ^d (0.6)	22.14	97
10a	C ₉₆ H ₁₀₂ N ₆ O ₈	53 (14)	1468.9/1468.7	734.8969/734.8985 ^d (2.1)	28.66	96
10b	$C_{96}H_{99}F_3N_6O_8$	54 (15)	1522.9/1522.4	$761.8828/761.8832^d (0.5)$	30.06	95
10c	$C_{94}H_{100}N_6O_7$	60	1426.7/1426.6	1432.7191/1432.7222 (2.2)	14.16	92

Supplementary Table 3 | Characterization data for compounds 1a–10c

^{*a*}Isolated yields for addition of one sub-unit and subsequent acylation (3 steps), overall yields are given in parentheses. ^{*b*}The HPLC purities are reported at 230 nm. ^{*c*}The values correspond to [M+Na]⁺. ^{*d*}The values correspond to [M+2H]²⁺

Comp	Formula	Yield	MS: m/z for $[M+H]^+$ (calcd./obs.)	HRMS: m/z for $[M+Na]^+$ [calcd./obs. (ΔM)]	HPLC [t _R /min]	HPLC [%Purity] ^a
10d	C ₉₂ H ₉₅ N ₇ O ₇	2.0	1410.7/1410.7	1425.7726/1425.7697 (3.4)	16.59	>95
10e	C ₉₂ H ₉₅ N ₇ O ₇	8.2	1369.8 / 1369.8	1390.7080/1390.7080 (0.0)	11.51	>95
11	$C_{107}H_{110}N_8O_8$	6.4	1595.1 / 1595.8	1616.8267/1616.8265 (0.1)	12.26	>95
12	C ₁₂₂ H ₁₂₅ N ₉ O ₉	3.5	1820.4 / 1820.8	1841.9420/1841.9424 (0.2)	13.36	>95

^aThe HPLC purities are reported at 230 nm . ^bThe values correspond to [M+2H]²⁺

Supplementary References

- 1. Macrae, C. F., et al. J. Appl. Crystallogr. 41, 466–470 (2008).
- 2. Baldauf, C., Guenther, R., & Hofmann H.-J., Phys. Biol. 3, S1-S9 (2006).