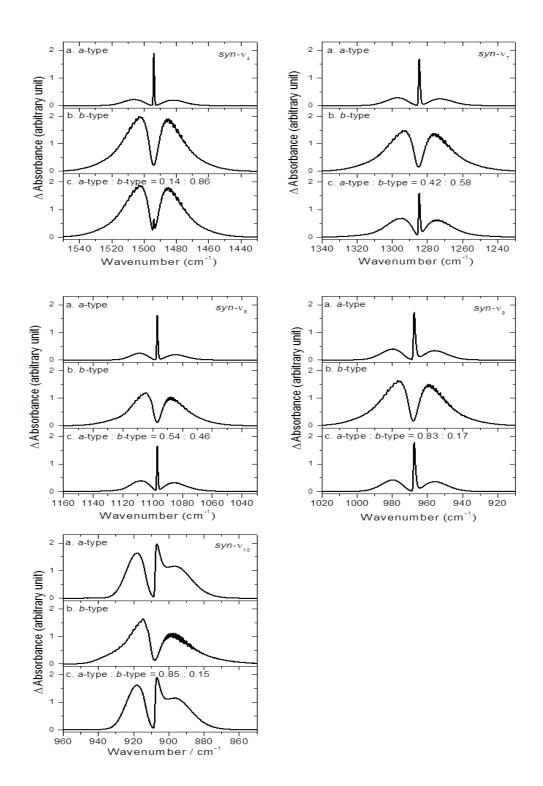
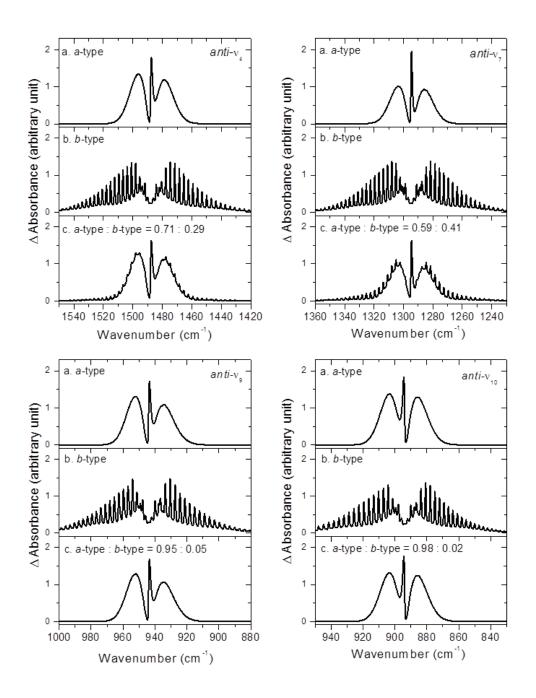
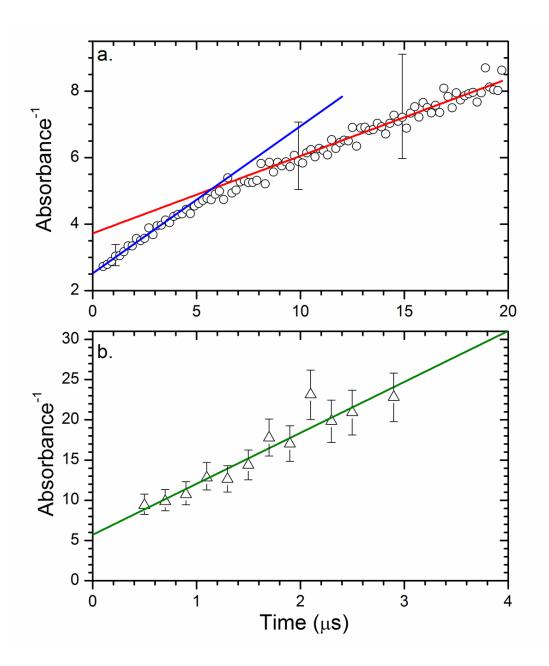

Supplementary Figure 1 | Geometries of possible carriers of the observed spectrum. a, *syn*-CH₃CHOO, b, *anti*-CH₃CHOO, c, methyl dioxirane, d, *cis*-vinyl hydroperoxide, and e, *trans*-vinyl hydroperoxide predicted with the NEVPT2(8,8)/aug-cc-pVDZ method, and f, *syn*-CH₃CHIOO and g, *anti*-CH₃CHIOO predicted with the NEVPT2(1,1)/aug-cc-pVDZ method. The bond distances are given in Å (black) and the bond angles are given in degree (blue).


Supplementary Figure 2 | Comparison of observed spectra with predicted stick spectra of possible carriers in the CH₃CHOO + O_2 system. a, experimental spectrum taken from Fig. 1D. New features are indicated as A₁-A₅. Resolution is 0.5 cm⁻¹. b, possible ranges of anharmonic vibrational wavenumbers and IR intensities (Tables S3–S5) of methyl dioxirane, c, *syn*-CH₃CHIOO, d, *anti*-CH₃CHIOO, e, *cis*-vinyl hydroperoxide, and f, *trans*-vinyl hydroperoxide predicted with various methods shown as boxes. Thick lines indicate those predicted with the B3LYP/aug-cc-pVTZ-pp method (for CH₃CHIOO) or the VSCF/MP2/aug-cc-pVDZ method (for methyl dioxirane and vinyl hydroperoxide).


Supplementary Figure 3 | **Spectral simulation of band A₃. a**, comparison of experimental data (open circles) with simulated spectrum (thick solid red line); contributions of v_7 of *syn*-CH₃CHOO and *anti*-CH₃CHOO are shown with thin lines. Spectral width is 0.64 cm⁻¹. **b**, contributions of fundamental and hot bands of v_7 of *syn*-CH₃CHOO. **c**, contributions of fundamental and hot bands of v_7 of *syn*-CH₃CHOO. **c**, contributions of fundamental and hot bands of v_7 of *syn*-CH₃CHOO.


Supplementary Figure 4 | **Spectral simulation of band A₄. a**, comparison of experimental data (open circles) with simulated spectrum (thick solid red line); contributions of v_4 of *syn*-CH₃CHOO and *anti*-CH₃CHOO are shown with thin lines. Spectral width is 0.64 cm⁻¹. **b**, contributions of fundamental and hot bands of v_4 of *syn*-CH₃CHOO. **c**, contributions of fundamental and hot bands of v_4 of *syn*-CH₃CHOO. **c**, contributions of fundamental and hot bands of v_4 of *syn*-CH₃CHOO.

Supplementary Figure 5 | Simulation of *a*-, *b*-type, and the resultant spectra for the v₄ and v₇-v₁₀ modes of *syn*-CH₃CHOO. Parameters are: $J_{\text{max}} = 170$, T = 328 K, and Gaussian width = 0.64 cm⁻¹; type ratios are listed in figures.

Supplementary Figure 6 | Simulation of *a*-, *b*-type, and the resultant spectra for the v₄, v₇, v₉ and v₁₀ modes of *anti*-CH₃CHOO. Parameters are: $J_{max} = 170$, T = 328 K, and Gaussian width = 0.64 cm⁻¹; type ratios are listed in figures.

Supplementary Figure 7 | Plot of the reciprocal integrated absorbance versus reaction time. a, reciprocal integrated absorbance of band A₁ versus reaction time *t*. Data for $t \ge 12 \,\mu$ s, assumed to be mainly due to *syn*-CH₃CHOO, are fitted with a line (red) with a slope $0.23\pm0.02 \,\mathrm{cm}\,\mu\mathrm{s}^{-1}$, whereas data for $t \le 4 \,\mu$ s are fitted with a line (blue) with a slope $0.44\pm0.02 \,\mathrm{cm}\,\mu\mathrm{s}^{-1}$. b, Reciprocal integrated absorbance of *anti*-CH₃CHOO versus reaction time *t* estimated by assuming that *syn*-CH₃CHOO dominates after 10 μ s and that the fitted (red) line in Fig. 5a represents Γ^{-1} for *syn*-CH₃CHOO. Data are fitted with a line with a slope $6.3\pm0.6 \,\mathrm{cm}\,\mu\mathrm{s}^{-1}$.

Mode	e Sym.	MP2	B3LYP	NEVPT2(8,8)	MULTIMODE	Mode
		/aug-cc-pVD2	Z /aug-cc-pVTZ	Z/aug-cc-pVDZ	(18 modes)	description ^a
ν_1	A'	3114 (1) ^b	3098 (4) ^b	3119	3103 (1) ^b	CH str.
v_2	A'	3035 (2)	2996 (11)	3030	3048 (0)	CH/CH₂ oph-str.
v_3	A'	2843 (0)	2891 (5)	2853		CH₃ s-str.
v_4	A'	1465 (6)	1538 (36)	1484	1494 (8)	CO str./HCO bend
v_5	A'	1422 (1)	1414 (11)	1437	1431 (3)	CH ₂ scissor.
ν_6	A'	1341 (2)	1361 (18)	1353	1371 (3)	CH₃ umbrella
v_7	A'	1241 (27)	1319 (12)	1291	1285 (19)	HCO bend/CO str.
ν_8	A'	1106 (2)	1079 (25)	1112	1097 (6)	CH ₂ wag/CCH bend.
V 9	A'	980 (0)	962 (8)	972	969 (5)	CCH bend/ CH_2 wag
ν_{10}	A'	891 (100)	875 (100)	889	908 (100)	OO str.
v_{11}	A'	695 (0)	665 (4)	668	676 (1)	CCO/COO oph-bend
v_{12}	A'	308 (1)	291 (11)	290	314 (3) ^c	CCO/COO iph-bend
v_{13}	A''	2834 (0)	2897 (1)	2871	2976 (0)	CH ₂ a-str.
ν_{14}	A''	1405 (3)	1383 (14)	1427	1408 (4)	CH ₂ twist.
v_{15}	A''	1000 (0)	1019 (0)	1011	1008 (0)	op-deform
v_{16}	A''	697 (4)	740 (22)	684	723 (7)	CH op-bend.
ν_{17}	A''	474 (0)	452 (0)	435	449 (0)	op-deform
ν_{18}	A''	214 (0)	109 (4)	221	208 (1) ^c	CH ₃ torsion

Supplementary Table 1 | Comparison of anharmonic vibrational wavenumbers (cm^{-1}) and IR intensities of vibrational modes of *syn*-CH₃CHOO predicted with various methods.

^{*a*}Approximate mode description. *a*: asymmetric; *s*: symmetric; str.: stretch; iph: in-phase; oph: out-of-phase; ip: in-plane; op: out-of-plane.

^bPercentage IR intensities relative to the most intense line; the IR intensities are 460, 83, and 44 km mol⁻¹ from MP2, B3LYP (harmonic) and MULTIMODE methods, respectively. ^cHarmonic wavenumbers.

Mode	ode Sym. MP2		B3LYP	NEVPT2(8,8)	MULTIMODE	Mode
		/aug-cc-pVDZ	/aug-cc-pVTZ	/aug-cc-pVDZ	(18 modes)	description ^a
ν_1	A'	3052 (0) ^b	2990 (4) ^b	3097		CH/CH oph-str.
v_2	A'	3009 (1)	2966 (1)	3021		CH/CH iph-str.
v_3	A'	2899 (2)	2919 (2)	2917		CH ₃ s-str.
ν_4	A'	1483 (23)	1521 (1)	1500	1488 (10) ^b	CO str./CH ip-bend.
v_5	A'	1434 (1)	1425 (11)	1453	1427 (0)	CH ₂ scissor.
ν_6	A'	1383 (5)	1395 (12)	1379	1390 (6)	CH ₃ umbrella
v_7	A'	1310 (1)	1319 (12)	1296	1295 (3)	CH ip-bend/CO str.
ν_8	A'	1143 (1)	1128 (3)	1155	1136 (1)	CCH bend
v 9	A'	874 (100)	943 (100)	961	944 (100)	OO str.
ν_{10}	A'	926 (35)	872 (20)	892	894 (49)	OO str./CH ₂ wag
ν_{11}	A'	575 (0)	547 (7)	560	565 (2)	CCO/COO iph-bend
v_{12}	A'	323 (6)	322 (8)	340	330 (7)	CCO/COO oph-bend
v_{13}	A''	2885 (0)	2914 (2)	2895		CH ₂ a-str.
ν_{14}	A''	1441 (2)	1423 (9)	1456	1446 (3)	CH ₃ deform
v_{15}	A''	1043 (0)	1047 (0)	1043	1034 (0)	op- deform
v_{16}	A''	845 (1)	850 (7)	822	840 (3)	CH op-bend
ν_{17}	A''	308 (0)	249 (0)	378	255 (0) ^c	op-deform
ν_{18}	A''	290 (0)	140 (1)	241	156 (0) ^c	CH ₃ torsion

Supplementary Table 2 | Comparison of anharmonic vibrational wavenumbers (cm^{-1}) and IR intensities of vibrational modes of *anti*-CH₃CHOO predicted with various methods.

^{*a*}Approximate mode description. *a*: asymmetric; *s*: symmetric; str.: stretch; iph: in-phase; oph: out-of-phase; ip: in-plane; op: out-of-plane.

^bPercentage IR intensities relative to the most intense line; the IR intensities are 410, 121 and 44 km mol⁻¹from MP2, B3LYP (harmonic) and MULTIMODE methods, respectively. ^cHarmonic wavenumbers

Mode	B3LYP ^a	$MP2^{b}$	NEVPT2(8,8) ^b
ν_1	2994 (17) ^c	3019 (16) ^c	3050
v_2	2947 (46)	2967 (50)	2968
v_3	2949 (8)	2954 (10)	2968
v_4	1453 (24)	1460 (27)	1471
ν_5	1408 (100)	1420 (100)	1438
ν_6	1370 (6)	1361 (7)	1374
v_7	1272 (73)	1261 (63)	1261
ν_8	1112 (24)	1127 (20)	1135
v 9	923 (2)	921 (0.5)	920
ν_{10}	774 (3)	730 (2)	684
v_{11}	457 (19)	463 (23)	468
v_{12}	2956 (16)	2944 (15)	3061
v_{13}	1445 (11)	1450 (10)	1460
v_{14}	1182 (0.0)	1197 (3)	1198
ν_{15}	1009 (14)	1021 (23)	1026
v_{16}	814 (22)	874 (27)	833
ν_{17}	383 (0.0)	394 (0.0)	397
v_{18}	211 (0.3)	299 (0.4)	301

Supplementary Table 3 | Comparison of anharmonic vibrational wavenumbers (cm⁻¹) and IR intensities of vibrational modes of methyl dioxirane predicted with various methods.

^{*a*}With basis set aug-cc-pVTZ.

^bWith basis set aug-cc-pVDZ.

^{*c*}Percentage IR intensities relative to the most intense line; the IR intensities are 63 and 55 km mol⁻¹ from the B3LYP (harmonic) and MP2 methods, respectively.

	trans-C ₂ H	3OOH		cis-C ₂ H ₃ O	ЭН	
Mode	B3LYP ^a	$MP2^{b}$	NEVPT2(8,8) ^b	B3LYP ^a	$MP2^{b}$	NEVPT2(8,8) ^b
ν_1	3552 (57) ^c	3484 (34) ^c	3438	3564 (40) ^d	3461 (40) ^d	3395
v_2	3115 (2)	3118 (1)	3122	3123 (1)	3131 (0.5)	3141
V3	3048 (3)	3057 (4)	3122	3040 (1)	3075 (1)	3080
v_4	3065 (1)	3070 (1)	3076	3000 (0.2)	3077 (0.1)	3089
V5	1643 (75)	1631 (66)	1644	1641 (100)	1648 (98)	1662
v_6	1392 (5)	1384 (3)	1391	1409 (14)	1389 (10)	1403
v_7	1341 (86)	1331 (48)	1354	1330 (26)	1299 (41)	1298
ν_8	1299 (1)	1281 (2)	1288	1304 (2)	1288 (2)	1300
V 9	1150 (44)	1156 (43)	1157	1134 (29)	1119 (36)	1133
v_{10}	967 (15)	970 (37)	987	941 (13)	949 (19)	986
ν_{11}	947 (14)	942 (13)	936	940 (17)	960 (29)	951
v_{12}	865 (43)	880 (38)	919	866 (22)	820 (16)	890
v_{13}	851 (24)	816 (13)	799	833 (43)	857 (41)	808
ν_{14}	691 (6)	732 (6)	745	697 (4)	726 (4)	744
v_{15}	522 (5)	514 (11)	504	608 (4)	611 (4)	610
v_{16}	343 (4)	367 (2)	372	309 (0.4)	330 (1)	325
v_{17}	211 (100) ^e	579 (100)	576	232 (4)	276 (5)	256
ν_{18}	85 (2)	143 (15)	140	156 (88) ^e	702 (100)	686
Energy / kJ mol ⁻¹	3.18	2.96		0	0	

Supplementary Table 4 | Comparison of relative energy, anharmonic vibrational wavenumbers (cm⁻¹) and IR intensities of vibrational modes of *trans*- and *cis*-vinyl hydroperoxide (C₂H₃OOH) predicted with various methods.

^{*a*}With basis set aug-cc-pVTZ. ^{*b*}With basis set aug-cc-pVDZ. ^{*c*}Percentage IR intensities relative to the most intense line; the IR intensities are 118 and 105 km mol⁻¹from B3LYP (harmonic) and MP2 methods, respectively. ^{*d*}Percentage IR intensities relative to the most intense line; the IR intensities are 138 and 117 km mol⁻¹from B3LYP (harmonic) and MP2 methods, respectively. ^{*e*}Harmonic wavenumbers; VPT2 technique fails to produce anharmonic wavenumber for this mode.

Mada	syn-CH ₃ CHI0	00	anti-CH ₃ CHIOO		
Mode	B3LYP ^a	NEVPT2(1,1)^{b}	B3LYP ^a	NEVPT2(1,1) ^b	
ν_1	3013 (3) ^c	3000	3015 (2) ^{<i>c</i>}	3005	
v_2	2994 (5)	3029	3002 (1)	2991	
ν_3	2971 (10)	2972	2979 (12)	3016	
v_4	2939 (23)	3162	2934 (24)	2941	
V5	1451 (13)	1458	1441 (10)	1464	
v_6	1441 (20)	1453	1434 (20)	1452	
v_7	1384 (28)	1375	1379 (32)	1372	
ν_8	1300 (20)	1294	1334 (5)	1329	
v 9	1193 (95)	1220	1201 (98)	1226	
v_{10}	1147 (55)	1144	1105 (29)	1117	
v_{11}	1082 (100)	1114	1083 (78)	1094	
v_{12}	1046 (73)	1063	1042 (59)	1059	
V ₁₃	963 (23)	988	958 (24)	985	
v_{14}	806 (68)	840	767 (100)	814	
v_{15}	550 (83)	578	626 (5)	648	
v_{16}	478 (50)	517	493 (98)	533	
v_{17}	349 (3)	364	321 (12)	340	
ν_{18}	249 (5)	278	255 (2)	319	
v_{19}	235 (3)	294	236 (2)	316	
v_{20}	216 (1)	634	222 (0.2)	152	
v_{21}	65 (3)	95	75 (1)	111	
Energy / kJ mol ⁻	1 0	0	3.14	0.40	

Supplementary Table 5 | Comparison of relative energy, anharmonic vibrational wavenumbers (cm⁻¹) and IR intensities of vibrational modes of *syn*-CH₃CHIOO and *anti*-CH₃CHIOO predicted with various methods.

^{*a*}With basis set aug-cc-pVTZ-pp

^{*b*}With basis set aug-cc-pVDZ.

^{*c*} Percentage IR intensities (harmonic) relative to the most intense line; the IR intensities of *syn*and *anti*-CH₃CHIOO are 40 and 41 km mol⁻¹, respectively.

prediction	15.									
Transition	Intensity	Energy	Expt.	Caln 1 ^a	$Caln2^{b}$.	Transition	Intensity	Energy	Expt.	Caln1 ^{<i>a</i>, <i>c</i>}
Band A ₁						Band A ₃				
syn-CH ₃ C	HOO					syn-CH ₃ C	HOO			
10^{1}_{0}	1.00		871.2	911.9	908.1	7^{1}_{0}	1.00		1280.8	1287.0
$10^1_0 18^1_1$	0.43	193	+2.4	+5.0	+13.6	$7^1_0 18^1_1$	0.42	198	+3.7	+7.8
$10^1_0 18^2_2$	0.25	316	+6.3	+12.0	+29.4	$7^1_0 18^2_2$	0.18	391	+8.2	+17.2
$10^1_0 18^3_3$	0.10	525	+11.8			$7^1_0 18^3_3$	0.07	597	+12.7	
$10^1_012^1_1$	0.29	282	+10.1	+12.0	+28.3	$7^1_0 12^1_1$	0.29	282	+2.2	
$10^1_0 12^2_2$	0.15	433	+15.8	+11.1	+80.8	$7^1_0 12^2_2$	0.15	433	+5.7	
anti-CH ₃ C	CHOO					anti-CH ₃ C	CHOO			
9 ¹ ₀	1.00		883.7	954.6	944.2	7^{1}_{0}	1.00		1279.4	1299.8
$9^1_0 18^1_1$	0.52	149	+1.8	+18.1	+21.7	$7^1_0 18^1_1$	0.50	158	+2.6	+17.2
$9^1_0 18^2_2$	0.29	282	+5.3	+27.7	+45.1	$7^1_0 18^2_2$	0.25	316	+5.6	+22.0
$9^1_0 17^1_1$	0.35	239	+2.3	+8.6	+20.4	Band A ₄				
$9^1_0 17^2_2$	0.15	433	+6.3			syn-CH ₃ C	HOO			
anti-CH ₃ C	CHOO					4^{1}_{0}	1.00		1476.8	1495.9
10^{1}_{0}	1.00		851.8	902.7	894.2	$4^1_0 18^1_1$	0.42	198	+2.2	+6.8
$10^1_018^1_1$	0.50	158	+9.2	+16.9	+22.8	$4_0^1 1 8_2^2$	0.18	391	+4.2	+12.6
$10^1_0 18^2_2$	0.25	316	+15.2	+27.6	+47.1	$4_0^1 1 8_3^3$	0.07	597	+6.2	
$10^1_017^1_1$	0.35	239	+11.2	+8.7	+25.3	$4^1_0 12^1_1$	0.29	282	+0.2	
$10^1_0 17^2_2$	0.15	433	+20.2		+61.7	$4_0^1 12_2^2$	0.15	433	+2.7	
						anti-CH ₃ C	CHOO			
						4^{1}_{0}	1.00		1479.0	1498.2
						$4^1_0 18^1_1$	0.50	158	+1.0	+14.1
						$4_0^1 1 8_2^2$	0.25	316	+2.0	

Supplementary Table 6 | Comparison of fitted wavenumbers (cm⁻¹) and relative intensities of various vibrational modes of *syn*-CH₃CHOO and *anti*-CH₃CHOO with MULTIMODE predictions.

^aMULTIMODE calculations coupling 15 modes of syn-CH₃CHOO or 16 modes of

anti-CH₃CHOO, which includes 13 modes of *syn* (14 modes for anti) as discussed in the text and another two lowest frequency modes. The maximal excitations of two lowest energy modes are limited to 2.

^bCalculations coupling all 18 modes of *syn*-CH₃CHOO or *anti*-CH₃CHOO.

^cHot band results are problematic, see text for discussion.

Supplementary Table 7 | Comparison of rotational parameters of *syn*-CH₃CHOO in their ground and vibrationally excited states predicted with various methods.

	MP2			B3LYP	B3LYP			MULTIMODE ^a		
	<i>A'/A''</i>	<i>B'/B''</i>	<i>C</i> '/ <i>C</i> ''	<i>A'/A''</i>	<i>B'/B''</i>	<i>C</i> '/ <i>C</i> ''	<i>A'/A''</i>	<i>B'/B''</i>	<i>C</i> '/ <i>C</i> ''	
v_4	0.9989	0.9984	0.9985	0.9966	0.9986	0.9978	0.9973	0.9981	0.9980	
							$(0.9998)^b$	(0.9985)	(0.9992)	
v_7	0.9979	1.0023	1.0010	1.0001	1.0012	1.0008	0.9982	0.9981	0.9980	
							(0.9985)	(0.9983)	(0.9989)	
ν_8	1.0008	1.0001	0.9986	1.0065	0.9994	0.9986	1.0011	1.0006	0.9980	
							(1.0003)	(0.9977)	(0.9946)	
V 9	0.9993	0.9961	0.9975	0.9994	0.9968	0.9975	0.9966	0.9992	0.9989	
							(0.9967)	(0.9990)	(0.9992)	
ν_{10}	0.9922	1.0002	0.9967	0.9914	1.0005	0.9967	0.9904	0.9990	0.9946	
							(0.9856)	(0.9985)	(0.9946)	
	A"	$B^{\prime\prime}$	<i>C</i> ''	A"	<i>B</i> ''	<i>C</i> ''	A"	<i>B</i> ''	<i>C</i> ''	
v = 0	0.6015	0.2393	0.1764	0.5876	0.2333	0.1719	0.5810	0.2388	0.1748	
Expt. ^c	0.5866	0.2379	0.1744	0.5866	0.2379	0.1744	0.5866	0.2379	0.1744	

^{*a*} MULTIMODE calculation coupling 13 modes of *syn*-CH₃CHOO, see text for details.

^{*b*}Ratios used in the simulation for the best fit are listed in parentheses.

^{*c*}From reference24.

Supplementary Table 8 | Comparison of rotational parameters of *anti*-CH₃CHOO in their ground and vibrationally excited states predicted with various methods.

	MP2			B3LYP			MULTIMODE ^a		
	<i>A'/A''</i>	<i>B'/B''</i>	<i>C</i> '/ <i>C</i> ''	<i>A'/A''</i>	<i>B'/B''</i>	<i>C</i> '/ <i>C</i> ''	<i>A'/A''</i>	<i>B'/B''</i>	<i>C</i> '/ <i>C</i> ''
v_4	1.0000	0.9993	0.9991	0.9837	0.9991	0.9977	0.9966	1.0000	0.9993
							$(0.9954)^b$	(1.0000)	(0.9986)
v_7	1.0003	1.0005	1.0000	1.0021	1.0002	0.9997	0.9978	1.0000	1.0000
							(0.9974)	(1.0000)	(0.9993)
ν_8	1.0067	0.9990	0.9979	0.9987	0.9992	0.9977	1.0051	0.9997	0.9982
							(1.0050)	(0.9993)	(0.9978)
V9	1.0039	0.9996	0.9987	0.9891	0.9979	0.9963	0.9950	0.9990	0.9982
							(0.9959)	(0.9987)	(0.9978)
v_{10}	1.0038	0.9958	0.9941	1.0087	0.9987	0.9965	1.0049	0.9997	0.9982
							(1.0051)	(0.9993)	(0.9986)
	A"	$B^{\prime\prime}$	<i>C</i> ''	A"	<i>B</i> ''	<i>C</i> ''	A"	<i>B</i> ''	<i>C</i> ''
v = 0	1.6336	0.1491	0.1402	1.6272	0.1472	0.1380	1.5998	0.1482	0.1392
Expt. ^c	1.6176	0.1479	0.1390	1.6176	0.1479	0.1390	1.6176	0.1479	0.1390

^{*a*} MULTIMODE calculation coupling 13 modes of *syn*-CH₃CHOO, see text for details.

^{*b*}Ratios used in the simulation for the best fit are listed in parentheses.

^{*c*}From reference 24.

	Minimun	1	SP	
	ab initio	PES	ab initio	PES
Energies	0.00	0.00	730.3	730.4
Mode				
ν_1	3204.2	3206.0	3194.8	3196.8
v_2	3161.2	3161.2	3177.2	3176.7
v ₃	3029.5	3030.5	3040.7	3036.7
v_4	1527.4	1528.3	1539.7	1538.4
V5	1466.5	1468.0	1487.7	1484.6
v_6	1397.7	1396.0	1388.8	1389.2
v_7	1316.6	1317.9	1328.9	1329.2
ν_8	1115.4	1115.8	1157.8	1156.4
V 9	977.6	977.5	929.8	933.2
v_{10}	922.1	922.7	883.0	875.4
v_{11}	677.6	677.8	653.3	648.0
v_{12}	308.0	307.5	335.9	332.7
v_{13}	3084.7	3085.3	3103.7	3105.8
v_{14}	1449.2	1449.9	1449.8	1446.0
v_{15}	1031.3	1034.0	1037.7	1046.2
v_{16}	720.6	721.0	757.7	752.4
v_{17}	447.7	448.3	430.8	435.1
v_{18}	201.8	206.0	175.9i	177.1i

Supplementary Table 9 | The comparison of energies (cm⁻¹) and harmonic vibrational wavenumbers (cm⁻¹) of *syn*-CH₃CHOO between the fitted PES and direct *ab initio* calculations. SP refers to the torsion saddle point.

Supplementary Table 10 | The comparison of energies (relative to *syn*-CH₃CHOO) and harmonic vibrational wavenumbers (cm⁻¹) of *anti*-CH₃CHOO between PES and *ab initio* calculation. SP refers to the torsion saddle point.

	Minimum		SP	
	ab initio	PES	ab initio	PES
Energies	1274.2	1274.2	1700.9	1700.9
Mode				
ν_1	3168.3	3168.6	3171.2	3167.6
v_2	3154.0	3153.6	3152.4	3156.1
v ₃	3039.2	3039.3	3047.0	3056.1
ν_4	1533.8	1534.6	1507.2	1515.8
V ₅	1466.0	1466.5	1483.8	1485.5
ν_6	1419.8	1419.8	1414.7	1408.7
ν_7	1321.3	1321.5	1318.1	1312.4
ν_8	1159.2	1159.4	1147.9	1142.3
V 9	956.0	957.0	1002.1	1003.0
ν_{10}	904.6	904.9	890.6	890.9
ν_{11}	560.4	560.4	558.9	556.8
v_{12}	324.5	324.3	325.1	326.1
v_{13}	3103.6	3103.4	3115.6	3111.6
ν_{14}	1476.8	1477.1	1470.2	1469.0
v_{15}	1053.7	1054.2	1053.2	1064.7
ν_{16}	850.2	848.3	822.7	819.8
v_{17}	251.0	251.3	242.1	242.6
ν_{18}	156.2	155.7	171.1i	171.3i

Supplementary Methods

Spectral simulation. With the PGopher program,¹ we simulated the spectrum of each band using experimental rotational parameters A'', B'', and C'' reported by Nakajima and Endo,² ratios of rotational parameters A'/A'', B'/B'', and C'/C'' and *a*-type/*b*-type ratios of each mode predicted with the MULTIMODE method, as listed in Table S7 and S8, $J_{max} = 170$, T = 328 K, and a Gaussian width 0.64 cm⁻¹. For an improved fitting, the ratios of A'/A'', B'/B'', and C'/C'' were changed slightly from the theoretical values, as shown in parentheses in Supplementary Tables 7 and 8. Simulated *a*- and *b*-type spectra for v₄ and v₇-v₁₀ of *syn*- CH₃CHOO and v₄, v₇, v₉, and v₁₀ of *anti*-CH₃CHOO are shown in Supplementary Figs 5 and 6. The projections of the dipole derivatives for each vibrational mode of CH₃CHOO onto rotational axes *a*, *b* and *c* determine the weighting of bands of types *a*, *b*, and *c* in each vibrational absorption band. The position of each band was varied to achieve the best fit.

Additional computational details. MULTIMODE is a program for vibrational calculation, which has been discussed in detailed and applied to various systems.³ Generally speaking, the MULTIMODE calculation uses Watson Hamiltonian with mass-scaled normal coordinates. The key feature of MUTLMODE is to expand the full potential to a hierarchy *n*-mode representation, which greatly reduces the multi-dimensional integration. The CH₃CHOO molecule has 18 degrees of freedom, and we use 4-mode representation in our study.

The Watson Hamiltonian is rigorous for semi-rigid molecules, which is not obviously the case for *syn-* and *anti*-CH₃CHOO with the internal torsion motion. However, from a recent Diffusion Monte Carlo calculation,⁴ the ground state wave functions are localized, and can be applied with the semi-rigid approach. Since the energies of highly excited states of torsion mode exceed the torsion barrier height, 730 and 427 cm⁻¹ for *syn-* and *anti-* CH₃CHOO, respectively, the excitation of torsion mode is restricted to 2 to avoid any unreasonable couplings with torsion mode. The semi-rigid treatment for *anti*-CH₃CHOO is more problematic, especially for "hot bands", than for *syn*-CH₃CHOO because the barrier to internal rotation for the *anti*-conformer is roughly 300 cm⁻¹ lower than for the *syn*-conformer.⁴

Thirteen harmonic oscillator basis are used for each mode in the first vibrational self-consistent field (VSCF) calculation. Then the VSCF virtual states are used as the basis-function for the following vibrational configuration-interaction (VCI) step. The size of VCI calculation is restricted by the maximum excitation of each mode and maximum sum of excitations of all modes. In the current study, all 18 vibration modes of CH₃CHOO are included, and up to 4 modes can be excited simultaneously. As mentioned above, the maximum excitation of torsion mode is 2. To reduce the expense of calculation, the total excitation of four CH-stretching modes of CH₃CHOO is limited to 3. Since the frequencies of CH-stretching modes are far beyond the spectral range investigated, 800–1500 cm⁻¹, such restrictions on CH stretch modes affect little the accuracy of the calculation. The maximum excitations of all other modes are 7. Cs symmetry is applied in the MULTIMODE calculation. The sizes of VCI matrix for the two Cs blocks are 22,157 and 17,924.

In addition, we performed another smaller set of calculations which only includes 13 modes of *syn-* and 14 modes of *anti-*conformer to compare with the calculations that includes all 18 modes. For *syn-*conformer, the frequencies of nine vibration modes are in the measured spectral range from 800 to 1500 cm⁻¹, and ten such modes for *anti-*conformer. The smaller set calculation of 13 modes for *syn-*CH₃CHOO includes such nine modes and four CH stretch modes, and similarly for calculation of the 14 modes for *anti-*CH₃CHOO. The hot-band transition can be calculated from MULTIMODE calculation as well. We present two sets of calculation results in Supplementary Table 6. One is from the calculation with all 18 modes coupling; another is from the smaller set of calculation with selected 13 modes for *syn*-conformer (14 modes for *anti*) as well as another two lowest frequency modes. As seen, relatively large deviation of the hot-band transition shift is observed between the experiment and MULTIMODE prediction. One main reason is the treatment of the torsional mode of CH₃CHOO. As mentioned above, the maximum excitation of torsion mode is restricted to 2. Such restriction affects the calculated energies of torsion states and other modes with small energies. In addition, including the low-frequency modes enhances the coupling among states. For the ground state, the torsion splitting is small and such restriction has negligible effect to calculation. However, as the torsion mode is excited to the fundamental or overtone states, our "single-reference" treatment of torsion motion may be problematic. Nevertheless, the blue-shifted hot-band transition of these bands agrees with experiment simulation.

Supplementary References

- 1. Western, C. M. PGOPHER, a program for simulating rotational structure, University of Bristol UK, version 7.1.108 (2010), http://pgopher.chm.bris.ac.uk.
- Nakajima, M. & Endo, Y. Communication: Spectroscopic characterization of an alkyl substituted Criegee intermediate *syn*-CH₃CHOO through pure rotational transitions. *J. Chem. Phys.* 140, 011101 (2014).
- Bowman, J. M., Carter, S. & Huang, X. MULTIMODE: A code to calculate rovibrational energies of polyatomic molecules. *Int. Rev. Phys. Chem.* 22, 533–549 (2003).
- Bowman, J. M., Wang, X. & Homayoon, Z. Ab initio Computational Spectroscopy and Vibrational Dynamics of Polyatomic Molecules: Applications to *syn* and *anti*-CH₃CHOO and NO₃. J. Molec. Spectros (2015). http://dx.doi.org/10.1016/j.jms.2014.12.012