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Predictive Models Implemented by pkCSM 

Water Solubility 

The water solubility of a compound (logS) reflects the solubility of the molecule in water at 25ºC. Lipid-

soluble drugs are less well absorbed than water-soluble ones, especially when they are enteral. This 

model is built using experimental water solubility measurements of 1,708 molecules.                                          

 

How to interpret the results: 

The predicted water solubility of a compound is given as the logarithm of the molar concentration (log 

mol/L).         

 

Caco-2 Permeability 

The Caco-2 cell line is composed of human epithelial colorectal adenocarcinoma cells. The Caco-2 

monolayer of cells is widely used as an in vitro model of the human intestinal mucosa to predict the 

absorption of orally administered drugs. This model is based on 674 drug like molecules with Caco-2 

permeability values and predicts the logarithm of the apparent permeability coefficient (log Papp; log 

cm/s).                                                 

 

How to interpret the results: 

A compound is considered to have a high Caco-2 permeability if it has a Papp > 8 x 10-6 cm/s. For the 

pkCSM predictive model, high Caco-2 permeability would translate in predicted values > 0.90. 

 

Intestinal Absorption (Human) 

The Intestine is normally the primary site for absorption of a drug from an orally administered solution. 

This method is built to predict the proportion of compounds that were absorbed through the human small 

intestine. 
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How to interpret the results:    

For a given compound it predicts the percentage that will be absorbed through the human intestine. A 

molecule with an absorbance of less than 30% is considered to be poorly absorbed. 

 

Skin Permeability 

Skin permeability is a significant consideration for many consumer products efficacy, and of interest for 

the development of transdermal drug delivery. This predictor was built using 211 compounds whose in 

vitro human skin permeability has been measured 

 

How to interpret the results: 

It predicts whether if given compound is likely to be skin permeable, expressed as the skin permeability 

constant logKp (cm/h). A compound is considered to have a relatively low skin permeability if it has a 

logKp > -2.5. 

 

P-glycoprotein substrate 

The P-glycoprotein is an ATP-binding cassette (ABC) transporter. It functions as a biological barrier by 

extruding toxins and xenobiotics out of cells. P-glycoprotein transport screening is performed using 

transgenic mdr knockout mice and in vitro cell systems. This model was built using 332 compounds that 

have been characterised for their ability to be transported by Pgp. 

 

How to interpret the results: 

The model predicts whether a given compound is likely to be a substrate of Pgp or not. 

 

P-glycoprotein I and II inhibitors 

Modulation of P-glycoprotein mediated transport has significant pharmacokinetic implications for Pgp 

substrates, which may either be exploited for specific therapeutic advantages or result in 
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contraindications. This predictive models were build using 1,273 and 1,275 compounds that have been 

characterised for their ability to inhibit P-glycoprotein I and P-glycoprotein II transport, respectively. 

 

How to interpret the results: 

The predictor will determine is a given compound is likely to be a P-glycoprotein I/II inhibitor. 

 

VDss (Human) 

The steady state  volume of distribution (VDss) is the theoretical volume that the total dose of a drug 

would need to be uniformly distributed to give the same concentration as in blood plasma. The higher the 

VD is, the more of a drug is distributed in tissue rather than plasma. It can be affected by renal failure and 

dehydration. This predictive model was built using the calculated steady state volume of distribution 

(VDss) in humans from 670 drugs. The predicted logarithm of VDss of a given compound is given as the 

log L/kg. 

 

How to interpret the results: 

VDss is considered low if below 0.71 L/kg (log VDss < -0.15) and high if above 2.81 L/kg (log VDss > 

0.45). 

 

Fraction Unbound (Human) 

Most drugs in plasma will exist in equilibrium between either an unbound state or bound to serum 

proteins. Efficacy of a given drug may be affect by the degree to which it binds proteins within blood, as 

the more that is bound the less efficiently it can traverse cellular membranes or diffuse. This predictive 

model was built using the measured free proportion of 552 compounds in human blood (Fu). 

 

How to interpret the results: 

For a given compound the predicted fraction that would be unbound in plasma will be calculated. 
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Blood Brain Barrier permeability 

The brain is protected from exogenous compounds by the blood-brain barrier (BBB). The ability of a drug 

to cross into the brain is an important parameter to consider to help reduce side effects and toxicities or to 

improve the efficacy of drugs whose pharmacological activity is within the brain. Blood-brain permeability 

is measured in vivo in animals models as logBB, the logarithmic ratio of brain to plasma drug 

concentrations. This predictive model was built using 320 compounds whose logBB has been 

experimentally measured. 

 

How to interpret the results: 

For a given compound, a logBB > 0.3 considered to readily cross the blood-brain barrier while molecules 

with logBB < −1 are poorly distributed to the brain. 

 

CNS permeability 

Measuring blood brain permeability can difficult with confounding factors. The blood-brain permeability-

surface area product (logPS) is a more direct measurement. It is obtained from in situ brain perfusions 

with the compound directly injected into the carotid artery. This lacks the systemic distribution effects 

which may distort brain penetration. This predictive model was built using 153 compounds whose logPS 

has been experimentally measured. 

 

How to interpret the results: 

Compounds with a logPS > -2 are considered to penetrate the Central Nervous System (CNS), while 

those with logPS < -3 are considered as <b>unable to penetrate the CNS</b>. 

 

CYP2D6/CYP3A4 substrate 

The cytochrome P450’s are responsible for metabolism of many drugs. However inhibitors of the P450’s 

can dramatically alter the pharmacokinetics of these drugs. It is therefore important to assess whether a 

given compound is likely to be a cytochrome P450 substrate. The two main isoforms responsible for drug 
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metabolism are 2D6 and 3A4. These models were built using 671 compounds whose metabolism by each 

cytochrome P450 isoform has been measured. 

 

How to interpret the results: 

The predictor will assess whether a given molecule is likely to be metabolised by either P450. 

 

Cytochrome P450 inhibitors 

Cytochrome P450 is an important detoxification enzyme in the body, mainly found in the liver. It oxidises 

xenobiotics to facilitate their excretion. Many drugs are deactivated by the cytochrome P450’s, and some 

can be activated by it. Inhibitors of this enzyme, such as grapefruit juice, can affect drug metabolism and 

are contraindicated. It is therefore important to assess a compound’s ability to inhibit the cytochrome 

P450. Models for different isoforms were built (CYP1A2/CYP2C19/CYP2C9/CYP2D6/CYP3A4) using 

from over 14000 to 18000 compounds whose ability to inhibit the cytochrome P450 has been determined. 

A compound is considered to be a cytochrome P450 inhibitor if the concentration required to lead to 50% 

inhibition is less than 10 uM. 

 

How to interpret the results: 

The predictors will assess a given molecule to determine whether it is likely going to be a cytochrome 

P450 inhibitor, for a given isoform. 

 

Total Clearance 

Drug clearance is measured by the proportionality constant CLtot, and occurs primarily as a combination 

of hepatic clearance (metabolism in the liver and biliary clearance) and renal clearance (excretion via the 

kidneys). It is related to bioavailability, and is important for determining dosing rates to achieve steady-

state concentrations. This predictor was built using the total clearance data for 398 compounds. 

 

How to interpret the results: 
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The predicted total clearance log(CLtot) of a given compound is given in log(ml/min/kg). 

 

Renal OCT2 substrate 

Organic Cation Transporter 2 is a renal uptake transporter that plays an important role in disposition and 

renal clearance of drugs and endogenous compounds. OCT2 substrates also have the potential for 

adverse interactions with coadministered OCT2 inhibitors. Assessing a candidate’s potential to be 

transported by OCT2 provides useful information regarding not only its clearance but potential 

contraindications. This model was built using 906 compounds whose transport by OCT2 has been 

experimentally measured. 

 

How to interpret the results: 

The predictor will assess whether a given molecule is likely to be an OCT2 substrate. 

 

AMES toxicity 

The Ames test is a widely employed method to assess a compounds mutagenic potential using bacteria. 

A positive test indicates that the compound is mutagenic and therefore may act as a carcinogen. This 

predictive model was built on the results of over 8,000 compounds Ames tests. 

 

How to interpret the results: 

It predicts whether a given compound is likely to be Ames positive and hence mutagenic. 

 

Maximum Tolerated Dose (Human) 

The maximum recommended tolerated dose (MRTD) provides an estimate of the toxic dose threshold of 

chemicals in humans. The model is trained using 1222 experimental data points from human clinical trials 

and predicts the logarithm of the MRTD (log mg/kg/day). This will help guide the maximum recommended 

starting dose for pharmaceuticals in phase I clinical trials, which are currently based on extrapolations 

from animal data. 
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How to interpret the results: 

For a given compound, a MRTD of less than or equal to 0.477 log(mg/kg/day) is considered low, and high 

if greater than 0.477 log(mg/kg/day). 

 

hERG I and II Inhibitors 

Inhibition of the potassium channels encoded by hERG (human ether-a-go-go gene) are the principal 

causes for the development of acquire long QT syndrome - leading to fatal ventricular arrhythmia. 

Inhibition of hERG channels has resulted in the withdrawal of many substances from the pharmaceutical 

market. These predictors were built using hERG I and II inhibition information for 368 and 806 

compounds, respectively. 

 

How to interpret the results: 

The predictor will determine if a given compound is likely to be a hERG I/II inhibitor. 

 

Oral Rat Acute Toxicity (LD50) 

It is important to consider the toxic potency of a potential compound. The lethal dosage values (LD50) are 

a standard measurement of acute toxicity used to assess the relative toxicity of different molecules. The 

LD50 is the amount of a compound given all at once that causes the death of 50% of a group of test 

animals. 

 

How to interpret the results: 

The model was built on over 10000 compounds tested in rats and predicts the LD50 (in mol/kg). 

 

Oral Rat Chronic Toxicity 

Exposure to low-moderate doses of chemicals over long periods of time is of significant concern in many 

treatment strategies. Chronic studies aim to identify the lowest dose of a compound that results in an 
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observed adverse effect (LOAEL), and the highest dose at which no adverse effects are observed 

(NOAEL). This predictor was built using the LOAEL results from 445 compounds. 

 

How to interpret the results: 

For a given compound, the predicted log Lowest Observed Adverse Effect (LOAEL) in log(mg/kg_bw/day) 

will be generated. The LOAEL results need to be interpreted relative to the bioactive concentration and 

treatment lengths required. 

 

Hepatotoxicity 

Drug-induced liver injury is a major safety concern for drug development and a significant cause of drug 

attrition. This predictor was built using the liver associated side effects of 531 compounds observed in 

humans. A compound was classed as hepatotoxic if it had at least one pathological or physiological liver 

event which is strongly associated with disrupted normal function of the liver. 

 

How to interpret the results: 

It predicts whether a given compound is likely to be associated with disrupted normal function of the liver. 

 

Skin Sensitisation 

Skin sensitisation is a potential adverse effect for dermally applied products. The evaluation of whether a 

compound, that may encountered the skin, can induce allergic contact dermatitis is an important safety 

concern. This predictor was built using 254 compounds which have been evaluated for their ability to 

induce skin sensitisation. 

 

 

How to interpret the results: 

It predicts whether a given compound is likely to be associated with skin sensitisation. 
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T. Pryiformis toxicity 

T. Pyriformis is a protozoa bacteria, with its toxicity often used as a toxic endpoint. This method was build 

using the concentration of 1,571 compounds required to inhibit 50% of growth (IGC50). 

 

How to interpret the results: 

For a given compound, the pIGC50 (negative logarithm of the concentration required to inhibit 50% 

growth in log ug/L) is predicted, with a value > -0.5 log ug/L is considered toxic. 

 

Minnow toxicity 

The lethal concentration values (LC50) represent the concentration of a molecule necessary to cause the 

death of 50% of the Flathead Minnows. This predictive model was built on LC50 measurements for 554 

compounds.  

 

How to interpret the results: 

For a given compound, a log LC50 will be predicted. LC50 values below 0.5 mM (log LC50 < -0.3) are 

regarded as high acute toxicity. 
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Experimental Methods 

Data sets 

The datasets used are composed by small-molecules represented as SMILES strings with their 

respective experimental pharmacokinetic or toxicity measurement. In total, 30 datasets of different sizes, 

ranging from a few hundreds to over 18,000 compounds were collected from the literature.  

 

The main sources were the work of Cheng and colleagues1, the PKKB database2, the work carried out by 

Obach and colleagues3 on pharmacokinetics in humans for 670 drugs, the works on Central Nervous 

System permeability by Suenderhauf and colleagues4 and Yan and colleagues5 and the database of the 

FDA Maximum Recommended Daily Dose (MRTD) use in 6. 

 

Evaluation data sets containing macrocyclic compounds were also identified from this initial pool by 

substructure search via a SMARTS query (available as Supplementary Material) which searches for rings 

with twelve of more atoms. Sufficient macrocycles were found for Caco2 permeability (24 compounds), 

Fraction Unbound (22 compounds) and for Cytochrome P450 inhibition (over 200 compounds). 

 

 

A list of anti-neoplastic drugs was obtained from Drug Bank7 using the ‘antineoplastic agents’ mesh term. 

Their SMILES were matched (using RDKit) to existing compounds on the evaluated data sets. 

 

A complete view of the datasets used in this work can be obtained in Table S2. 

 

Training and evaluating models 

The qualitative predictions (classification tasks) were done by two different algorithms, Random Forest8 

and Logistic Regression9. The quantitative predictions (regression tasks) were also done by two different 

algorithms, Gaussian Processes10 and Model Tree Regression11. The best performing predictor in each 
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task was chosen. The Weka toolkit was used for training and testing the models. 

 

The usefulness and reliability of pkCSM was evaluated using different external data sets and cross-

validation protocols and by comparing to the current leading approaches available for each predictive 

type. The description of the evaluation set up can be found in Table S2 of Supplementary Material. 

 

Website Design and Implementation 

pkCSM provides a user-friendly and quick web interface to generate ADMET predictions for up to 100 

given chemical compounds at a time, developed using cutting edge frameworks (the front-end uses 

Bootstrap 2.0 and the back-end was implemented in Python, using Flask (0.10.1). The 2D chemical 

structures depiction are generated by RDkit.
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Toxicophore SMARTS Queries 

 

O=N(~O)a 

a[NH2] 

a[N;X2]=O 

CO[N;X2]=O 

N[N;X2]=O 

O1[c,C]-[c,C]1 

C1NC1 

N=[N+]=[N-] 

C=[N+]=[N-] 

N=N-N 

c[N;X2]!@;=[N;X2]c 

[OH,NH2][N,O] 

[OH]Na 

[Cl,Br,I]C 

[Cl,Br,I]C=O 

[N,S]!@[C;X4]!@[CH2][Cl,Br,I] 

[cH]1[cH]ccc2c1c3c(cc2)cc[cH][cH]3 

[cH]1cccc2c1[cH][cH]c3c2ccc[cH]3 

[$([C,c]OS(=O)(=O)O!@[c,C]),$([c,C]S(=O)(=O)O!@[c,C])] 

O=N(~O)N 

[$(O=[CH]C=C),$(O=[CH]C=O)] 

[N;v4]#N 

O=C1CCO1 
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[CH]=[CH]O 

[NH;!R][NH;R]a 

[CH3][NH]a 

aN([$([OH]),$(O*=O)])[$([#1]),$(C(=O)[CH3]),$([CH3]),$([OH]),$(O*=O)] 

a13~a~a~a~a2~a1~a(~a~a~a~3)~a~a~a~2 

a1~a~a~a2~a~1~a~a3~a(~a~2)~a~a~a~3 

a1~a~a~a2~a~1~a~a~a3~a~2~a~a~a~3 

a1~a~a~a~a2~a~1~a3~a(~a~2)~a~a~a~a~3 

a1~a~a~a~a2~a~1~a~a3~a(~a~2)~a~a~a~3 

a1~a~a~a~a2~a~1~a~a3~a(~a~2)~a~a~a~a~3 

a1~a~a~a~a2~a~1~a~a~a3~a~2~a~a~a~3 

a1~a~a~a~a2~a~1~a~a~a3~a~2~a~a~a~a~3 

a13~a~a~a~a2~a1~a(~a~a~a~3)~a~a~2 
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Macrocycles SMARTS Query 

 

[r;!r3;!r4;!r5;!r6;!r7;!r8;!r9;!r10;!r11] 
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Case Studies 

Case Study 1: The Solubility Challenge 

The solubility of a compound is a key physicochemical property, important in both chemistry and 

biology, and influences its pharmacokinetic behavior. It has been regarded as a difficult property to 

predict, with many computational models suggested to be over fitted, with large errors and hence low 

reliability12. To address this, Llinas and colleagues proposed a solubility challenge13, to which more than 

100 entries were submitted14. To compare the predictive performance of our approach, we subjected it to 

this test.  

 

On the training set, pkCSM managed a Pearson correlation of 0.818 (0.911 after 10% of the outliers 

were removed, and a standard error of 0.846 (0.558 after 10% of the outliers were removed) (Figure S3). 

Using the trained model to analyze the test set, pkCSM achieved a correlation of 0.733 (0.879 after 

removal of 10% of outliers) and an standard error of 0.945 (0.653 after 10% of the outliers were removed) 

(Figure S3). By Fisher r−to−z transformation (p<0.05), pkCSM was more accurate than the entries 

presented by Hopfinger and collegues14 or the final model presented by Hewitt et al15 which obtained a 

correlation of 0.740 on the training set, and 0.510 on the test set, with a standard error of 0.95. This 

highlights the strength of the molecular signature approach presented here. 
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Case Study 2: Predicting pharmacokinetic properties of macrocycles 

Macrocylces are defined as compounds with ring structures of 12 or more atoms. Their ability to target 

previously undruggable sites, including protein interfaces, has aroused significant interest, leading to 

already over 70 macrocyclic drugs in therapeutic use. However, macrocycles do not appear to conform to 

conventional metrics such as Lipinski’s Rule of Five16, 17. Villar and colleagues have been able to extract 

rules for the development of oral macrocycles, confirming that these do differ significantly from other small 

molecules18. This may be due to the presence of internally-satisfied H-bonds, which were identified as a 

potential exception by Lipinski.  

 

Within the databases used to train pkCSM, three models had experimental data for sufficient numbers 

of macrocycles. These included Caco2 permeability, Cytochrome P450 inhibition and Fraction Unbound. 

Considering their increasing importance and unique properties, we devised a study case to assess the 

performance of pkCSM on predicting properties of macrocycles identified in the datasets used to train 

pkCSM. Since the pharmacokinetic properties of macrocycles are known to not obey the same rules as 

the majority of drug like molecules, this was expected to challenge the limits of the pkCSM signatures. 

Despite the difference in ideal ‘drug-like’ properties between most drugs and the macrocylces, pkCSM 

was able to predict a broad range of the macrocycle pharmacokinetic properties.  

 

There were approximately 20 macrocycles that had been experimentally characterized, and with a 

broad distribution, in the Caco2 and fraction unbound datasets. pkCSM was able to predict the Caco2 

absorption of macrocycles (R²=0.912, σ=0.305; right graph of Figure S4) and the fraction that would be 

unbound in plasma (R²=0.922, σ=0.117; left graph of Figure S4), results compatible with the cross-

validation performances obtained (Table 1).  

 

There were also 200-300 macrocycles present in each of the Cytochrome P450 inhibition datasets. 

While pkCSM performed extremely well in its ability to classify the macrocycles according to their ability to 

inhibit the P450 subtypes (accuracy of 87%-98%, comparable with the cross-validation accuracy of 84%-

88%), the macrocycles were poorly distributed across the two classes as the majority were not P450 
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inhibitors.  
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Case Study 3: Analyzing anti-neoplastic drugs 

Anti-neoplastic drugs, by the nature of their mechanism of action, is one class of drugs associated with 

significant side effects and a narrow therapeutic window to balance their activity (dictated by their 

pharmacokinetics and pharmacodynamics) and toxicity. While this can be mitigated, for example by the 

use of drug carriers19 or chemical modifications20-22, it is still a serious concern during the drug 

development process and a significant cause of attrition during clinical trials.  

 

Within the datasets used to train pkCSM there was well characterized data for a number of clinically 

used anti-neoplastic drugs. In a similar approach to our analysis of macrocylces above, we used this data 

to evaluate the performance of pkCSM on these drugs. 

 

Table S3 summarizes the performance of pkCSM classification and regression models on predicting 

ADMET properties for the identified chemotherapeutics. Accuracies of over 80% for the majority of the 

classification models were achieved and correlation coefficients ranging from 0.67 (for Oral Rat Acute 

Toxicity) to 0.92 (for Fraction Unbound/Human), showcasing the efficacy of the proposed methodology. 
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Tables 

 

Table S1: List of molecular properties calculated using the RDKit cheminformatics toolkit and used for 

training the predictive models. 

 

Property Data type 

Molecular Weight Real 

Heavy Atom count Integer 

LogP Real 

Heteroatoms count Integer 

Rotatable Bonds count Integer 

Ring count Integer 

TPSAa Real 

Labute ASAb Real 

Fluorine atom Count  Integer 

Toxicophore [1-36]c Binary vector 

Pharmacophore countd Integer vector 

a Topological polar surface area23. 

b Labute ASA24. 

c Obtained via SMARTS queries proposed in25. 

d Six classes are considered: Hydrogen acceptor, hydrogen donor, aromatic ,hydrophobe, negative ionizable and 

positive ionizable. 
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Table S2: Description of datasets used on building the pkCSM platform and validation protocols 

employed. 

Class Dataset Size 

 

Task Validation  Reference 

Absorption Water Solubility 1708 Reg. 5-fold cv. 1 

Absorption Caco2 permeability 674 Reg. 5-fold cv. & 

Train/test 

1 

Absorption Human Intestinal Absorption (HIA) 552 Reg. Train/test 1 

Absorption Skin Permeability 186 Reg. 5-fold cv. 26 

Absorption P-glycoprotein Substrate 332 Class. 5-fold cv. 1 

Absorption P-glycoprotein Inhibitor I 1273 Class. 5-fold cv. 1 

Absorption P-glycoprotein Inhibitor II 1275 Class. 5-fold cv. 1 

Distribution Human Volume of Distribution - 

(VDss) 

670 Reg. Leave-one-out cv. & 

Train/test 

3 

Distribution Human Fraction Unbound (FU) 670 Reg. Leave-one-out cv. & 

Train/test 

3 

Distribution BBB permeability 320 Reg. 10-fold cv. 4 

Distribution CNS permeability 153 Reg. 10-fold cv. 5 

Metabolism CYP450 2D6 Substrate 671 Class. 5-fold cv. 1 

Metabolism CYP450 3A4 Substrate 671 Class. 5-fold cv. 1 

Metabolism CYP450 1A2 Inhibitor 14903 Class. 5-fold cv. 1 

Metabolism CYP450 C19 Inhibitor 14576 Class. 5-fold cv. 1 

Metabolism CYP450 2C9 Inhibitor 14709 Class. 5-fold cv. 1 

Metabolism CYP450 2D6 Inhibitor 14741 Class. 5-fold cv. 1 

Metabolism CYP450 3A4 Inhibitor 18561 Class. 5-fold cv. 1 

Excretion Total Clearance 503 Reg. Train/test 27 

Excretion Renal Organic Cation Transporter 906 Class. 5-fold cv. 1 

Toxicity AMES Toxicity 8445 Class. 5-fold cv. 1, 28 

Toxicity Max. Recommended Therapeutic 

Dose (MRTD) 

1220 Reg. 10-fold cv. 6 

Toxicity hERG I Inhibitor 368 Class. 5-fold cv. 1 

Toxicity hERG II Inhibitor 806 Class. 5-fold cv. 1 

Toxicity RAT LD50 10207 Reg. 5-fold cv. 1 

Toxicity Oral Rat Chronic Toxicity (LOAEL) 445 Reg. Leave-one-out cv. 29 

Toxicity Hepatotoxicity 531 Class. 5-fold cv. 30 

Toxicity Skin Sensitisation 234 Class. 5-fold cv. 31 

Toxicity T.Pyriformis Toxicity (TPT) 1571 Reg. 5-fold cv. 1 

Toxicity Minnow toxicity (FHMT) 554 Reg. 5-fold cv. 1 
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Table S3. pkCSM prediction performance for anti-neoplastic drugs within evaluated data sets. 

Dataset #Drugs Success rate* 

AMES Toxicity 15 93.3% 

CYP1A2 Inhibitor 27 85.2% 

CYP2C19 Inhibitor 26 80.8%  

CYP2C9 Inhibitor 29 82.8% 

CYP2D6 Inhibitor 30 90.0% 

CYP3A4 Inhibitor 37 89.2% 

CYP2D6 Substrate 10 80.0% 

CYP3A4 Substrate 10 70.0% 

hERG-II Inhibitor 12 83.3% 

Hepatotoxicity  12 100% 

Fraction Unbound Human (Fu) 13 0.916 

Steady State Volume of Distribution (VDss) 12 0.759 

Total Clearance 10 0.703  

Oral Rat Accute Toxicity (LD50) 7 0.668 

*Accuracy for classification tasks and Pearson’s correlation coefficient for regression tasks. 
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Figures 

 

 

Figure S1. Regression analysis for Distribution predictors considering cross-validation schemes. 

Pearson’s correlation coefficients and standard error are also shown. 

 

 

 

 

Figure S2. Regression analysis for Toxicity predictors considering cross-validation schemes. Pearson’s 

correlation coefficients and standard error are also shown. 
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Figure S3. Regression analysis for solubility prediction using the training and test data from the Solubility 

Challenge13.  

 

 

 

Figure S4. Regression analysis for Caco2 Permeability and Fraction Unbound prediction for macrocycles. 
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