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Fig. S1. Normalized current signal in a time scale of a fraction of us, obtained by using the same

model parameters as in Fig. 5b, except for ¢, =0.015us and [, /2=10"¢V.

t(ms)
0 : .
0.35 0.7
_0‘2_
= 04
<
| _ J
~ 0.6 \
~0.8] NS

_1_

Fig. S2. Extension of Fig. 5b to a longer time scale.



S2. Explicit expression for the state vector in Eq. 5, under the initial conditions of Eqs.
6 and 13, and additional discussion of the model.

Before deriving expressions for the coefficients in Eq. S, we notice that the present one-electron
model, especially in the interpretation iii of Eqs. 4 and 6, extends the picture of the two-state model
for coherent sensing to the more realistic situation in which a manifold of substrate electronic states
are involved in the charge redistribution that follows the analyte binding. For small perturbation by

the analyte, the onset of the system repolarization can be described by using the time-independent

perturbation theory (1). Assume, for example, that |d> is the ground state of the one-electron

system in the absence of the perturbation V . To the first order in V the new ground state is

’ Vd V
d>=|d>—AE—:|a>+zL:Ag’dl|l> [S1]

(where AE , = E, — E,) which, in the absence of the L manifold, reduces to

, 14
d>:|d>—Ag’d|a>. [S2]

Eq. S2 is |l//> = Cd|d> +Ca|a> with coefficients given by Eq. 3 to the first order in V . The extension

of Eq. 1 to this multistate model needs to be considered to obtain the equilibrium electronic charge
distribution after analyte binding. Here we focus on a dynamical model for sensing in which charge
is initially localized on the d site and the system state evolves so as to spread this charge over the L
manifold of states.

Let us derive an analytical expression for the system state vector in Eq. 5. The coefficients in the

state expansion are obtained by solution of the time-dependent Schrodinger equation
i|,//([)> __L ﬁ[|1//([)> [S3]
dt n

using Laplace transform and Green’s function methods (2). Details on the methods can be found in
ref. (2). First, for the initial condition in Eq. 6, we determine the probability P, () that the system is
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found in state |d > at time ¢. Solution of Eq. S3 by means of Laplace transforms leads to (2)

1 T -
- 1 E —iEt/h
@)= lim [dEe™ " v ©) [S4]

m>»—t

Scalar multiplication of [S4] on the left by <l//(0)| and introduction of Eq. 6 and the Green operator

GE+ie)=6)=— =L [S5]
z-H z-H,-V
give
__1 T ~iEt/h .
c,(t)y=———1m |e G, (E+ie)dE [Sé6a]
2l e-0" 9
with
1
G ()=(d|——=]d) [S6b]
Z—-H

namely, c,(¢) is a Fourier transform of a diagonal (dd) matrix element of G(E +i€). To find the

expression of G, (z), we introduce the simpler Green operator

A 1
Gy(2)= = [S7]
Z— H()
consider that é(z) and é(zo) satisfy the Dyson identities (2, 3)
G(2)=G,(2)+ Gy (2)V G(2) = G, (2) + G(2)V Gy (2) [S8]

and use the resolution of the identity operator:

[d)d]+]a)al+ 2[00 =1 [S9]

l

The matrix elements of the operator in [S7] are

1 .
G u@=——=0,  jk=dal [S10]

oy

Eqgs. SS and S7-9 produce the following relations between the matrix elements of é(z) :



G, (2)={d|G,(2)|d)+(d|G,(2)VG(2)|d) = IE +(d|G(2)1V1G(2)|d)

]

= Z_IE {1+<d| \7(|d><d|+|a><a|+Zl:|l><l|jé(z)|d>} [S11]

1
{1 +V0G o (2 + Zdesz (Z)}
z—E,

I

A man s 1

G, (2)=(a|G, ()1 lG(z)|d>=Z_—EVaded(Z) [S12]
A man s 1

G, (2)=(l|G,(91V1G(2)|d) = z——EVlded (2) [S13]

l

Insertion of Egs. S12 and S13 into Eq. S11 gives

1 V.V V.V
G, (2)= 1+ G ()+ Y LG (2) [S14]
dd _Ed|: Z—Ea dd ZZ—EI dd
whence
. 1
G, (E+ie)= - - [S15]
E+ie-E,-B,(E+i¢€)
with

2
ad

ry vl

B(E+ie)=——"—+Q) ————
E-E, +ie TE-E +i¢

[S16]

In [S15], B, appears as a change in (or correction to) E, due to the coupling of |d > with the other
electronic states. Thus, B, has the meaning of a self-energy. To obtain an analytical expression for

B,(E +i€), we use the continuum approximation for the L manifold. Thus, Eq. S16 becomes

L,(E)

—i S17
"E—E, +ic (517]

|le|2 T <|le|2 >p PL(E) _ 1 I
ZI“E_E1+i€_IdEZ E-E +i¢e _ZEIdE

where p, (E)) is the L density of states. < | Vl,,,|2 >, 1s the mean-square coupling for the states with
energy E; and

L,(E)=2x<|V,|" >, p,(E) [S18]



Eq. S18 reduces to the first Eq. 8 assuming that the density of L states ( p, ) is independent of the

state energy E and extends from —oo to oo [that is, the wide band approximation (2)], and that
<|Vg,l|2 >, 1s also independent of E (its value is denoted <|Vg,l|2 >, in Eq. 8). With these

assumptions, I', (E) =TI, for any E and the integral in [S17] is solved as follows:

e K
2 'E-E+ie 2n° (E-E)+e¢
o w [S19]
LY L LY LYY P L]
2r Y x"+é& 2r 0 x"+1 2 2
Using Eq. S19, Eq. S16 is written
V[ r E-E r £
B(E+ig)=—"dl _ _j-d—__ """~ |y P_jlZdy_ =y P [S20]
‘ E-E,+ie 2 (E-E)+&' ™ 2 (E-E)+& ™
Inserting Eq. S20 into Eq. S15 and the latter into Eq. S6a, we obtain
o —iEt/h
cd(t):—%lim ¢ dE
7Tl £—>0+_oo E—E r
E-E, - Vil SV
(E-E,) + (E-E,) +¢ 2
~iE, t/h o _’%X 2 2
=_€2 — lim e e )d)li [s21]
1 £
i ~(x+AE,,)x*+&*)-|V,, 2x+{(8+2‘1j(x2+€2)+€ v, 2}
e e " xdx e ¢ " xdx
- . - . . 2
2mi ~(x+AE_ )x—|V,, 2+i1;1x 2w L, x2+(AEad +1Fd/2)x_ Vaa

where we used the integration variable x=FE —E_, Eq. 2, and, in writing the last line, the dominated

convergence theorem. Note that one can also obtain Eq. S21 by using the identity (1)

lim—————=6(E-E,) [S22]

or



lim—— —pp—1 ~ind(E—E,) [S23]
5_>0+E E +l€ E_El

where PP denotes the Cauchy principal part. In order to solve the integral in Eq. S21 by means of

the residue theorem, we first decompose the denominator of the integrand as follows:

—iE, t/h o —zE t/h 0

—i—Xx
e " xdx

£)=— Y g [ x| [s24
€ () 2mi _w(x—x+)(x—x) 2i (x_ -x, J; ¢ gy _-[ x—x_e x| [52dal

with

“AE  —iT, 2+ J(AE  +iT, 2P +4v |
xr: ad d/ \/( 2ad d/ ) ad ) [SZ4b]

To recast x, in a more convenient form, we rewrite the radicand in [S24b] as

(AE,, +iT,/2) +4|V, " =AE2, +4|V |' -T2 /4+iT,AE,, = &%e" [S25]

Vad

with &* given in Eq. 8 and

2
AL,

' /4
6 = arccos . [S26]

4‘:2

Eq. S26, after a phase choice, yields

0 1+cos€=l\/52+AEa2d +4|Vad|2_rdz/4
¢

cos— = [S27a]
2 2 2
and
_ AE 2 _AE:, -4V [P +T2/4
sin§=sgn(AEud) 1 02059 =Sgn(gt ad)\/f ad 2| ud| d/ [S27b]

Once a positive sign is assigned to cos(6/2), sin(f/2) and sin @ = 2sin(0/2)cos(6/2) have the same
sign. From the imaginary part of the quantity in [S25] it is seen that this sign is dictated by AE ,,

because I, is a positive-definite quantity. Taking the square root of Eq. S25, one obtains

JAE,, +iT, 2 +4v, [ =& =u+iv [S28]



(see u and v in Eq. 8). Inserting [S28] into [S24b], the poles of the integrand in Eq. S24a are written

.x_—AEM+wH®—EMﬂ ;x_—AEm—wd®+EMﬂ

S29
+ 5 5 [S29]

(the other root of the quantity in [S25] with phase 6/2—r is disregarded, because it produces the

same solutions for x). Any choice of the physical parameters leads to negative Im(xi ). In fact,

T I’ I’
7d2|v| < 751252_AE3d_4Va(12 -

oy Ly [S30]
s (AE3¢1+4‘/¢¢d2+_dj Z(AEjd"""Vadz__d] +F¢12AE3d s Vad 20

which is always satisfied. Since the integrand in [S24a] tends to zero with increasing modulus of x
in the lower half complex plane, we transform the integration path in the complex plane, by closing
a clock-wise contour in this half plane, and taking the limit for infinite radius of the circular portion

of the integration path. Both x_ and x, are enclosed by this contour. Thus, insertion of Eq. S29 into

Eq. S24a and application of the residue theorem produce

—iE,t/h
_¢ —ix,t/h —ixafn)_ E,+E, r,
c,(t)= x.e —X_ée =exXp —1 t|expl ———t
a() X —X (+ - ) p( 2h P 4#h

+ —

r —i r —i
—AE +u+ilv——""lexp| © Lt |-|—AE,, —u—i| v+ ||exp| =L ¢
2 2h 2 2h

2(u +iv)

X

2(u+iv)
1 E,+E,—u v+T, /2
=—exp| —i—+—4—1 |exp| ————1
2 2h 2h
y 1+exp(v_lut)+AE“d+l.rd/2 l—exp(v_lutj .
h u+iv h [S31]

Introducing the abbreviated notation



AEad+ird/2_ i

: ze [$32]
u+iv
with y and ¢ defined in Eq. 8, we have
T,
c,(t)=¢,(t)exp| —=*t¢ [S33a]
2h
with
0 =%exp(—thj{l 420"+ —x)} [S33b]

and T, given in Eq. 8. The squared modulus of {(¢) is obtained from the equation

4|§d (t)|2 = {1 + e’ + (1 o )e_i:re;t}{l +ye "+ (l — e )ei:te;r}

v
—t —t

:1+)(e_i’3+(1—)(e_iﬁ)ehe"’ +)(em+)(2+()(e”9—)(2)e”eh +(1—)(e”9)e heh

v
—t —t

u v
—i—t —t

+ (;(e_m —)(z)e heh + (1+)(2 — ye'” —)(e_m)ezgt =1+ x> +2ycos? [S34]
+2[(1—)(2)cos(ut/h)+ )(cos(19+ut/h)—)(cos(ﬂ—ut/h)]e%t + (1+;(2 —2ycos 19)62?
=1+ y* +2ycos 19+2[(1—)(2)cos(ut/h)—2)(sin ﬁsin(ut/h)]egt + (1+)(2 —2ycos 19)627

Thus, from Eq. 33 one obtains

P,(0)=|c, [

L, 2 _ 2 v, 2 _ v, [S35]
=e " {1+X +42XC0819+{1 2)( cos(%tj—)(sinz?sin(%tﬂe” +1+X 42XCOSZ9e2h }

The expression for I, in [8] and [S30] imply that T, >2v for |Va d|2 > 0. Hence, according to

Eq. S35, P,(t) -0 for t —co. This limit also holds for the special case in which |V, *=0,
because in this case & = AEjd +F§ /4, u=AE_, v= Fd/Z, and Eq. S35 reduces to (2)
1—‘d
P,(t) = exp —7t [S36]

Eq S36 is also valid when, as in Fig. S3a, AE_, >>V _,, I',. In this regime of large AE ,, the Rabi

oscillation has an accordingly small amplitude, which makes the population of the high-energy state
9



localized on a negligible throughout the relaxation process. Eq. S35 (as well as Eq. S36) describes

the irreversible process of quantum relaxation of the d population to the manifold L of substrate
states. With the model parameters used in Fig. S3, the decay time 7, = h/ (1:d - 2|v|) of P, is on the
order of a picosecond. For AE , =0 and AE , =2V , (Figs. S3b-c) one can see damped d-a Rabi
oscillations during P, decay, because the respective Rabi frequencies, 2V,,/h and 292 Vo / h, are
similar to 1/7,, . The amplitude of the Rabi oscillation is negligible in Fig. S3a where AE,, >>2V,,.

Eq. S36 is also obtained for I', >>AE_,,V_, . In this case, the relaxation to the L manifold occurs

before any appreciable effect arising from the d-a coupling because the coupling between d and L is

much stronger than V_, . Therefore, the relaxation rate is again I, / #i, as in the absence of a. Indeed,
the condition I', >>V , is sufficient to establish the regime described by Eq. S36, irrespective of

the AE_, value. This analysis extends the applicability of Eq. S36 beyond its common use for the

{d,L} model.
13 § 0.10
0.8 0.8 0.08
P, 0.6 P, 0.6 P 0.06
0.4 0.4 0.04
02 02 0.02
0 \ 0 - \ 0 ,
2 4 2 4 2 4 6
(a) 1(ps) (b) 1(ps) (c) 1(ps)

Fig. S3. P, =|ca,|2 vs.t,for V,, =T, /2=1meV and (a) AE , =1eV; (b) AE,, = 0; (c) AE,, =1eV

(black), AE , =2V _, =TI, (cyan), and AE , = 0 (orange). Eq. S35 is plotted.

In the opposite regime of large d-a coupling (V,, >>AE ,, I',), the Rabi oscillation is a dominant

feature of the electronic dynamics and I', causes a slow convolution (more specifically, a damping)

of the oscillatory amplitude. In this regime, Eq. S35 reduces to
10



P,()= exp(—g—;tj [l - sinz(vhﬂ tﬂ [S37]

and 7/V,, <<7,.T,/2 and not T, is the relaxation rate, because the system oscillates between |d >
and |a> and there is no direct communication (zero electronic coupling) between the receptor layer
and the substrate when |a> is the state of the system.

More generally, when I,/V,, —0 and/or T, /AE,, —0 (considering, however, that I',/% is not

negligible for large enough ¢, Eq. S35 reduces to
I
P,(t) = exp| — =%t
AL P( o j

[S38]
AE? I AE AE [ AE 4v? AE
X 1 1+ “j sinh?| —4—9d ¢ | - ——9d giph| —4— ¢ |+1— V“‘; sin? -y
2 AE? ANER ) AE 2AE I AE 2n

v

Eq. S38 connects the limits AE , >>V_,,I', and V , >>AE ,,I',, and holds for intermediate cases

in which V_, and AE , are comparable. Eqgs. S35 and S38 show excellent agreement in Figs. S4-5.

1 11
0.8 0.8;
0.6 0.61
b 0.4 b 0.4/
0.2 0.2
05 ] "1 2 5 4 s
(a) {(ms) (b) {(ps)

Fig. S4. (a) Time evolution of P, (d site occupation probability) for V., =107 eV, AE , =2V,

and I, /2=10"eV . (b) Time evolution of P, in a ps time scale that allows to appreciate only the

Rabi oscillation between d and a. Eqs. S35 and S38 are plotted in black and green, respectively.

The absolute and relative values of V_, and AE , influence the electronic relaxation time 7, via

11



the parameter v in Eq. 8, but they also control the shape of the current signal and its sensitivity to
the perturbation to be sensed. We now discuss how the sensitiveness of the quantum relaxation

process to a change in AE , caused by the external perturbation may increase with decreasing V.

1 1~ -
0.8 08
0.6 0.6
b 0.4 b 0.4
02 02
0 —L 0—
1 2 3 4 5 1 2 3 4 5
(a) 1(ps) (b) 1(ps)
1 1
0.8 08
0.6 0.6
Fa 04 Fa 0.4
02 02
0 - \ 0 - -
01 0.2 0.1 02
(c) 1(ps) (d) 1(ps)

Fig. S5. (a) P, vs. time, for [,/2=10"¢eV and (a) V,, =107eV, AE,, =0; (b) V,, =10 eV,
AE ,=10-(2V,)=0.02eV; (c) V,, =0.02eV, AE,, =0; and (d) V,, =0.02eV, AE,, =0.02¢V .

The color code is used as in Fig. S4.

In Figs. S4-5, the d-a Rabi oscillation occurs on the ps time scale (with a frequency depending on

AE ), while the relaxation to L occurs in a fraction of a ms because I, /2=10""eV (coherence in
this time scale is an ideal limit, as discussed in the article). In Fig. S4 the oscillation of P,(¢) has an
amplitude of ¥2 because AE , =2V _,. In Figs. S5a and S5c, P,(t) oscillates between zero and unity

because AE_, =0, while the state relaxation to the L manifold is negligible on the represented time
12



scale. For V, =107 eV, changing AE , from zero to 10-(2V,,)=0.02eV (note that such a change
may also arise from thermal motion, which would break the coherence, at room temperature) causes
a drastic change in the oscillation amplitude of P, (cf. Figs. S5a-b). For V_, =0.02eV , a change of
AE , in the same range produces a much smaller change in the oscillation amplitude of P, (cf. Fig.

S5c-d). Thus, with the parameters used in Figs. S4-5, the relaxation dynamics on the ps time scale is

more sensitive to AE_, perturbations for smaller coupling between receptor and anchoring sites.

1 1
0.8 0.8]
P, 0.6 P, 0.6/
0.4 0.41
0.2 0.2]
0 0
0.5 1 0.5 1
(a) t(ms) (b) t(ms)
1 1
0.8 0.8
P, 0.6 P, 0.6
0.4 04
0.2 0.2
0 - 0 ‘
010305 08 1 0.5 1
(c) t(ms) (d) t(ms)

Fig. S6. Extension of the diagrams in Fig. S5 to the ms time scale, using only Eq. S35. The small-

amplitude Rabi oscillations in Fig. S5b are not visible on the much longer time scale of Fig. S6b.

Fig. S6 extends Fig. S5 to the ms time scale. The increasing sensitivity of the d site depopulation

to AE,, changes with decreasing V, is a feature of the electronic relaxation dynamics that persists

on the time scale of Fig. S6. Since d depopulation implies substrate population, hence change in the
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gate voltage, in this case the sensitivity of the detector is higher for larger thickness of the receptor.
The oscillations in Figs. S5-6 may well be averaged out by the influence on the current signal of

simultaneous events at the receptor surface and by the data acquisition procedure. Thereby, smooth
signals may be found in experiments. Averaging over the Rabi oscillations produces the smooth P,
time evolutions in Fig. S7, which correspond to the four cases of Fig. S6. Smoothed time evolutions
were used to relate the electronic relaxation dynamics in the analyte-receptor-substrate subsystem to
the current, which flows through the metal-substrate-metal junction of the FET. Anyway, P, has a

smooth evolution (see Fig. S8), as the Rabi oscillations occur between the d and a states.

1\
0.8\
\
0.61
P, \\\
0.41 X\
005 0.1
t(ms)

Fig. S7. Time decay of P,, after averaging out the Rabi oscillation, for the cases in Figs. S6a (black

solid curve), S6b (black dashed line), S6¢ (blue solid line, which is indistinguishable from the black
solid line) and S6d (blue dashed line). A shorter time range of 0.1 ms is shown compared to Fig. S6.

The larger difference between the black lines compared to the blue ones expresses the larger change

in the charge relaxation dynamics, when AE , is varied, for smaller electronic coupling.

c, (t)|2 that the system

Next, consider the coefficient c,(¢) in Eq. 5, hence the probability P, (¢) =

is in the a state at time 7. Multiplying Eq. S4 on the left by <a| and inserting [6] and [S12], we find

1 Ll —iEt/h
c,)=——lm | ———
0 27ris—>0*J‘E—Ea+i8

)

V.G, (E+i€)dE [S39]
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By exploiting the algebra in Eq. S24, Eq. S39 is recast in the form

Lt
—iE,t/h oo I

¢, () ==V, lim [ — &
2mi £-0" (x + 18)(x - X, )(x —-X_ )

.t t
—iZx —i—x

_ YV et ]3 e " x’dx . T e " xdx
e07| Y (X +EN(x—x)(x—x) L (xXX+eN(x—x)(x—x)

S40
2wl [ ]

—lfx

—zE t/h T e dx

As an alternative, one may use Eq. S23 and consider that x, and x_ have negative imaginary parts:

Lt
—l—X

—iE,t/h

e " xdx “iEqt/h . e " xdx
€)==V, PP j + v, [o(x)
x X, )(x—x_) 2 . (x—x+)(x—x_)
r [S41]
e Em 2 e " dx
== . VadJ. .
2mi . (x—x+)(x—x_)
At this point, the residue theorem yields
—~iE t/h | e _’%x o _iéx V e t/h ) )
¢, (0=t C v [ | =T (e )
2mi(x_—x,)| . x—x, S X—x X, —X_
V., E +E, T, (v—iu j ( v—iu j
=—%“_exp| —i—* tlexp| ——=1 || ex t|—exp| — t S42
U+ iv p( 2h j p( an )| P on A [542]
V., E.+E,—u T, : (v—iu )
=—2expl —i————t |lexp| ——=1 |[lu—1iv)| ex t|—1
fzp( o jp(%()ph
or, in more compact notation,
Vd fd
c (t)y=—""C (t)exp| ——t S43a
(D éé"a() p( 2hj [S43a]
with
HOE u_wexp —imt exp(v_m tj—l [S43b]
2h h
Being
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lz(u—iv) exp V—lut 1 (l,{—l—iV) exp V+ll/tt 1 :l ezgt_e;t ei%t—l_e—i%r 1
4 h h 4

[S44]
= 1 el te —lcos(ﬁtj = el sinQ(l tj + sinh{i tj
4 2 h 2h 2h
and using Eq. 8, one obtains the following time-dependent occupation probability for site a:
s WVl (T YAVl BT v
P.(t)=|c, (t)| =2t —exp| ——L1 |=——e ? |sin’ [— tj +sinh® (— tj [S45]
é h é 2h 2h

Finally, the population of the L manifold in Eq. 7 results from the normalization condition

c, ).

e, @) =1=|e, 0| -

I

0.8
0.6
04
0.2

0.5 1
Fig. S8. #(ms)

Fig. S8. P, =Y |c,(1)|" vs. time, for [,/2=10""eV, V,, =10 eV, and AE,, =2V,,.
/

P (2) is related to P,(¢) by Rabi oscillations that initially increase the average a population. Then
P (t) vanishes for t — oo, while P, (#) =1 for t — oo (see Fig. S8, where P, increases to unity on
a millisecond time scale for a coupling strength to the L manifold as small as ', /2=10""eV ). The
oscillation is damped as |d> relaxes to {|l>} in a time of the order of 7/, . This relaxation also

causes loss of coherence (dephasing) in the evolution of the d-a subsystem. The departure from

coherent d-a Rabi oscillations is quantified by the parameters I',, v and ¢ in the state probabilities

16



of Eqgs. S35 and S45, with v=9J=0 for I, =0. Residual electronic charge on the a site (or, in
general (4), residual occupancy of |a>) near f = h/ I', is finally released to L by mediation of site d.
The complete decay of P,(¢) to zero occurs over the 7, time scale described in the upper inset of
Fig. 3. Both approximations to 7, in this inset hold for the parameters used in Figs. S9-10. The first
approximation shows that 7, increases with decreasing V , and/or increasing AE ,. In fact, the
parameter choice in Fig. S10 implies complete decay of P,(f) to zero on a second time scale, even
if T,/2=10"eV as in Fig. S9 (again, coherence can be maintained on these time scales

depending on the nature of the electronic states and possible special conditions, such as 77— 0).
However, the residual population of the a site is of the order of 10~ e for the model parameters of
Fig. S10 (cf. Figs. S9a and S10b-c), which demands high sensitivity of the FET current to the
electronic relaxation dynamics in order toexploit the long-time evolution of P, for sensing
purposes, provided that the P, tail is not erased by system fluctuations. The cumulative effect of

tails of this sort needs to survive to fluctuations in a detector that is subject to simultaneous

perturbing events (5).

1 1
0.8 0.8
P 0.6 P 0.6]
0.4 0.41
0.2 0.2

0 - , of MMM

0.5 1 1 2 3 4 5

(a) f(ms) (b) 1(ps)

Fig. S9. (a) P, vs. time with the initial condition of Eq. 6, for T, /2=10"¢eV, V_, =107 eV and

AE,, =2V, . (b) Same graph, limited to a picosecond time scale. Eq. S45 is plotted.
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“04 “ 04 “04

0.2 0.2 0.2 ¥
0

0 0
I 2 3 4 5 0.5 1

(a) 1(ps) (b) f(ms) (c)

Fig. S10. (a) 10" P, vs. time for T, /2=10"eV, V,, =10"eV and AE,, =2-10""

5 10
1(s)
eV . (b) Time

evolution of 10° P, over a millisecond scale. (c) Evolution of 10* P, over a second time scale.

Next, we derive the state occupation probabilities at time ¢ starting from the initial condition in

Eq. 13. In terms of Green’s functions, we have now (6)

C ()= —L_ lim |e™"G, (E+ig)dE

27l e-0°

=

C,(t)= —L, lim [e™"G, (E+ig)dE

7Tl €-0"

o

C,(t)= —L, lim |e "G, (E+i€)dE

7Tl €-0* e
with
G, (2)=(a|G,(2)|a)+(a

)
S {1+<a|V[|d><d|+|a><a|+zll|l><l|jé(z)|a>}= - (14V,,6,.)

a

G, (2)= <d|éo (Z)A‘}iGA(Z)|a> = Z IE (VdaGaa +ZVdZGlaj
~E, -

G, (2)=(1|Gy(2)1V1G(2)|a) =Z_#EVMGW
1

Insertion of Eq. S51 into Eq. S50 leads to

[S46]

[S47]

[S48]

[S49]

[S50]

[S51]

18



“ [S52]

G, (=G, (E+ie)= ! > = ! 5
Vda Vda
SR V[ R vin, 2
- L, Ty,
—E, -y -4 S53
y Z = [S53]
B :—E, +il,/2 B E-E,+i(le+T,/2)
(Z_Eu)(Z_Ed +ird/2)_|vda ’ (E_Eu +i8)[E_Ed +i(€+rd/2)]_ Vda ’
from which
\%
G, (2)= = [S54]
‘ (Z_Ea)(Z_Ed+ird/2)_|Vda2
and
G,(2)= ! YidVao . [S55]
z-E, (Z_Ea)(Z_Ed +ird/2)_ Via
Moreover,
G, (E)=limG, (E+ig)= E-F, +il,/2 _, [S56]
&0 (E_Ea )(E_Ed +ird/2)_|vda
. . Vdu
G, (E)=lmG,(E+ie)= = [S57]
0 (E_Ea)(E_Ed+iFd/2)_|Vda
Inserting Eq. S56 into Eq. S46, one obtains
—iE tfh = .
C,(=- " HAE, +iL,2 [S58]

2ni Y, X +(AE,, +iT,/2)x-|V,,

where, as above, x = E—E_. The denominator of the integrand in Eq. S58 can be decomposed as in

Eq. S24a. Then, comparison with Eqs. S21 and S40, and use of Eqgs. S33 and S43, gives
19



C.(t)=c,()+ AE%’F[’/ZC (1) = {g“d (1) + AE%’F[’/Z ’ (r)} exp(— %ZJ [S59]

ad

hence

=|c, (t)|2 w

L0 +2Re{cd () c, (1)

of 2 £ T2 o T

AE,, +iT, /2
Vad

ad

2 AEZd I’/4
:{|§d(t)| a; /

For the last term in Eq. S60, Eqs. S31 and S42 yield

AE,, +iFd/2}_ 1

2 exp(% t] Re{gd (e, () V) =2

XRC{1+M+{I_M—WJ e }(AEM*‘Z'D/Z)(M—Z'V)(; " —1)}
u u

— —1v

:%Re{(AEad +iT, /2)(u—iv)(e§re g ~D+(AE2, +T2 /4)(e &)

v

+(AE,, +iT, 2)u—iv)(e " —e"'en )~ (AE2, +T2 /4)e _ehfe"h’)}

r r
:f—lzRe{uAEad +v7d+i(u7"—vAEadj

r? Y A ]
—f—lz[AE(fd +TJJ{62h —2cos(%tjeh +1

L |
1

ezy —1-2i sin(ztj e%r }}
fi
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Substitution of Egs. S35, S45, and S61 into Eq. S60 produces

® 0 =|C, 0|
2 v, 2 2 v,
= It x +2XC0529€ B4 I=x cos| Lt — x sin ¥sin "y +1+X 2)(00819671
4 2 h h 4
[S62]
+4y2] sin?| —f |+sinh?| ¢ | |+2 UAE,, -I_Zvrd/zsinh Yt |- 4> cosh| Lt
2h 2h ¢ h h
th
+ VAE,, ;Lul“d/Z sin(zt}xzco{ﬁtj e .
¢ h h
For C,(t), the comparison of Eqs. S47 and S57 with Eq. S40 shows that
1% 1% T
C,()=—1c, (1)=—2 (t)exp| ——*¢ S63
(1) v () éfa() P( ZhJ [S63]
) 4|V(uj (VJ
®,t)=|C, ) =P,(t)=—S"—¢ " |sin’| —¢ |+sinh®| —1 ||. S64
s =[C,0f =R 0="3 o o [S64]

Finally, Eq. 14 results from the normalization condition on the expansion coefficients of Eq. 7.

Examples of the time evolution of @, are illustrated in Fig. S11. If AE , is zero or comparable to
V ., wide Rabi oscillations between |a> and |d > assure efficient state relaxation to the L manifold,
compatibly with the value of I', (Figs. S11a-b). In contrast, in Fig. S11c or Fig. S11d, the condition

AE ,>>V ,, I', implies small-amplitude Rabi oscillations, hence slow (d-mediated) relaxation to

L, with a dramatically reduced decay factor of the a population compared to the cases of Figs. S11a-

b. This difference is relevant to possible implementations of the pertinent sensing mechanism.

] 1
0.8 0.8
0.6 0.6
Tuoa Taoa
0.2 0.2

0 e G——

1 2 3 4 5 1 2 3 4 5

(a) 1(ps) (b) 1(ps)
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0.8 0.8

0.6/ 0.6/
Tioa Tioa

0.2 0.2

D a— 0——
1 2 3 4 5 1 2 3 4 5

(c) 1(ps) (d) 1(us)

Fig. S11. @,(¢), as obtained using Eq. $62 for V,, =T,/2=10"¢V and (a) AE,, =0 (cf. Fig.
S3b, where |d > is the initial state of the receptor-substrate system); (b) AE_, =2V , (cf. cyan line

in Fig. S3c¢); (c) AE,, =1eV (cf. Fig. S3a); (d) AE_, =1eV (longer time scale than in panel c). The

green line was obtained using the approximation in Eq. S65.

The short-time behavior of @, () in Fig. S1lc is obtained as follows. Since AE,, is much larger

than V,, and T,, we expand & up to the second order in V,,/AE,, and T, /AE,, , thus obtaining

*4+T2/4, hence uzw/AEazd+4|Vad|2, v=l,/2, 9=0, y=1-2

in Eq. 8. In the time scale of Fig. S11c, inserting such approximations in [S62], applying the cosine

EP=AE2, +4

Vad

* |AE?

ad

Vad

and hyperbolic cosine sum formulas and expressing the hyperbolic sine in terms of exponentials, we

obtain @,(t) =1. To describe the decay of ®,(¢) over the large time range represented in Fig. S11d,

&2 has to be expanded up to the fourth order: &* = AE?, +4 4 (Fdz / 4)— 2T, ’ / AE’, ; then,

Vad

Vad

v=(T,/2)(-2|V,,|" /AE2) and thus

2
- —t] . [S65]

Note that the integrands in the expressions of the above coefficients have larger numbers of poles

22



in the presence of bridge states localized between a and d. For example, with one additional state of

energy E,, the denominator of the integrand in ¢, (¢) is the third-order polynomial

I

E,+E 2+i(Eh_Ea)_d

2

I
s +i7djx2 +|:(Eh _Ed)(Eb _Ea )_|Vhd|2 _|Vha

X+ Z(Eh -

j|x
r [S66]
- |Vba =

Z(Eb _Ed )_|Vbd|2(Eb _Ea )_i|vba

S3. Analytical expressions for the ET rates constants in Eq. 12.

The ET rates for the junction model of Fig. S12 and the pertinent Eq. 12 for the current are

written using the zero-order Hale’s approximation (7) to the sums [see Methods section in ref. (8)]

(@, —A)* (o, +2)°
k)p :%S(i,T,a,)exp{——é&kBT , k3, :%S(A,T,aj)exp _—4J/1kBT [S67]
with

a,(t;V)=e, —g(t)—eV, [S68a]

N 1 n (n
SAT.a)=), o 20l (AT o)+ 2, (LT ~a)] [S68b]

=0 j=0 J

. 2 .
2,0sT0) =exp (@j+Diral”| ol @jtDita [S68c]
: 47k, T 2.\ Ak,T

In Eq. S67, J = S, D; the upper limit N truncates (9) the series expansions of the ET rates; 4 denotes
the reorganization energy for ET to or from the bridge; and the bridge-source and bridge-drain

potential differences are Vy, =—V/2 and V,, =V/2, respectively. y is again the coupling strength to

the leads and will assume smaller values in the regime of applicability of the hopping model,

compared to the coherent tunneling model.
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I
FS T =
'\—.—_\A
. S | o — Ep
bias voltage == ko D
[
gatevoltage

Fig. S12. One-channel hopping model for charge transport through a redox junction in a transistor
configuration. O and R denote the oxidized and reduced states of the bridge, respectively. Assuming
symmetric contacts to the source (S) and drain (D) metal electrodes, the S and F chemical potentials

at nonzero V are ¢,, =¢, +eV/2 and ¢,, =¢, —eV/2. The ET rates are described in the main text.

S4. Expression for the state vector in Eq. 16, under the initial conditions of Eqs. 6 and

13.

In this section, we derive the state occupation probabilities in section 4, using the same approach
as in Section S2. Considering the initial condition of Eq. 13, in the presence of the R manifold the

set of Eqs. S46-48 needs to be complemented with

o

C (1) =——lim _,E,/th (E+ig)dE. [S69]

27l e—0*

Moreover, the Green’s operator matrix elements in Eqs. S46-48 and S6 need to be evaluated for the

present model, where the resolution of the identity operator is
=) al +laal+ T+ S 70
Use of [S5], [S7] and [S8] yields
G,.(2)=(a|Gy(2)|a)+{a|G,(2)1V1G(2)|a)
- el el S Dl joia] s
— [1+Vadea +z j
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A AAnA 1
G,()1V V.G. [S72]
z—FE

r

G,.(2)=(r G(z2)|a) =

while G, (z) and G,,(z) preserve the formal expression in [S50] and [S51]; thus, Eq. S52 is again

obtained. Substituting Eqs. S52 and S72 into Eq. S71, one obtains

1
G,.(0)=G, (E+ie)= > >
|Vda Vra
Z_Ed_Z|le| /(Z_Ez) -2k,
z [S73]
B 1 B E-E, +i(e+T,/2)
E +Fa |‘/da2 [E_Ea+l(€+ra/2)][E_Ed+l(8+rd/2)]_|vdcl2
Z— =
2 z-E,+il)2
where I', is defined similarly to I', with reference to the R manifold of states:
T,(E)=2x<|V, |">, pe(E) [S74a]
which reduces to
T,(E)=2x<|V,[" >, pp(E) [S74b)

under the assumptions that the density of states in R ( p, ), similarly to p, , can be treated according

to the wide band approximation (2) and is independent of the state energy E, and that <|V 2

>

(that is, the average of the squared a-r electronic coupling for all R states with energy E) does not
depend on E. Equations similar to Eqs. S17 and S19 are written with the assumptions leading to Eq.
S74b and the continuum approximation for the R manifold. Clearly, it is

E-E,+il,/2
(E-E,+iT,/2)(E-E, +iFd/2)—|Vda

G, (E)=limG,,(E+ig)= [S75]

2

for any E, because I', and I', are nonzero and thus the imaginary quantities in the denominator are

never zero. Inserting Eq. S73 into [S72], we have
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lim G, (E +i¢) = Yo i £ Ea 41T /2
&0 (E-E, +il,2)(E-E, +iT,/2)-|V,| = E-E, +i€

V. . E —E,—ie+il,/2
- 1+ lim -
(E-E, +iT,/2)(E-E, +iT,/2)-|V,, £-0 E-E, +i¢
v, 2[1+hmE,—Ed+z§,/zJ
(E_Ea+lFa/2)(E_Ed+le/2)_|Vda 0" E_Er+lg

[S76]

Substitution of Eqgs. S17, S18, and S75 into Eq. S52 gives

Vdu
(E-E,+iT,/2)(E-E, +iFd/2)—|Vda

G, (E)=lim G, (E+ie)= [S77]

2

and use of Eq. S51 leads to

Vldvda llm 1
(E-E, +iT, 2)(E—E, +iT,/2)-|V, [ < E~E, +ie’

lim G, (E +i€) = [S78]
£—0"

These limits are used together with the dominated convergence theorem to obtain the expressions of

the state vector coefficients. By inserting Eq. S75 into Eq. S46, we obtain

A +AE,, +iT, /2
C,(=—fe" ST T d/z x [S79]
2mi =, X +(AE, +iT/2)x-|V,| -T,I,/4
where, again, x=E—E, and I' =T, +I',. The poles of the integrand are
~AE,, —iT)2+/(AE,, +iT)2) +4V [ +T.T
g =M D24 (AE, +iT2F +4V, [ T, ss0)
B 2
We rewrite the radicand of Eq. 80 in the form
(AEad +ZF/2)2 + 4 Vad ’ +F¢1Fd = AEjd +4 Vad ’ +F¢1Fd - (Fd +F¢z )2/4+ZFAEad [881]
=AE%, +4V,|'~(T,~T,) /4 +iTAE,, =¢%"
where
6> =IAE? = (T, —T,)*[4F +T°AEZ, [S82a]
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FAE“d [S82b]
—([,-T,)*/4

¢ = arctan
AEZ, +4|V

ad

A root of Eq. S81 (the other root is disregarded using the same arguments as for Eq. S25) is

JAE,, +iT/2f +4v,, | +T,T, =ge®” = u+iv [S83a]
with
2 2
e \/g + AE 2 /4 831
2 2
v =sgn(AE , )\/g —AE, 2 /4 [S83c]

Insertion of Eq. S83 into Eq. S80 gives

x, = ZAEu +ﬂ2+’(v—r/2), x_ =ZAFu _ﬂz_l(wr/z)- [S84]

Itis Im(X N ) <0 for choice of the physical parameters, as

2 _ 2
gz|v| e %ZGZ—AEZL,—4VMZ (L, -L)
2_ _ 2 o
e AEL+4|VM|2+2(F"+F”) (T, -L.) CAE 44V [P 4T,C 4+
4 4 [S85]

22 2 72
& (AE +4 v, | +T,T, +Fj {AEjd+4|Vud|2+FdFa—F— +T2AE2,
4 4

s I (AEjd +4 v, [+ rdra)z [PAE%, o 4V,[ +I,L >0

At this point, we recast Eq. S79 in the form

—iEgtfh e .
Ca(t):—e J~ . x+AE”"+le/2dx
i (x= X, )x-Xx_)
e Bt | xe " r,\7 et
=— dx+| AE , +i—% d S86
i £<x—x+>(x—x_>x( “ ’zj_{(x—m(x—x_)x 556!

=] (t)+[AEad+lF jl )
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where the integrals /,(t) and /,(¢) are clearly identified from Eq. S86. I,(¢) is written as

—iE, t/h

_ € —iX,t/h —iX_t/h
IL(t)=—»I\X_e —-X_e
0= —x % )

2 2h 2h

><{HAEM +zr/2+exp(v—hmtj(l_AEad HF/ZH

H+ID U+

(see the similar procedure to go from [S24] to [S31]). Defining

JAE? +T7%/4
L/ [S88a]

K=
S
—VAE , +ul’/2
@ = arctan VAE,, + 4T [S88b]
UAE,, +0T)2
we can write
AEad—ﬂm:mw [S8Sc]
U+iD
hence
1 E +E,—pu T . v—ip .
I.(t)=—exp| —i———2L "¢ |lexp| ——1 || 1+ ke +exp| —=1 |1 —xe'? S89
0= p(z = jp(%}{ e p( . j( e)} [S89]
with

gz _AEazd _4| Vad|2 +(Fd _Fa)2/4 +£
2 2’

T= v+g= sgn(AE,, )\/ [S90]

The other integral in Eq. S86 is obtained along the same lines as Eq. S42:

L SN Y 7Ry 0 PO G0 MR O voip )
IQ(I)—g2 exp( i . tjexp( thJ(,u lv){exp( - IJ 1}. [S91]

Eqgs. S88-91 lead to
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26° exp(%tJRe{ll (t)(AEad —ir—zdj 1, (r)}

LT b H
=Re{[l+1€ei¢+(l—lfei"’)ehe ¢ ](AEH L j(ﬂﬂv)(eh " —1)}

r
= Re{uAEad + vr—zd + i(vAEad —,u;‘fﬂ

2—t i Zgr ; iﬁr —iﬁr Br ip iﬁr —iﬁr Er
X[e" —1—-kele" —ke'’ +(e" —e " )e" +Kxe?(e" +e " )e"]

2 r r
=2e" Re{{,uAEad +v7d+i(vAEud —y?dﬂ

L T “,
el —e" eh —e .. eh+eh e+e
X + + k(cosp+isin @)
ﬁ
h

2 2 2

= 2Re{{uAEad + vr—z" + i(vAEad —,ur—z"ﬂ {sinh(%tj + Kcos ¢co
+i sin(ﬁtj +iKsin ¢cos(ﬁtj —iksin ¢cosh(2tj el
h h h
= 26%1 UAE , + UQ sinh 2tj+ Kcos¢cos(£tj— Kcos¢cosh(2tj
2 h h h
_ (v AE , — ﬂr—;j{sin(gtj + Ksin (pcos(%tj — Ksin q)cosh(%tﬂ}
= Zeht{(ﬂ AE , + Ur—zdj sinh(%tj + (,ur—zd —-VAE , j sin(%tj
+ /{cos ¢(,u AE , + Ur—z‘ij +sin ¢(,ur—2" —-VAE , ﬂ {cos(%tj - cosh(%tﬂ}

v
— KCOS ¢cosh(%tj

[S92]

kcosp=(uAE,, +vl/2)/¢c*,  Ksingp=(-vAE,, +ul/2)/s’ [S93]
/{cos(o(,uAEad +UF—2"j+sin(p(/1F—2d—vAEad H
=1 {(ﬂAEad 'H)Fj(ﬂAEad +vr_j (/JE_UAEMJ)(,U&_UAEMH
g 2 2 2 [S94]
=L |wag L L AR, - oA, F+F‘i}
c 2 4 2
r,r
=AE,, +——.
4
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By use of Egs. S90 and S94, we recast Eq. S92 in the form

T
_ 0
2Rel 1, (t)(AEad —ir—"jlz(t) —2¢ (yAEud +vr—"jsinh(2tj
2 ¢ 2 n

[S95]
+ ,U& —VAE,, Sin(ﬁtj +| AE,, + LI cos(ﬁtj —cosh(gtj
2 I 4 fi 7]
Moreover,
1@
T4 _ i > - 5
=e " {1 K +42KCOS¢ +{1 ZK cos(%tj — Ksin (psin[%tﬂeh -+ I+x jKCOS(pezh } [S96]

r, 2 0 g2 2 _ v,
_ ' | IH K +2Kcosp i -k cos(ﬁt —Ksin(psin(ﬁt}LHK 2Kc0s ;
4 2 7 h 4

and

_r
e 2h
2

[sinz (%zj +sinh? (z—l;lzﬂ [S97]
3

(cf. [S35] and [S45]). Thus, the squared modulus of C_(f) produces:

L@ =4

4 4

2 2
4B T/ {smz[zﬁhrj + sinhz[%tﬂ 4 HAE, + VL, )2 sinh(%tj [$98]

2 —Et _ 2 > B,
(Pa(t):{HK +2Kc08(pe P +ITKCOS[%IJ—KSin¢sin(%tJ+1+K 2Kcos¢eh

2 2

) s

_ 2 L,

¢’ S

Next consider C, () . Inserting Eq. S77 into Eq. S47 and comparing with the expression of 7,(¢)

(see Eqgs. S86 and S91), we obtain

o e—i Et/h

14
C,(=—2
27i - (E-E, +iT,/2)(E-E, +iT, /2)-|V,,

v, E . +E,—u T , V—iu
= _4a —y—4 ¢ "y E— —iv t1—1
> exp( 1 jexp( j(,u 1 ){exp( j j|

[S99]

from which
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2

4|V
®,(1) =
g’

L,
{sm (%tj+sinh2[2—1;tﬂe ' [S100]

For the L manifold of states, Eqs. S48 and S78 give

oo 1 e—iEl‘/h

Cl(t):_‘/ldvz.ia lim j ‘ 2
2ri e S E—E, +i¢ (E-E, +iT, 2)(E-E, +iT,/2)-|V,,

[S101]

Lt
—1—X

e iE,t/h oo
‘/ld Vda

L3 e yogs oy o e o L

with AE , = E_—E,. Using the partial-fraction decomposition technique and the residue theorem:

Vdeda efiEat/h - ]
2mi e (X —X,)(X_+AE, +ie)(X, +AE, +i€)
x+AEal+l€ X—X+ x_X7
_ ()(Jr _X,)eiAE“[t/h +(X7 +AEal)efiX+’/h _(X+ +AEaZ)e—iXJ/h
= (X, -X_)(X_+AE,)(X, +AE,)

Cz(t):

[S102]

—iE t/h
ViaVaa €

where the limit £ — 0" was taken after integrating. Only the first exponential in Eq. S102 survives

at sufficiently long times, because Im(X N ) < 0. Thus,

V.,V E
C ()= ld —da —i—Lt t>> S103
/) (X +E -E)X,+E -E) Xp[ “n j (t>>7) [5103]
where
h
S S104
I/2-| (51041

because Im(X L)=—i (F/ 2Fv). Note that for 7 >>1 |Ca|2 and |C d|2 are negligible. Eq. S84 implies

E,+E —2E —u—i(v+I)2)

X +E, —E =
2 [S105]
E,+E, T p+iv_E,+E,—p v+F/2
= —E —i—— —E -
2 4 2 2
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from which

2 2
X_+AE,[ = M_Ez +M [S106]
2 4
and
X, +E-E=Fa b p L v B AEAE g 0TT2 gy
4 2 2
from which
2 2
|X++AEH,2=(E”[+§“+#—E1) +(v—£/2) ($108]

Substitution of Eqs. S105 and S107 into Eq. S103 leads to

‘E’t
VV, e
C (1) = 1dY da 1
@) E,+ E,-p=i(0+T)2)_ [E,+E,+p+if-12)_ (t>>7)  [5109]
2 1 2 )
whence
2 2
v I’V
c,0| = T /|’)"2||d” R (1>>7) [S110]
E +E — v+172 E +E + v-17/2
{( d 2a ﬂ_Elj + 4 :||:( d 2a ﬂ_Elj + 4 :|

The probability @, (¢) that the system, starting from |a> for =0, 1s in any state of the L manifold

for ¢ >> 7 is easily computed by using the continuum approximation, that is, writing @, (t >>17) as

,(t>>7) = [|C, (1) p,(E)dE,
- [S111]

2

dE,
I(X_ +E -E)X_+E,—-E)X,+E,-E)X,+E,—E)

— 1—‘d |Vda
2

—oo

Two poles of the integrand in Eq. S111 fall within the lower half complex plane and two in the

upper half complex plane. Clearly, the integrand vanishes over any arc with radius tending to
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infinity. We rewrite the integral as

2

T dE, 1
(X_+E,-E)X,+E,—-E)(E ~X_—-E)E -X,-E

+ a

d|" da

2r -,

L] 3 dE, ( 1

P (t>>1)=
[S112]

—

E-X -E, E-X,-E

+ a

T 2a(X_-X.) J.(X_ +E -E)X,+E,—E,)

—oo

and close the integration path through an anticlockwise contour in the upper half plane, so obtaining

irdvdf{ 1 1 }
P (t>>7)= =%l | _ - _ _ [S113]
X —X7 (X+_X7)(X+_X+) (Xf_Xf)(XJr_Xf)

+

Since X, -X_=pu-iv, X, -X_=u+ilJ2, X, -X,=—i(v-T/2), X_-X_=-i(v+I/2) and

X,—X_=pu—il/2, we finally obtain

2

P (1 >>7) =4l ! _ 1
t u—iv | (0+1/2)(u—-ir/2) (v-T/2)(u+iT/2)
_LVul 0-12)(u+iT2)- (v +1/2)(u-iT/2)
U—iv W -T?/d)(u* +T°/4)
LVl (v-D2-v-T/2)u+il-T/2+v+1/2)1)2
U—iv (V> =T2/4)(u* +T7/4)
LVl ~T(u-iv) _ V,|'T,T
U—iv (O =T2/4)(u* +T%/4) (0> +T2/4)(u* +T7/4)
~ 4v. |I’T,T
(AEL, +4|V, | = +T,T, + T2 /4 (AEZ, + 4|V, | +¢* + [T, +17/4)
_ 4v,I’T,T
(AE2, +4|V,, [ +T,[, +T?/4)* -¢*
~ 4v. I’T,T
B Rt » 2 27
{AELMVMQ_(R, r,) J} {AELMVMZ_(Q L] pouge
4 2 4
) 4v, 'T,T 4y r,r T, 1 [S114]
- _ 2 L
L4_|_ 4|Vda|2_(rd_ra)2 I 4|Vda +1,L I 1+71_‘dl““2
4 4 4v,,
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Fig. S13. 2, (1) =|C, (t)|2 (Eq. S93, red line), ®,(t) = |C 4 (t)|2 (Eq. S95, blue), and total population

1—[®,(t)+®,(?)] of the L and R manifolds (in black), for AE_,/2=V ,=T,/2=T,/2=10"¢eV.

With these model parameters, Eq. S99 gives 7 = 1ps.

C

a

? and |Cd|2 are negligible for # >> 1 (e.g., see Fig. S13), the

that is the first Eq. 17. Then, since

normalization condition yields

ﬂ
eSS
=

[S115]

@R(t >> T):l—(PL(t >> T): T T

To obtain the long-time expression of C, we compare Eq. S76 with Eqs. S77 and S78, consider

that C, is vanishingly small for ¢ >> 7, and exploit Eq. S109, thus obtaining

E
i—t

l" _
(E, -E, +i2djvm e "

C(>1)= S116
1>>7) Ey+ B, —u=i+T)2) _ [E,+E,+u+i0-172) [5116]
2 ' 2 '
from which
2
C.t>>1) = [S117]

{(EdJrE”_’U—E,jZ +(v+F/2)2}{(Ed+Ea+,u_EJ2 +(v—l“/2)2}

2 4 2 4
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The total occupation of the R manifold can easily obtained from the normalization condition:
P.(t)=1-2,(t)—P,(t)— P, () . [S118]

With the initial condition in Eq. 6, by considering the symmetry of the Hamiltonian with respect
to {a’ ,l} and {a,r}, the occupation probability of the L manifold after the electronic relaxation is

given by Eq. 18 and that of the R manifold is obtained from the normalization condition.

The above analysis describes the charge relaxation leading to the equilibrium charge distributions
in Eq. 17 starting from non-equilibrium initial conditions. This relaxation may be used for a sensing
mechanism similar to the ones described in the third section of the article. The sensing mechanism
modeled in the fourth section of the article only uses the charge distributions achieved at the end of
the electronic relaxation, given by Eq. 17 or 18 depending on the initial condition.

Note that in the model of the third section we consider only one manifold of (substrate) electronic
states that is occupied with unit probability at sufficiently long times. Thus, if we apply the sensing

mechanism of the fourth section to that model, ¢,(¢), hence the shape of the output signal, is strictly

determined by the diffusion equation (Eq. 19), irrespective of the V, and I', values (Fig. S14).

f(a.u.)
0 , .
5 10

_02

= -04
N

< 06

708

_]_.

Fig. S14. Current signal, normalized to the current in the absence of analyte, using Eqgs. 12, 19, and
(with the same result) 10 or 20, in combination with the system model of section 3. The parameters

are the same as in Fig. 8.
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SS. Solution of Eq. 21 using a simple ET model.

In Eq. 21, the rate constant for ET from r to / is written using the Marcus theory (10) as

2 E —-E +A)
k, = i V—exp _M [S119]
M, T h 4)k,T

In Eq. S119, for simplicity, we assume that the coupling has the same value, V,, =V, for all L and R

states responsible for CT through the SAM over the 7. time scale defined in the article. In Eq.

incoherent

S119 A is the reorganization (free) energy associated with ET through the SAM. The expression for

k, is obtained exchanging r and /.

To solve Eq. 21, we need to find expressions for Zklr and Zkﬂ To obtain the overall rate of

ET from a given state in R to any state in L, we sum Eq. S119 over {|l>} Simply summing the

transition probabilities per unit time, we are neglecting the correlation between the occurrence

probabilities of the different events, which are mutually exclusive. This is allowed by the small

values of all k, and of the overall probability (per unit time) of ET. In addition, in evaluating the

r — L rate constant, we approximate the L manifold as a continuum of states, thus reducing the

T V? (E,—E +A)
dE S et et
Z & I PG Xp{ 47k, T

sum to an integral:

2
2” J' dE w [S120a]
21/71'},]{ 42k, T
7/L T (El _Er +/1)2 7/L T —x2/2
=—+——— |dE, exp| — = e dx=y
2wk, T £ ’ { 42k, T I ’
where the coupling strength constant J, is expressed according to the golden rule as
27,

V. :7V P [S120b]

and gives the order of magnitude of the inverse relaxation time to equilibrium. The quantity Zk,r

r
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is similarly obtained and is needed, together with Eq. S120, to solve the dynamical problem of Eq.
21. Once the equilibrium is achieved for #>1/y, , the L and R populations are easily obtained by
using the detailed balance principle, which implies that

2
Cle Kk

——T:—i:u{eﬂifq Viel{l}, refr). [S121]
|C1 k., kT

Writing Eq. S121 for two states in L or R, one obtains Boltzmann relations for the states inside each

¢q

manifold. Eq. S121 shows that for 7 ~1/y, ~t >> 1 the quantum information (coherently)

incoherent

built into the system state coefficients is lost. Using Eq. S121 one obtains

P (t >> Tlncoherent ) = z Cr zq = | I j exp( jze p[ j [8122]
from which
PR (t >> Tincoherem )exp[_ El J
2 k,T
G, = : [S123]

ol )

Summing both sides of Eq. S123 over {/}, rearranging, and using the continuum approximation for

the two manifolds of states, we find

(] Jensd )

1ncoherem — = —— [S 124]

1 E
incoheren zexp( j IdER pR eXpE k Tj pR
B

Note that the last equality in Eq. S124 results from the assumption that the densities of states in the

P (t>>1,
P.(r>>1,

two state manifolds are independent of the state energy, but the penultimate equality is also valid by

dropping this assumption. For example, assume that L is uniformly distributed with density of states
p, over the energy range [E,; E,] and zero elsewhere, and that the R density of states is similarly
spread over the interval [E, + AE; E, + AE]. In this manner, the model does not use the wide band

approximation; yet, width and location of the two energy ranges with respect to the a and d on-site
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energies may allow this approximation, as used in the previous sections. With such p, and p,,itis

r: E i E E E
dE E)exp ——L |= dEexp| ——— |=k, Tp.| exp| ——— |—exp| ——2
_Jm P (E)) p( kBTJ poi p( kBTj Bp{ p( kBTJ p( kBTﬂ

E+E, ). E —-E
= 2kBTp0 exp(— ﬁj Slnh(ﬁj
B B

I E E +E, +2AE E -E
dE E )Yexp| ——— |=2k,Tp, exp| —— 2 sinh| —2 L. S126
£ , Pr(E,) p( kBTJ sIPy p( %, T j ( wT J [S126]
Then, Eq. S124 becomes
P .(t>>1
L( Tmcoherem ) — eXp AE [8127]
PR (t >> Tincoherem ) kBT
and use of the normalization condition leads to
AE
| exp(— ”j
PL (t >> Tincoherem) = F)R (t >> Tincoherent) = z [S 128]

I+exp ——— I+exp ———
kT k,T

Cohen-Tannoudji C, Diu B, Laloé F (1977) Quantum mechanics (Hermann, Paris).

Nitzan A (2007) Chemical dynamics in condensed phases (Oxford University Press, Oxford).
Weissbluth M (1978) Atoms and molecules (Academic Press, New York).

This terminology is more appropriate for interpretations of the model where no net charge is
injected in the system by analyte binding, as discussed after eq 6.

5. Note that P4 and P, substantially decay in the same time scale, which is given by the first 7, and 7,
expressions in the insets of Fig. 3. However, physical conditions produced by the sensed event, such
as a large increase in AE,,, can lead to the small-amplitude tail of P, that survives at longer times.

PonNnE

6. Capital letters are used to distinguish these coefficients from those describing the evolution of the
system state under the initial condition of Eq. 6.

7. Hale JM (1968) The potential-dependence and upper limits of electrochemical rate constants. J
Electroanal Chem 19(3):315-318.

8. Migliore A, Nitzan A (2011) Nonlinear charge transport in redox molecular junctions: A Marcus
perspective. ACS Nano 5(8):6669-6685.

9. Migliore A, Nitzan A (2012) On the evaluation of the Marcus-Hush-Chidsey integral. J Electroanal

Chem 671:99-101.
10. Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta
811(3):265-322.

38



