Supporting Information

Wong et al. 10.1073/pnas.1502057112

Fig. S1. (*A* and *B*) Cross-sections through DRGs of $GFR\alpha3^{-/-}$ mice and $GFR\alpha3^{+/-}$ littermates immunolabeled with the GFR\alpha3 antibody. GFR\alpha3 staining was widespread in the GFR $\alpha3^{+/-}$ DRG. In contrast, there was a complete lack of GFR $\alpha3$ staining in the DRG of the GFR $\alpha3^{-/-}$ mice, indicating that the GFR $\alpha3$ antibody is specific. (*A'* and *B'*) Staining of the same DRG tissue with an antibody to NeuN. There was no decrease in the number of DRG neurons in GFR $\alpha3^{-/-}$ mice (1, 2). (Scale bars: 100 µm.)

1. Nishino J, et al. (1999) GFR alpha3, a component of the artemin receptor, is required for migration and survival of the superior cervical ganglion. *Neuron* 23(4):725–736. 2. Honma Y, et al. (2002) Artemin is a vascular-derived neurotropic factor for developing sympathetic neurons. *Neuron* 35(2):267–282.

Fig. S2. Histogram showing the size distribution of CTB⁺ and WGA⁺ neurons (n = 500). The number of neurons in each 500- μ m² bin was counted. Consistent with previous reports (1), CTB⁺ cells were larger than WGA⁺ cells on average.

1. LaMotte CC, Kapadia SE, Shapiro CM (1991) Central projections of the sciatic, saphenous, median, and ulnar nerves of the rat demonstrated by transganglionic transport of choleragenoid-HRP (B-HRP) and wheat germ agglutinin-HRP (WGA-HRP). J Comp Neurol 311(4):546–562.

Table S1.	Primers (with sequences	and melting ter	mperatures) used	for gPCR assays

Gene	Forward primer (5'-3')	Tm, °C	Reverse primer (5'-3')	Tm, °C
GFRα3	CCTTCTGAATGGAAGGTGAAGA	54.4	TGGAGACAGTGCTAGGAGTTA	54.7
GAPDH	CCCTTCATTGACCTCAACTACA	54.4	GATGACCAGCTTCCCATTCT	54.6
HPRT	GACCTCTCGAAGTGTTGGAT C	54.7	TCAAATCCCTGAAGTGCTCAT	54.1