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Appendix A: Probability Distribution of the Time of First
Recognition
To calculate the cost of not recognizing an antigen a, we need to
find the distribution of times when a successful encounter takes
place. The probability of having the first recognition of antigen a
by receptor r in the time between t and t+ dt reads

HaðtÞdt= λaðtÞdt ·
X
r

Prfr,a

× lim
N→∞

YN
i=1

 
1− λaðtiÞ t

N

X
r

Prfr,a

!
,

where the first term is the probability of having an encounter be-
tween t and t+ dt, the second term is the probability of this
encounter being successful, and the third term is the probability
of there not being any prior recognition events. For the calcula-
tion of the last term we have decomposed the time leading up to
t into N intervals of length t=N. Taking the N→∞ limit yields

HaðtÞ= λaðtÞ~Pae
−
R t

0
dt′λaðt′Þ~Pa , [S1]

where we have used the shorthand notation ~Pa =
P

rPrfr,a for
the probability that a randomly chosen receptor recognizes an-
tigen a.

Appendix B: Convexity of the Expected Cost
We show that the cost function hFi is a convex function of its
argument fPrg (the receptor distribution). We start by intro-
ducing an alternative expression of Fa, obtained by integration
by parts:

Fa =
Z∞
0

dmFa′ ðmÞe−m~Pa +Fð0Þ. [S2]

We calculate the derivatives of this average cost with respect to ~Pa:

dFa

d~Pa
=−

Z∞
0

dm mFa′ ðmÞe−m~Pa [S3]

d2Fa

d~P2
a

=
Z∞
0

dm m2Fa′ ðmÞe−m~Pa . [S4]

Because by assumption Fa′ ðmÞ is positive, the second derivative
of Fa with respect to ~Pa is positive. This establishes the convexity
of Fa as a function of ~Pa. Because hFi=PaQaFa (with Qa ≥ 0), it
is a convex function of f~Pag. Therefore, it is also a convex func-
tion of fPrg, as fPrg and f~Pag are linearly related.

Appendix C: Biological Motivation of Power-Law Cost
Functions
In the main text we have developed a general framework for
discussing the antigen–receptor recognition process. To fully
specify the model we need to choose an effective cost function
FaðmÞ=FaðtaðmÞÞ. In the main text we derive optimal receptor

distributions for a number of effective cost functions, including
power-law functions FðmÞ=mα. Here we sketch plausible sce-
narios motivating that choice.
Consider an organism being infected with an antigen a. As long

as there is no immune reaction, the antigen divides inside its host
and thus increases its population size. If the initial population
size is small, it is reasonable to assume exponential growth.
The more antigens there are at the time of the immune re-

action, the more damage they can potentially do. Likewise, the
more antigens there are, the higher the rate of encounters. These
two quantities are also expected to grow exponentially in time:

FaðtÞ=Fað0Þeνat, [S5]

λaðtÞ= λað0Þeνa′ t. [S6]

The two exponents may be different in general, because the num-
ber of pathogenic agents that cause the harmmay grow differently
than the number of antigens that can be recognized by the im-
mune system. This difference could for example stem from the
fact that both the pathogen’s antigenic exposure and its virulence
are cooperative effects and thus scale as a power of the number
of invading individuals. Using maðtÞ= λað0Þðeνa′ t − 1Þ=νa′, and
eliminating time t≈ ln½ma=λað0Þ�=νa′ (for t large compared with
1=νa′), we rewrite the effective cost function in terms of the num-
ber of encounters,

FaðmÞ=Fað0Þ
�

m
λað0Þ

�νa=νa′
∝mα, [S7]

with α= νa=νa′.

Appendix D: Analytical Optimization
1. Optimality Conditions. In the following we give optimality con-
ditions for the optimization problem defined in the main text,
which are used for the following analytical determination of optimal
receptor distributions. These conditions, called Karush–Kuhn–
Tucker conditions (1), are derived from a generalization of the
method of Lagrange multipliers to inequality as well as equality
constraints.
The Lagrangian for the optimization problem is

LðP, λ, νÞ= hFiðPÞ+ λ

 X
r

Pr − 1

!
−
X
r

νrPr , [S8]

with

hFi=
X
a

QaFa. [S9]

λ is a Lagrange multiplier enforcing the normalization constraint
and νr are Lagrange multipliers enforcing the nonnegativity con-
straint. The optimal Pp is an extremum of this Lagrangian. There-
fore, the stationarity conditions

∂hFi
∂Pr

����
Pp

+ λ* − ν*r = 0, [S10]

with
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∂hFi
∂Pr

=
X
a

QaFa′
�
~Pa
�
fr,a, [S11]

must hold for some value of λp and νpr that enforce the constraints.
The inequality constraint Pr ≥ 0 further requires that

νpr ≥ 0 [S12]

νpr P
p
r = 0, [S13]

where Eq. S13 is known as the complementary slackness condi-
tion. It requires the Lagrange multipliers associated with the
nonnegativity to be zero unless the constraint is active, i.e., un-
less the corresponding receptor probability is zero.
The three conditions may be reformulated as

∂hFi
∂Pr

����
Pp
+ λp ≥ 0 [S14]

�
∂hFi
∂Pr

����
Pp

+ λp
�
Pr = 0. [S15]

For all receptors that are present in the optimal repertoire (Pp
r > 0)

these conditions imply

∂hFi
∂Pr

����
Pp
=−λp. [S16]

If a receptor is not present in the optimal repertoire (Pp
r = 0), then

the less stringent condition holds:

∂hFi
∂Pr

����
Pp
≥ −λp. [S17]

We note here that ∂hFi=∂Pr ≤ 0 (because more receptors always
yield a lower cost), so that λp ≥ 0.
These two conditions can be explained as follows: If a reper-

toire is optimal, all changes allowed by the constraints will lead to
a higher cost; i.e., moving receptors from one type to another will
not yield an improvement. All partial derivatives of the cost with
respect to the receptor probabilities should thus be equal to the
same value (Eq. S16). If there are already no receptors of a
certain type, i.e., Pr = 0, we get a less stringent condition. We can
no longer remove receptors away from this type r, but only add
some to it, at the expense of other receptor types. The increase
in cost due to the depletion of these other types should be higher
than the gain of moving them to type r. The partial derivatives of
the cost with respect to the receptors that are not present in the
repertoire must thus be larger than the partial derivatives of the
present receptors, which are given by −λp (Eq. S17).

2. Solution for Uniquely Specific Receptors. We now solve Eqs. S16
and S17 for a repertoire of uniquely specific receptors (no cross-
reactivity). Eq. S11 becomes

∂hFi
∂Pr

=QrFr′ ðPrÞ, [S18]

where we have used the fact that in the absence of cross-reactivity
~Pa =Pa. If all optimal receptor probabilities are positive, then we
can insert this relationship into Eq. S16 to obtain

QrFr′
�
Pp
r

�
=−λp [S19]

and thus

Pp
r = hr

−λp

Qr
, [S20]

where hr =Fr′ð−1Þ denotes the inverse function of Fr′ . Because that
function Fr′ is always negative, hr must take a negative argument.
For some cost functions, solving this equation may yield some

negative receptor probabilities. In these cases some of the non-
negativity constraints need to be active. Setting Pr = 0 when Eq.
S20 is negative yields the correct optimal distribution under the
nonnegativity constraint. We verify that for these r, Eq. S17 is
satisfied by Pr = 0, because

QrFr′ ðPr = 0Þ≥QrF′r
�
hr

�
−λp

Qr

��
=−λp, [S21]

where we have used the fact that F′r is an increasing function of
its argument (due to the positivity of its derivative; compare Eq.
S4), and hrð−λp=QrÞ≤ 0.
In summary, the solution to the optimization problem is

Pp
r =max

	
hr

�
−λp

Qr

�
, 0


, [S22]

where the value of λp is fixed by the normalization conditionP
r Pr = 1.
In Table S1 we give the explicit expressions of Fa and ha, for

the particular choices of the cost function FðmÞ considered in the
main text.

3. Solution for Cross-Reactive Receptors.The previous results can be
generalized to cross-reactive receptors in a continuous space,
using Fourier transforms. This generalization will lead up to the
results presented in the Cross-Reactivity Dramatically Reduces
Diversity in the Optimal Repertoire section of the main text and
notably the Gaussian case discussed therein.
a. Deconvoluting the optimality conditions in Fourier space.We consider
a continuous receptor–antigen space and we assume a translation
invariant cross-reactivity function fr,a = f ðr− aÞ. We write the
optimality condition Eq. S16,Z

da QðaÞF′�~P pðaÞ�f ðr− aÞ=−λp, [S23]

where in continuous space the coverage is defined as

~PðaÞ=
Z

dr   PðrÞf ðr− aÞ. [S24]

We note that both expressions involve integrals, which are con-
volutions with the cross-reactivity kernel. Because the convolu-
tion of a constant is also a constant, a solution of

QðaÞF′�~P pðaÞ�=−λ′, with  λ′> 0, [S25]

is also a solution of Eq. S23. As in the case of uniquely specific
receptors, we can solve this equation for ~P pðaÞ,

~P pðaÞ= h
�
−λ′
QðaÞ

�
, [S26]

where h=F′ð−1Þ as in Eq. S20. If there was no cross-reactivity,
there would be no difference between P and ~P, and we would be
done. Here we need to perform a deconvolution to obtain the
optimal receptor distribution P from the optimal coverage ~P. We
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do so in Fourier space, where the convolution turns into a product.
Deconvolution is therefore much simpler in Fourier space as it
corresponds to a division

F�~P�=F½P�F ½f � ⇔ F½P�=F�~P�
F½f � , [S27]

where we have defined the Fourier transform of a function gðxÞ as
F½g�ðkÞ= R∞−∞ dxgðxÞeikx. To calculate the optimal receptor distri-
bution we insert Eq. S26 into Eq. S27 and perform an inverse
Fourier transform F−1½~g�ðxÞ= ð1=2πÞ R∞−∞ dk~gðkÞe−ikx to obtain

Pp =F−1

"
F �h�−λ′Q��

F½f �

#
. [S28]

This result is valid only as long as the above quantity is positive
and normalizable, as we shall see below.
b. The Gaussian case. In this section we apply the general results
of the previous section to a concrete example. To find the
optimal receptor distribution analytically we use Eq. S28, we
assume the antigen distribution and cross-reactivity function
are Gaussian

QðaÞ= 1ffiffiffiffiffiffiffiffiffiffiffi
2πσ2Q

q exp

 
−a2

2σ2Q

!
, [S29]

f ðr− aÞ= exp

"
−ðr− aÞ2

2σ2

#
, [S30]

and we take

FðmÞ=mα. [S31]

Inserting h from Table S1 into Eq. S28 allows us to write

Pp ∝F−1
�F �Q1=ð1+αÞ�

F½f �
�

[S32]

as an equivalent equation determining the optimal repertoire. We
can calculate the modified antigen distribution as

QðaÞ1=ð1+αÞ ∝ exp

 
−

a2

2ð1+ αÞσ2Q

!
. [S33]

The Fourier transform of a Gaussian function of variance σ2 is a
Gaussian function of variance 1=σ2 (2). Therefore, we have

F
h
Q1=ð1+αÞ

i
ðqÞ∝ exp

"
−ð1+ αÞσ2Qq2

2

#
, [S34]

F½f �ðqÞ∝ exp
�
−σ2a2

2

�
, [S35]

from which

F�Q1=ð1+αÞ�
F½f � ∝ exp

−
h
ð1+ αÞσ2Q − σ2

i
q2

2

8<
:

9=
; [S36]

follows. Taking the inverse Fourier transform and normalizing,
we obtain

PpðrÞ= 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π
h
ð1+ αÞσ2Q − σ2

ir exp

 
−

r2

2
�ð1+ αÞσ2Q − σ2

�
!
. [S37]

Normalization is possible only for σ < σQ
ffiffiffiffiffiffiffiffiffiffi
1+ α

p
≡ σc. In the

limit σ→ σc the Gaussian converges to a Dirac delta function.
Intuition suggests that a Dirac delta function centered on the
peak position should remain optimal for further increases in σ.
To prove this assertion we note that a Dirac delta function is
zero everywhere, except in one point. Because all but one re-
ceptor probabilities are at the boundary defined by the non-
negativity constraints, we need only to check Eq. S17. We
compute the left-hand side of Eq. S23 as a function of r,Z

dp QðaÞF′�~P pðaÞ�f ðr− aÞ

∝ − exp

8<
:−r2

�
σ2 − ð1+ αÞσ2Q

�
2σ2
�
σ2 − ασ2Q

�
9=
;,

[S38]

and note that it has a minimum for r= 0. This shows that the
partial derivatives of the expected cost at r≠ 0 are greater than at
r= 0, implying that Eq. S17 holds.
The cost of the optimal repertoires as a function of the cross-

reactivity width σ is given by

hFiðPpÞ=
�σQ
σ

�α
8>>><
>>>:

ð1+ αÞð1+αÞ=2 if   σ < σc,�
σ

σQ
�αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− α
�
σQ

σ
�2q otherwise.

[S39]

Both expressions give the same cost at the transition σ = σc. After
multiplying by ðσ=σQÞα to compare at constant recognition capa-
bility

R
f =

ffiffiffiffiffi
2π

p
σ, this expression is constant for σ < σc and grows

for σ > σc.
c. General argument for peakedness. A simple argument can help us
understand why cross-reactivity generically leads to peaked op-
timal solutions. The convolution with a kernel is a smoothening
operation, represented by a low-pass filter in the Fourier domain.
The optimal solution in the absence of the nonnegativity con-
straints requires that ~Pa = hðQaÞ. As ~Pa is the low-pass filtered
version of Pr, the high-frequency components of hðQaÞ will be
magnified by the deconvolution. These high-frequency wiggles
can lead to negative values of F−1½hðQaÞ�, which are not allowed,
leading us to set many values of PðrÞ to zero. This effect results in
a peaked solution. Because the size of the cross-reactivity kernel
is inversely proportional to the cutoff frequency in the Fourier
domain, we expect the spacing of the peaks to be related to the
size of the cross-reactivity kernel.

Appendix E: Numerical Optimization
We numerically minimize the cost function subject to the nor-
malization and nonnegativity constraints by using a fast projected-
gradient algorithm. In the following we provide details on this
numerical algorithm. To facilitate notations let us define the
function to minimize as gðxÞ, where x is a vector in a Euclidean
space, and the convex set C is defined by the constraints. In these
notations the problem we want to solve can be stated as

min
x∈C

gðxÞ. [S40]

Given an arbitrary starting point x0 ∈C the algorithm performs
the iterative procedure
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yk+1 = xk +ωk�xk − xk−1
�
, [S41]

xk+1 =P
�
yk+1 − sk∇g

�
yk+1

��
, [S42]

where ∇ denotes the gradient. Here P denotes a projection onto C,
ωk is an extrapolation step size, and sk is the step size taken in the
direction of the gradient. The extrapolation step size has to be
chosen carefully to ensure the faster convergence of this method
with respect to an ordinary gradient method. Following ref. 3 we use

ωk =
k

k+ 3
. [S43]

The step size s is determined by backtracking (4): We itera-
tively decrease s by multiplication by β< 1 until gðzÞ≤ gðykÞ+
ðz− ykÞ ·∇gðykÞ+ ð1=2sÞðz− ykÞ2, where x · y denotes the inner
dot product between x and y, and z=Pðyk − s∇gðykÞÞ. In practice
we determine s in this way at the first step of the optimization
and then keep it fixed based on this initial estimate.
The projection of a point y onto a convex set C is defined by

the following quadratic programming problem:

PðyÞ= argmin
x∈C

1
2
ðx− yÞ2. [S44]

If the convex set is a simplex as is the case for our problem, ef-
ficient algorithms fortunately exist for solving this problem. We
use the algorithm described in ref. 5.
To stop the iteration one needs to define suitable stopping

criteria. As the problem is convex we can establish a lower bound
for the cost by solving a linear programming problem as follows:

glb = g
�
xk
�
+ min

x∈C

��
x− xk

�
·∇g

�
xk
��

≤ gðxpÞ. [S45]

The linear programming problem xk = argminx∈C∇gðxkÞTðx− xkÞ
is solved explicitly (6) by

xk = ei p,   ip = argmin
i

�
∇g
�
xk
��

i, [S46]

where ei denotes the ith unit vector. We can use this lower bound
to define a stopping criterion for the numerical optimization

g
�
xk
�
− glb

glb
< e. [S47]

For all reported numerical results we have chosen e= 10−8.
To minimize finite size effects in the simulations we have used

periodic boundary conditions in the receptor/antigen space. The
discretization steps used in the figures are listed below:

All source code associated with this paper is available online at
dx.doi.org/10.5281/zenodo.16796.

Appendix F: Tiling Properties: Radial Distribution Function
and Power Spectral Density of the Receptor Distribution
We analyze the tiling structure of the peaks in the optimal dis-
tribution Pp

r found in Fig. 3 of the main text. A useful technique,
borrowed from condensed matter physics, is to measure the

radial distribution function (7), gðRÞ= hPðrÞPðr′Þijr−r′j=R, where
jr− r′j is the distance between points r and r′. Fig. S2A presents
gðRÞ for Pp in two dimensions. The initial drop at small r indicates
that peaks in Pp are rarely close—i.e., peaks in the optimal rep-
ertoire tend to repel each other. This exclusion, which operates
over the range of strong cross-reactivity, is a sensible way to dis-
tribute resources, as it limits redundant protection against the
same pathogens. The damped oscillation of the peaks of gðRÞ
confirms that the receptors in Pp are organized into a disordered
tiling pattern. A similar radial distribution function is seen in high-
density random packings of hard spheres where the spheres must
cover as much space as possible but exclude each other. In both
cases, the tiling ensures uniform coverage of space at large scales.
To quantify the regularity of the tiling, we calculate the

normalized power spectral density of the 2D pattern, SðqÞ=P
r,r′PrPr′eiqðr−r′Þ=

P
rP

2
r , where q is a wave vector. Large (small)

jqj correspond to short (long) distances in antigen shape space.
When Pr is made of Dirac delta peaks of uniform heights, SðqÞ
coincides with the structure factor familiar in physics and sat-
isfies Sðq→∞Þ= 1. Fig. S2B shows SðqÞ averaged over many
realizations of the antigen landscape and over all directions of q
so that it depends only on its modulus jqj. SðqÞ approaches 1 for
large q, showing that the precise local positions of the peaks are
random. (The small departure from 1 is attributable to numerical
discretization.) SðqÞ is very low for small q, indicating that the
number of receptors contained in any given large area of the
shape space is very reproducible, providing uniform coverage—a
property called hyperuniformity in the context of jammed ma-
terials (8–10). For our optimal repertoires small-scale fluctua-
tions (large q) get smoothed out by cross-reactivity and can be
tolerated, whereas at large scales the fluctuations track variations
in the antigenic landscape to provide smooth coverage (Fig. S3).

Appendix G: Non-Gaussian, Long-Tailed, and Nonuniform
Cross-Reactivity Functions
To assess the impact of different assumptions about the nature of
cross-reactivity on the results we performed a number of simu-
lations with different kernel functions.
First, we investigated the family of kernel functions defined by

f ðr− aÞ= exp½−ðjr− aj=ηÞγ � (Fig. S4 A–D, Left). By changing the
parameter γ we can go from an exponential (γ = 1) via a Gaussian
γ = 2 to a top-hat kernel (γ→∞). Up to γ = 2 all such kernels have
positive Fourier transforms, whereas for γ > 2 the Fourier trans-
forms also take negative values. The positive definiteness has been
shown to be an important property in a related problem in ecology
(11). Second, we also investigated how long-tailed kernel functions
change the optimal repertoire by considering the functional form
f ðr− aÞ= 1=ð1+ ðjr− ajηÞ2Þ (Fig. S4 A–D, Right).
Dropping one further assumption, we investigated the in-

fluence of varying the width of the cross-reactivity function be-
tween receptors (Fig. S5). The width of the cross-reactivity was
drawn randomly from a log-normal distribution with different
coefficients of variation (corresponding to different amounts of
scatter in the width). Biologically, the overall stimulatory capacity
of receptors is constrained, and we rescaled the cross-reactivity so
that all receptors had the same overall stimulatory potency.

Appendix H: Excluding Strongly Self-Binding Receptors
The presence of self-antigens that should not be recognized puts
constraints on which receptors the repertoire might contain. As a
first step to understand how such a requirement interacts with the
trade-off considered in this paper we analyzed a simple model:
A number of self-antigens are picked at random positions. The
repertoire is not allowed to have receptors that are too highly
reactive to any of the self-antigens. In practice this is ensured by
adding a constraint to the optimization that none of the receptors
in the repertoire can have a distance smaller than σ to any self-
antigen. Introducing this constraint changes the optimal repertoire,

Step Figure

0.5σ Fig. 5
0.1σ Fig. 3 and Figs. S2–S4
0.05σ Fig. 4
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but key features such as the fragmentation of the repertoire and
the tiling are conserved (Fig. S7).

Appendix I: Model for Receptor Dynamics
Here we describe our model for competitive receptor dynamics.
We then show how, in a mean-field limit where antigen en-
counters are very frequent, this model reduces to a system of
differential equations for the population dynamics.
At every step we update the number of receptors according to

ΔNr =Δt ·Nr

"
A

 X
r′

Nr′fr′,a

!
fr,a − d

#
, [S48]

where the antigen a is drawn randomly with probabilityQa and Δt is
a parameter determining how much the repertoire changes per step.
In the limit where Δt is small the dynamics cycle through dif-

ferent encountered pathogens so fast that they effectively become
the following dynamics:

dNr

dt
=Nr

"X
a

QaA

 X
r′

Nr′fr′,a

!
fr,a − d

#
. [S49]

These dynamics are of mean-field type; i.e., they neglect the effect
of the stochasticity in the encounter of pathogens.

Appendix J: The Stable Fixed Point of the Mean-Field
Population Dynamics Minimizes the Cost Function
In this section we show that the stable fixed point fNp

r g of the
population dynamics, Eq. S49, gives a probability distribution
Pr =Nr=Ntot (with Ntot =

P
rNr) that minimizes the cost hFi. For

this correspondence to be exact, the availability function of the
dynamics and the effective cost function of the optimization
must be related by

A
�
~Na
�
=−c′F′

~Na

Nst
, [S50]

where ~Na =
P

Nrfr,a, and Nst is the total number of receptors Ntot
at the fixed point.
A fixed point is characterized by dNr=dt= 0. If Nr > 0, this

translates into

X
a

QaA

 X
r′

Nr′fr′,a

!
fr,a − d= 0. [S51]

Using the correspondence between availability and cost function
given by Eq. S50, we rewrite this condition asX

a

QaF′
�
~Pa
�
fr,a =−c′d, [S52]

which is equivalent to the optimality condition Eq. S16, with the
identification λp = c′d.
For Nr = 0 we need to work a bit harder to show that the opti-

mality condition at the boundary Eq. S17 is satisfied. Here the key
assumption establishing the minimization of the cost function is the
stability of the fixed point. A fixed point is stable if the real parts of
the Jacobian’s eigenvalues are all negative. The Jacobian reads

Jr,r′ = δr,r′

 X
a

QaA

 X
r″

Nr″fr″,a

!
fr,a − d

!

+ Nr

X
a

QaA′

 X
r″

Nr″fr″,a

!
fr,afr′,a.

[S53]

We remark that for Nr = 0 the rth row of the Jacobian is nonzero
only on the diagonal. That value on the diagonal is an eigenvalue
of the Jacobian and must be negative:

X
a

QaA

 X
r′

Nr′fr′,a

!
fr,a − d< 0. [S54]

Again we replace AðPrNrfr,aÞ by −F′að~PaÞ according to Eq. S50 to
obtain X

a

QaF′
�
~Pa
�
fr,a > − c′d, [S55]

which is equivalent to the optimality condition at the boundary
Eq. S17, provided that λp = c′d.

Appendix K: Cost Function as a Lyapunov Function of the
Mean-Field Dynamics
Here we show rigorously that, when the availability function is scale
invariant, as in the case for the simple cost function FðmÞ=mα, the
dynamics must converge toward a fixed point. This fixed point is
unique and corresponds to the optimal of the cost hFi, as we have
shown in the previous section.
AðxÞ is scale invariant if a function v exists such that AðγxÞ=

vðγÞAðxÞ. In this case we will see that the changes of relative fre-
quencies Pr in the repertoire over time depend only on the total
number of receptors through a prefactor. Below we derive the
equations governing these dynamics and then prove that these dy-
namics are ensured to converge to a stable fixed point. We do
so by showing that the dynamics admit the expected cost hFi as a
Lyapunov function, i.e., a function that continually decreases under
the dynamics.
For ease of notation we rewrite Eq. S49 as

dNr

dt
=Nr½πrðNÞ− d�, [S56]

where N is shorthand for fNrg, and πr =
P

aQaAð
P

r′Nr′fr′,aÞfr,a is
the growth rate of receptor type r. The relative frequencies Pr =
Nr=Ntot evolve according to

dPr

dt
=

1
Ntot

dNr

dt
−

Nr

N2
tot

dNtot

dt
[S57]

=Pr

"
πrðNÞ−

X
r′

Pr′πr′ðNÞ
#
. [S58]

If A is scale invariant, so is πr and πrðNÞ= πrðNtotPÞ= vðNtotÞπrðPÞ.
Then the equations further simplify to

dPr

dt
= vðNtotÞPr

"
πrðPÞ−

X
r′

Pr′πr′ðPÞ
#
, [S59]

= vðNtotÞPrðπr − πÞ, [S60]

where π =
P

rPrπr.
We can now write how the expected cost hFi evolves in time:

dhFi
dt

=
X
r

∂hFi
∂Pr

dPr

dt
[S61]

= vðNtotÞ
X
r

Pr

"X
a

QaF′a
�
~Pa
�
fr,a

#
ðπr − πÞ [S62]
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=−
vðNtotÞ

c′
X
r

Pr

"X
a

QaA
�
Nst~Pa

�
fr,a

#
ðπr − πÞ [S63]

=−
vðNtotÞvðNstÞ

c′
X
r

Prπrðπr − πÞ [S64]

=−
vðNtotÞvðNstÞ

c′
X
r

Prðπr − πÞ2 ≤ 0. [S65]

This proves that the cost always decreases with time, i.e., is a
Lyapunov function of the dynamics. Therefore, the dynamics
will reach a stable fixed point at steady state, which is guaran-
teed to be the global minimum of the expected cost hFi.
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Fig. S1. Solving the optimization problem with a finer and finer discretization step suggests that the peaks found in the optimal receptor distributions
converge to true Dirac delta functions. Starting from a problem with a discretization step of Δ= 0.1σ, we construct coarse-grained versions of it by down-
sampling the antigen distribution two- and fourfold, yielding Δ= 0.2σ and 0.4σ, respectively. The resulting coarse-grained optimization problems are then
solved, and the optimal distributions P*r =Δ are represented (after appropriate normalization by the step size). The random antigen distribution is log-normal
with coefficient of variation κ= 0.25.

Fig. S2. Radial distribution function and normalized power spectral density of the optimal receptor distribution P*r for random environments in two dimensions.
(A) The radial distribution function of P*r shows an exclusion zone around each peak, followed by oscillations characteristic of a local tiling pattern. (B) Normalized
power spectral density SðqÞ of P*r for different values of the parameter κ quantifying the heterogeneity of the antigenic landscape. The high suppression of
fluctuations at large scales (small q) indicates that the pattern has very little fluctuation in the number of receptors used to cover large surface areas.
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Fig. S3. Power spectral density normalized by the squared antigenic environment heterogeneity index κ: jPrPre
iqr j2=κ2. The data collapse for different κ

shows that the fluctuations at large scale are entirely attributable to those of the antigenic environment and scale with them. At these large scales, the power
spectrum of the receptor distribution is approximately given by exp½ðqσÞ2�κ2=4N. The exponential term stems from the inverse of the Fourier transform of f (Eq.
S28). In other words, the coverage of the antigenic space exactly tracks the distribution of antigens, with no additional fluctuations due to the random
positioning of peaks (which would be present if this positioning was Poisson distributed). This property is called disordered hyperuniformity in the physics of
jammed materials (8–10). Parameters are the same as in Fig. 3.

Fig. S4. Influence of the choice of the cross-reactivity kernel fða− rÞ on the optimization problem. Regardless of the kernel choice the optimal repertoire is
peaked for nonuniform antigen distributions. The details of distribution depend on the cross-reactivity kernel. (A) Kernel functions used to describe cross-
reactivity. A, Left, Center Left, and Center Right show exponential kernels of the form fðr − aÞ= exp½−ðjr − aj=ηÞγ � with different values of the parameter γ. A,
Right shows a long-tailed kernel of the form fðr − aÞ=1=ð1+ ðjr − aj=ηÞ2Þ. (B) Examples of optimal receptor distributions in two dimensions, for antigenic
environments generated as in Fig. 3B (with coefficient of variation κ= 0.25). (C) Radial distribution function of the optimal distribution. (D) Structure factor of
the optimal distribution. The results in C and D are averaged over 10 independent runs. A linear effective cost function FðmÞ=m is assumed throughout.
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Fig. S5. Influence of varying amounts of nonuniformity in the widths of the cross-reactivity kernel on the optimization problem. (A) Examples of optimal
receptor distributions in one dimension, for antigenic environments generated as in Fig. 3B (with coefficient of variation κ= 0.25). A linear effective cost
function FðmÞ=mwas assumed. (B) Radial distribution function of the optimal distribution. (C) Structure factor of the optimal distribution. The results in B and
C are averaged over 30 independent runs.

Fig. S6. Adding correlations to the antigen distribution does not change the peakedness of optimal receptor distributions. The result of the optimization is
shown for a random antigen landscape with correlations. The antigen distribution is generated by Fourier filtering. First we generate an uncorrelated,
normally distributed random series. This series is then filtered to obtain a power spectrum ∝ 1=ð1+ ð10qσÞ2Þ. Finally, the filtered series is exponentiated to
ensure the nonnegativity of the generated values.
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Table S1. Intermediate results in the derivation of the optimal
solution

FðmÞ Fð~PaÞ hðxÞ
mα Γð1+ αÞ=~Pα

a ð−x=ðαΓð1+ αÞÞÞ 1
1+α

lnm γ − ln~Pa −1=x
1−expð−βmÞ β=ðβ+ ~PaÞ

ffiffiffiffiffiffiffiffiffiffiffi
−β=x

p
− β

Θðm−m0Þ expð−m0
~PaÞ −lnð−x=m0Þ=m0

The first column shows several choices of the effective cost function, FðmÞ.
For these cost functions the second column shows the average cost of a
pathogenic attack, Fð~PaÞ, and the third column shows the inverse of its de-
rivative, h= ðF′Þ−1. Γ is the Gamma function, γ is Euler’s constant, and β and
m0 are positive constants.

Fig. S7. Effect of exclusion zones around self-antigens on the optimization problem. No receptors are allowed in exclusion regions around self-antigens
(shaded in blue).
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