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Data Description
Weather Data. The weather data are drawn from the US National
Climatic Data Center (NCDC) Global Summary of the Day.
Monitoring stations report daily minimum and maximum tem-
perature. Following previous studies we focus on mean daily
temperature, calculated as the simple average of these two
measures (1, 2). In the NCDC data there are 127 monitoring
stations in Mexico that report temperature data for at least 1 d
during the period 2009–2011.
We include, in addition, 100+ stations from the United States,

Guatemala, Belize, and Honduras that are close enough to help
improve our weather measures. To focus the analysis on the
highest-quality weather readings, we follow previous work and
restrict the sample to stations for which data are available from
at least 300 d per year (2). For the small fraction of observations
for which data are missing in this restricted sample we impute
observations using linear imputation.
Fig. S1 plots the geographic distribution of weather moni-

toring stations that meet the quality screening. There are 86 sta-
tions inside Mexico and 116 stations in the United States,
Guatemala, Belize, and Honduras. Overall, the geographic cov-
erage is very good. One exception is the northern half of the Baja
Peninsula. The stations along the US–Mexico border provide ac-
curate weather measures for population centers at Tijuana and
Mexicali. Heading south from the border, however, there are no
stations whatsoever. We exclude from the analysis one munici-
pality, Ensenada, for which coverage is particularly poor. For
Ensenada the nearest weather monitoring station is 288 km
away from the municipality centroid. All other municipalities
have at least one monitoring station within 250 km.
Finally, we imputed daily temperature for each municipality

using an inverse-distance-weighted average over all stations
within 320 km. Fig. S2 describes daily temperature from 2009
to 2011. Mean daily temperature across all stations ranges from
a low in the winter of about 50 °F to a summer high near 80 °F.
The figure also plots the minimum and maximum measures
across all stations. That is, for each day we find the lowest and
highest mean daily temperature across all stations. Each summer
there is a monitoring station somewhere that has a mean daily
temperature for an entire day above 100 °F, and each winter
there is a station somewhere that has a mean daily temperature
below 20 °F.
To calculate cooling degrees we take the difference between

daily mean temperature and 65 °F, or zero, whichever is greater.
For example, a day with average temperature of 60 °F has zero
cooling degrees whereas a day with average temperature of
80 °F has 15 cooling degrees. The population-weighted average
number of annual CDDs is 2,300 with an SD of 1,800. CDDs
range widely across states from cool highland states with fewer
than 600 CDDs per year to states on the Yucatan peninsula that
have more than 5,500 CDDs per year. As a couple of points of
comparison, Chicago has 800 CDDs per year, Washington, DC
has 1,600, Las Vegas has 3,200, and Phoenix and Miami both
have 4,400.*
Finally, we constructed daily measures of precipitation by

municipality using the same approach. Although most stations
report total precipitation during all 24 h in the day, a small
fraction (5%) of stations report total rainfall only for a 6-h
period during which rain fell. Thus, these data understate total

rainfall in a small number of cases. Overall, geographic coverage
for precipitation is very good, although there are somewhat
fewer stations that meet the quality screening for precipitation
(total 172) compared with temperature (total 202). In the
empirical analyses that follow we use precipitation as a control
variable. Estimates are extremely similar with and without
controlling for precipitation, so we do not believe that our re-
sults are being unduly influenced by incomplete geographic
coverage for precipitation.

Energy Consumption Data. In 2010, 99% of Mexican households
reported having electricity in their homes (3). Annual elec-
tricity consumption per capita in Mexico was 2,000 kW·h in
2010. Countries with similar levels of per capita electricity
consumption include Brazil (2,400), Costa Rica (1,900), Egypt
(1,600), Panama (1,800), Romania (2,400), Syria (1,900), Tajiki-
stan (2,000), and Thailand (2,200). As a point of comparison, per
capita electricity consumption for the same year for the United
States was 13,300 (4).
Our analysis of the intensive margin uses household-level electric

billing records from the universe of Mexican residential customers.
Most previous analyses of the effect of temperature on electricity
consumption have used aggregate data (1, 5, 6). An important
exception is work by Auffhammer and Aroonruengsawat (2),
which uses household-level billing data from three electric util-
ities in California.
Residential customers are billed every two months using over-

lapping billing cycles. Using billing cycle codes we determined as
accurately as possible the exact days corresponding to each bill. We
exclude a small number of billing cycles (<2%) that are 3+ mo.
These longer billing cycles arise, for example, because some
households in rural areas have their meters read less than six times
per year.

Microdata on Ownership of Air Conditioning. Our analysis of the
extensive margin uses household-level microdata from the
ENIGH, a nationally representative in-home household survey
conducted every 2 y by the National Statistics Institute of Mexico.
Nationwide 13% of households had air conditioning in 2010.
Microdata from the 2012 ENIGH survey were recently made
available but are from a much smaller sample so we prefer to focus
on the 2010 data.
Fig. S3 plots air conditioning saturation by state. Air condi-

tioning saturation ranges widely from near zero in in the central
highlands to above 50% in some coastal states. In part, these
differences reflect differences in climate. Two large mountain
ranges run north to south with a highland central plateau in
between with elevations ranging from 3,000 feet to 8,000 feet
(Fig. S4). Mexico City, for example, is located at 7,300 feet and
has a mild climate year-round. Temperatures are mild in this
central plateau and air conditioning is relatively uncommon. The
coastal areas tend to be much more extreme. Baja California gets
hot in the summer and cold in the winter, as do the coastal areas
along the Gulf of Mexico, Pacific Ocean, and Atlantic Ocean.
The pattern of air conditioning saturation also reflects eco-

nomic factors. Average household incomes tend to be lower in
the south and the very low levels of air conditioning saturation
along the southern coast of the Pacific Ocean reflect that the states
of Guerrero, Oaxaca, and Chiapas are among the poorest in
Mexico. Air conditioning is also surprisingly low on the Yucatan
Peninsula. This area is characterized by high temperatures but also
low average household income.*See www.ncdc.noaa.gov/oa/climate/online/ccd/nrmcdd.html.
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One of the reasons why Mexico is a particularly conducive
setting for an empirical study of air conditioning adoption
is that household income varies widely. GDP per capita in
Mexico was $10,300 in 2013, but the variation is enormous,
with the bottom 25% living on annual household income below
$3,000 (7).

End-of-Century Temperature Predictions. As we explain in the main
text, to construct the end-of-century temperature predictions we
started with the current temperature distribution by municipality
and then added predicted temperature changes by month of year.
To capture cross-sectional variation in temperature impacts, we
used climate models with a high degree of geographic detail
(0.5°). End-of-century temperature predictions were downloaded
in August 2014 from Climate Wizard Custom, an online tool
developed by the Nature Conservancy. Rather than rely on the
output from any single model, we use average predicted changes
from all 25 climate models for which data are available from
Climate Wizard. We report results for both RCP 4.5 and RCP
8.5, the two emissions pathways for which Climate Wizard makes
data available.
We matched gridded temperature change predictions to mu-

nicipality centroids using inverse-distance weighting. Fig. S6 plots
the distribution of changes in mean daily temperature under the
RCP 8.5 scenario. Large increases in temperature are predicted
by the end of the century. Days with an average temperature be-
low 60 °F become relatively uncommon, the mode shifts to the
75–80° bin, and there is a dramatic increase in days above 85 °F.
In the paper we report results from both the RCP 8.5 and RCP
4.5 scenarios. Under the RCP 8.5 scenario, the average temper-
ature (population-weighted) increases by 4.2 °C (7.7 °F). Under
the RCP 4.5 scenario, the average temperature (population-
weighted) increases by 2.4 °C (4.3 °F).

Air Conditioning Potential. Table 2 was constructed using publicly
available data. Population and annual GDP per capita come from
the World Bank (8). These data are for 2013, the latest year for
which data are available. The values reported for annual CDDs
have been widely used (9–12) and came originally from the
World Resources Institute. They are measured in degrees Celsius
relative to 18 °C.

Additional Description of Results
Intensive Margin. Fig. S7 describes the relationship between
temperature and residential electricity consumption for states
with different levels of saturation of air conditioning. As with
Fig. 3 constructed using all households, we plot the estimated
coefficients and 95th percentile confidence intervals corre-
sponding to all 10 temperature bins. The estimating equation is
exactly the same for all three parts of the figure.
Fig. S7A plots the temperature–response function for house-

holds living in states with <10% saturation. The temperature–
response function exhibits the same basic pattern observed in the
figure constructed using all households, but the magnitudes are
somewhat smaller. The fact that we are observing temperature
response even in states with low saturation of air conditioning
likely reflects the use of fans and other substitutes for air con-
ditioning. Refrigerator electricity consumption has also been
shown to increase with ambient temperature (13). Also, temper-
ature increases may reduce outdoor activities, potentially leading
households to watch more television and to engage in other in-
door activities that use electricity.
Another potential substitute for aid conditioners is evaporative

coolers (also known as “swamp coolers”), which cool the air
through the evaporation of water. The 2010 ENIGH survey
asks households about air conditioners, but not about evapo-
rative coolers. Interestingly, the 2000 ENIGH survey asked a
single question of whether a household had either type of

cooling equipment and 9.6% of households reported in 2000
having one or the other. We are not aware of any more recent
survey that reports saturation of evaporative coolers, but based
on this evidence from 2000, along with anecdotal evidence, we
believe that the saturation of evaporative coolers is low, but
not zero.
Fig. S7 B and C plot temperature–response functions esti-

mated using households living in states with medium (10–50%),
and high (>50%) saturation of air conditioners. The functions
continue to have the same basic pattern. Across samples, the
response of electricity consumption is near zero for days below
70 °F, and then increases approximately linearly after 75 °F.
These temperature–response functions are steeper, however. In
states with >50% saturation an additional day in the >90° bin
increases monthly consumption by 4.2%.
A useful point of comparison is work by Auffhammer and

Aroonruengsawat (2), which estimates temperature–response
functions using monthly billing data from California residential
customers. Households in California’s mild coastal regions
(e.g., San Francisco) exhibit relatively flat temperature–response
functions, with modest increases in consumption during both
cold and hot days. These estimates are similar to our estimates
for states with low saturation of air conditioning, except our
estimates exhibit virtually no response on cold days. House-
holds living in parts of California with more extreme weather
(e.g., the Central Valley) exhibit temperature–response func-
tions similar to what we are observing for households in states
with high saturation of air conditioning.
The lack of temperature response on the low end of the

temperature distribution makes sense because in Mexico these
colder days are relatively uncommon and most households do not
have residential heating. In contrast, the distribution of average
daily temperatures for the United States includes a substantial
fraction of days below 50 °F and millions of households in the
United States have electric heating.†

Extensive Margin. Table S1 reports the regression estimates cor-
responding to the air conditioning saturation plots in the paper.
We report coefficient estimates and SEs from 10 separate least
squares regressions and two probit models. In all regressions the
dependent variable is an indicator variable for whether the
household has air conditioning. Where indicated, the regressions
include region and state fixed effects. In these specifications the
relationship between climate and adoption is identified using
within-region or within-state variation in CDDs.
The upper portion of Table S1 reports estimates from speci-

fications that include annual household income and CDDs, but
not the interaction between the two. Across specifications, both
regressors are strongly statistically significant. In column 1, sat-
uration increases by 12 percentage points per $10,000 in annual
household income. This is a large effect. The SD of household
income in our sample is $6,500 (mean $7,600), so a one-SD in-
crease implies an eight-percentage-point increase in saturation.
Relative to the baseline level of 13% this is more than a 50%
increase.
Effects are somewhat larger in columns 2–5 when annual

household expenditure is used as a proxy for household in-
come. These larger coefficients reflect that expenditure is mea-
sured with less error and because the SD for expenditure is
smaller. Climate continues to be important, increasing satu-
ration by four to seven percentage points per 1,000 CDDs. The
SD of CDDs is 1,800 (mean 2,300), so a one-SD increase implies
a 7- to 12-percentage-point increase in saturation. The estimates

†According to the U.S. Census Bureau, 41.8 million U.S. households (36%) use electricity as
their primary home heating fuel. Only 1.0 million U.S. households (1%) have no home
heating (14).
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change little with the addition of state fixed effects or a quadratic
in precipitation.
Column 6 reports estimates from a probit model. We report

marginal effects and their SEs evaluated at the means of the
explanatory variables. Coefficients are smaller than the least
squares estimates, but with the same pattern. The advantage of
the probit model is that it yields predictions that are bounded
between zero and one, and, for this reason we rely on estimates
from the probit model for our end-of-century forecasts.
The lower portion of Table S1 adds interaction terms between

income and climate. In particular, we include a regressor that
interacts income with an indicator variable for “warm” munici-
palities, defined as municipalities above the mean number of
CDDs. After including the interaction term, the estimated co-
efficients on the uninteracted terms become considerably smaller
and less statistically significant, whereas the interaction term is
large and statistically significant.
As in the upper portion of Table S1, these estimates change

very little across specifications. In column 5 with the full set of
fixed effects the coefficient on the interaction is 0.31. That is, in
warm municipalities, air conditioning saturation increases 31
percentage points per $10,000 in annual household income. Not
coincidentally, this is about twice the effect observed in the
upper portion of the table, which reflects the combined effect for
both cool and warm municipalities. The probit model in column
6 yields estimates with the same general pattern, although again
the point estimates tend to be considerably smaller than the
least-squares estimates.

Forecasts. In the upper portion of Table 1 we calculate the change
in electricity consumption by multiplying each element of the
temperature–response function by the predicted change in the
number of days in each temperature bin, and then taking the sum
of these products.
The climate change predictions are changes in the number of

days per year, whereas the temperature–response functions are
percentage impacts in monthly electricity consumption. Ac-
cordingly, for these calculations we divided the climate change
predictions by 12 to represent changes in the number of days per
month before multiplying.
To calculate the total change in annual electricity expenditures

we multiply the predicted percent change in consumption by total
annual residential electricity consumption (52,771 GWh) and then

by the average residential price of electricity in Mexico ($90.19 per
megawatt hour).‡ Then, to calculate the total change in carbon
dioxide emissions we use the average carbon intensity of electricity
generation, 0.68 tons of carbon dioxide per megawatt hour.§

The lower portion of Table 1 reports impacts allowing for
changes in both the intensive and extensive margins. To predict the
percentage of households with air conditioning in this panel we
follow these steps. First, we estimate the fully saturated probit air
conditioning adoption model using all households in the 2010
ENIGH survey. Second, we scale up these households’ expenditure
by 1.0275 (i.e., 2% growth for 75 y, roughly 2010–2085). Third, we
replace each household’s current CDDs with end-of-century values
(corresponding to either RCP 4.5 or RCP 8.5) for the municipality
where each household lives. Fourth, we use the fitted equation
from the probit model to calculate an adoption probability for each
household. This yields predicted air conditioning saturation of
71% (RCP 4.5) and 81% (RCP 8.5), as indicated in the table.
For the percent change in consumption in the second panel we

incorporate both (i) the increase in electricity consumption from
increased air conditioning adoption and (ii) the increase in
electricity consumption from higher temperatures. Our pre-
dicted end-of-century saturation levels are quite similar to cur-
rent saturation levels in Sinaloa and Sonora, the two states with
the highest levels of saturation (68% and 74%, respectively).
Accordingly, we use the estimated temperature–response func-
tion from these states to proxy for the end-of-century tempera-
ture–response function when making these calculations.
Finally, the predicted changes in total electricity expenditures

and carbon dioxide emissions are calculated exactly as in the upper
portion of Table 1. Incorporating the extensive margin implies
much higher saturation of air conditioners, and thus much higher
electricity expenditures and carbon dioxide emissions. In the RCP
4.5 scenario, the total change in carbon dioxide emissions is more
than eight times as large as the predicted increase incorporating
the intensive margin only. In the RCP 8.5 scenario the total change
in carbon dioxide emissions is more than five times as large.

‡Both values come from the Mexican Energy Ministry (15). Total residential electricity
consumption comes from table 3.2 and average residential prices come from page 33.

§According to the Mexican Energy Ministry, in 2012 a total of 143.49 million metric tons of
carbon dioxide were emitted by electricity generation in Mexico (16) and total electricity
consumption was 234,219 GWh (15). Dividing and using the fact that there are 1.102 tons
per metric ton yields the average carbon intensity.
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Fig. S1. Weather monitoring stations.
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Fig. S2. Maximum, mean, and minimum temperature by day.
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Fig. S3. Air conditioning saturation by state.
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Fig. S4. Elevation by municipality.
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Fig. S5. Daily mean temperature 2070–2099, RCP 8.5 emissions scenario.
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Fig. S6. Change in daily mean temperature (°F), RCP 8.5 emissions scenario.
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Fig. S7. The effect of temperature on residential electricity demand: (A) <10%, (B) 10–50%, and (C) >50% saturation of air conditioning.
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Table S1. Predicting air conditioning adoption

Income and climate

Variable 1 2 3 4 5 6

Annual household income
(in US 2010 dollars, 10,000s)

0.12** (0.01) 0.17** (0.02) 0.15** (0.02) 0.15** (0.02) 0.15** (0.02) 0.06** (0.01)

Annual CDDs (Based on 65 °F, 1,000s) 0.07** (0.01) 0.07** (0.01) 0.05** (0.01) 0.04** (0.01) 0.04** (0.01) 0.02** (0.01)
R2 0.18 0.17 0.32 0.37 0.37 0.46

Income, climate, and the interaction
7 8 9 10 11 12

Annual household income
(in US 2010 dollars, 10,000s)

0.03* (0.01) 0.03** (0.01) 0.03* (0.01) 0.03* (0.01) 0.03* (0.01) 0.04** (0.01)

Annual CDDs (Based of 65 °F, 1,000s) 0.02 (0.02) 0.01 (0.02) 0.04* (0.02) 0.04* (0.02) 0.04 (0.02) 0.02** (0.01)
1(warm municipality) 0.03 (0.06) 0.02 (0.06) −0.12** (0.04) −0.14** (0.04) −0.14** (0.04) −0.02 (0.02)
Annual household income* 0.24** 0.36** 0.32** 0.31** 0.31** 0.05**
1(warm municipality) (0.02) (0.03) (0.03) (0.03) (0.03) (0.01)
R2 0.25 0.24 0.36 0.41 0.41 0.46
Proxy for income using expenditure No Yes Yes Yes Yes Yes
Region fixed effects No No Yes Yes Yes Yes
State fixed effects No No No Yes Yes Yes
Quadratic in precipitation No No No No Yes Yes
Probit model No No No No No Yes

Table S1 reports coefficient estimates and SEs from 12 separate regressions. Columns 1–5 report estimates from linear probability models and column 6
reports estimates from probit models. In all regressions the dependent variable is an indicator variable equal to 1 for households who have air conditioning at
home. The indicator variable 1(warm municipality) is equal to 1 for municipalities with more than the mean number of annual CDDs. The sample for all
regressions includes all 27,395 households in the 2010 ENIGH survey and all regressions are estimated using ENIGH sampling weights. SEs are clustered at the
municipality level. Single and double asterisks denote statistical significance at the 5% and 1% levels, respectively.
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