A systems biological study on the identification of safe and
effective molecular targets for reduction of ultraviolet B-

induced skin pigmentation

Ho-Sung Lee ***, Myeong-Jin Goh ", Junil Kim **, Taejun Choi *, Hae Kwang Lee *,

Yong Joo Na ** and Kwang-Hyun Cho 2"

!Laboratory for Systems Biology and Bio-Inspired Engineering, Department of Bio and
Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon,
305-701, Republic of Korea.

*Graduate School of Medical Science and Engineering, Korea Advanced Institute of
Science and Technology, Daejeon, 305-701, Republic of Korea.
3Skin Research Institute, Amore Pacific R&D center, Gyeonggi-do, 446-729,
Republic of Korea.

Supplementary Materials

“These authors contributed equally to this study.

"Corresponding author. E-mail: ckh@kaist.ac.kr, Phone: +82-42-350-4325, Fax: +82-42-350-4310,
Web: http://sbie.kaist.ac.kr/.

*Co-corresponding author. E-mail: nay@amorepacific.com

1



Table of Contents

I. Supplementary Figures
Supplementary Figure S1. The effect of UVA or UVB irradiation on the melanin

content in human melanocytes.

Supplementary Figure S2. The estimated basin sizes for different sampling numbers of
initial network states.

Supplementary Figure S3. The effect of UVB irradiation on the Bcl-2 expression level
in human melanocytes.

Supplementary Figure S4. Effects of inhibition of beta-catenin, Ras, PKA, or a
combination of Ras and PKA on the UVB-induced skin

pigmentation.

I1. Supplementary Tables

Supplementary Table S1. The 113 links comprising the melanogenesis network.

Supplementary Table S2. Logic tables for the Boolean network model.

Supplementary Table S3. In silico node control anaysis for the identification of
appropriate strategies to reduce UVB-induced skin
pigmentation.

Supplementary Table S4. In silico analysis of changes in UVB-induced melanin
synthesis with respect to the inhibition of beta-catenin, Ras,
PKA, or a combination of Ras and PKA.

I11. Supplementary References



I. Supplementary Figures
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Supplementary Figure S1. The effect of UVA or UVB irradiation on the melanin content in

human melanocytes.

Graphs of the melanin content in normal human melanocytes exposed to UVA or UVB

irradiation at the indicated doses. Human melanocytes were cultured in 6-well plate and exposed

to the indicated doses of UVA or UVB. After incubation, the melanocytes were harvested and

dissolved in 1IN NaOH solution. The melanin content was determined from absorbance (OD

475) measured by using microplate reader. The data represent the means + SD of three

biological replicates. P-values were determined by Student’s t test; P < 0.05 was considered

statistically significant.
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Supplementary Figure S2. The estimated basin sizes for different sampling numbers of
initial network states.

The distributions of the estimated basin sizes are very similar regardless of the sampling number
of initial states.
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Supplementary Figure S3. The effect of UVB irradiation on the Bcl-2 expression level in
human melanocytes.

Graphs of the Bcl-2 expression level in normal human melanocytes exposed to UVB irradiation
at the indicated doses. Human melanocytes were cultured in 6-well plate and exposed to the
indicated doses of UVB. After incubation, the melanocytes were harvested and lysed. Bcl-2
expression level was measured by using human Bcl-2 ELISA kit (Abcam, Cambridge, U.K.).
The data represent the means + SD of three biological replicates. P-values were determined by

Student’s t test; P < 0.05 was considered statistically significant.
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Supplementary Figure S4. Effects of inhibition of beta-catenin, Ras, PKA, or a
combination of Ras and PKA on the UVB-induced skin pigmentation.

Graphs of the AL values of the MelanoDerms exposed to IWP-2 (a beta-catenin inhibitor, 20
uM), H-89 (a PKA inhibitor, 10 uM), salirasib (a Ras inhibitor, 50 pM), or a combined
treatment with H-89 (10 uM) and salirasib (50 puM) upon UVB irradiation (10 mJ/cm?).
MelanoDerms exposed to a combined treatment with H-89 and salirasib showed the AL value
lower than those treated with either H-89 or salirasib alone. 1% kojic (70.37 mM) acid was used
as a positive control. MelanoDerms were grown at the air-liquid interface and the maintenance
medium was replenished every 2 days. After a 9-day of exposure to the chemicals, pigmentation
of the skin equivalents was assessed by comparing the change in L* value, a value of CIE 1976
(L*,a*,b*) color space representing the brightness. The data represent the means + SD of at
least three biological replicates. P-values were determined by Student’s t test; P < 0.05 was
considered statistically significant. See Table S4 for the simulation results of changes in UVB-
induced melanin synthesis with respect to the inhibition of beta-catenin, Ras, PKA, or a

combination of Ras and PKA.



I1. Supplementary Tables

Supplementary Table S1. The 113 links comprising the melanogenesis network.

Link index Cellular type Source Interaction  Target Reference
1 Extracellular Signal UVB + ASK1 13
2 Extracellular Signal UVB + EGFR !
3 Extracellular Signal UvB + IL-1 4
4 Extracellular Signal UvB - PTEN 156
5 Keratinocytes Melanin - IL-1 See the note®.
6 Keratinocytes ERK - PTEN 6
7 Keratinocytes Akt - PTEN 6
8 Keratinocytes Melanin + PTEN See the note®.
9 Keratinocytes Melanin - EGFR See the note®.
10 Keratinocytes EGFR + PI3K !
11 Keratinocytes Akt - ASK1 8
12 Keratinocytes Melanin - ASK1 See the note®.
13 Keratinocytes EGFR + SG s
14 Keratinocytes ERK - SG 912
15 Keratinocytes PI3K + PDK1 13.14
16 Keratinocytes PTEN - PDK1 1
17 Keratinocytes ASK1 + MKK6 16
18 Keratinocytes Akt - MKK4 o
19 Keratinocytes ASK1 + MKK4 16
20 Keratinocytes SG + Ras 18
21 Keratinocytes PDK1 + Akt 14.19
22 Keratinocytes MKK6 + p38 2
23 Keratinocytes MKK4 + INK 2
24 Keratinocytes Akt - Raf 2
25 Keratinocytes Ras + Raf 22
26 Keratinocytes Akt - GSK3b 2
27 Keratinocytes GSK3b b-catenin 2
28 Keratinocytes Raf MEK 221
29 Keratinocytes Akt + MDM2 28
30 Keratinocytes GSK3b - NFAT 29.30
31 Keratinocytes b-catenin + COX-2 3
32 Keratinocytes GSK3b - COX-2 32
33 Keratinocytes NFAT + COX-2 #
34 Keratinocytes p38 + COX-2 3
35 Keratinocytes MEK + ERK 35,36
36 Keratinocytes p38 - ERK 37,38
37 Keratinocytes ERK + p53 »
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16

79 Melanocytes ASK1 + MKK6

80 Melanocytes PDK1 + Akt 14.19
81 Melanocytes Raf + MEK 22
82 Melanocytes PKA + PDE 80,81
83 Melanocytes MKK6 + p38 2
84 Melanocytes Akt - GSK3b 2
85 Melanocytes MEK + ERK 35,36
86 Melanocytes p38 - ERK 3
87 Melanocytes p38 + MSK 13,82
88 Melanocytes ERK + MSK 43,82
89 Melanocytes MKK4 + INK 2
90 Melanocytes Akt + MDM2 28
91 Melanocytes ERK + RSK 42,43
92 Melanocytes p38 + p53 “
93 Melanocytes MDM2 - p53 40
94 Melanocytes MITFprotein - p53 8
95 Melanocytes GSK3b - b-catenin 2
96 Melanocytes PKA + CREB 76
97 Melanocytes Akt + CREB 45,84
98 Melanocytes MSK + CREB ”
99 Melanocytes Akt + Bcl-2 44,45
100 Melanocytes p38 - Bcl-2 >
101 Melanocytes ERK + Bcl-2 10
102 Melanocytes INK - Bcl-2 47,48
103 Melanocytes RSK + Bcl-2 13,3657
104 Keratinocytes b-catenin + Bcl-2 9
105 Keratinocytes GSK3b + Bcl-2 50,51
106 Melanocytes p53 - Bcl-2 5855
107 Melanocytes CREB + Bcl-2 45,85
108 Melanocytes MITFprotein + Bcl-2 8
109 Melanocytes b-catenin + MITFmRNA 8
110 Melanocytes CREB + MITFMRNA 88
111 Melanocytes ERK + MITFprotein 8991
112 Melanocytes MITFMRNA + MITFprotein %2
113 Melanocytes MITFprotein + Melanin %2

SLinks 5, 8, 9, and 12 were included to represent the photoprotective role of epidermal melanin
against UVB irradiation.

IL-1, interleukin 1; PTEN, phosphatase and tensin homolog; EGFR, epidermal growth factor
receptor; PI3K, phosphatidylinositol 3-kinase; ASK1, apoptosis signal-regulating kinase 1; SG,
the growth factor receptor—-bound protein 2 (Grb2) and Son of Sevenless (SOS) complex; PDK1,



phosphoinositide-dependent kinase 1; MKK®6, mitogen-activated protein kinase (MAPK) 6;
MKK4, mitogen-activated protein kinase (MAPK) 4; JNK, c-Jun N-terminal kinase; GSK3b,
Glycogen synthase kinase-3 beta; b-catenin, beta-catenin; ERK, extracellular signal-regulated
kinase; MEK, MAPK/ERK kinase; MDM2, mouse double minute 2 homolog; NFAT, nuclear
factor of activated T-cells; COX-2, cyclooxygenase (COX-2); RSK, ribosomal s6 kinase; ETR,
endothelin receptor; MC1R, melanocortin 1 receptor; EP4, prostaglandin E receptor 4; PKC,
protein kinase C; AC, adenylyl cyclase; cCAMP, cyclic adenosine monophosphate; PKA, protein
kinas A; PDE, phosphodiesterase; MSK, mitogen- and stress-activated kinase and CREB,

CAMP response element-binding protein.
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Supplementary Table S2. Logic tables of the Boolean network model.

Remarks

IL-1 activation in human
keratinocytes is augmented by
UVB irradiation.

UVB irradiation inhibits PTEN
function by promoting its
phosphorylation.
Phosphorylation of PTEN
downregulates its lipid
phosphatase function and protein
stability.

UVB induced ERK/AKT-
dependent PTEN suppression
promotes survival of epidermal

keratinocytes.

mggi Logic table
0 0 0
1 0 1 1
1 0 0
1 1 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
2 0 1 1 1 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0
0 0 0
3 0 1 1
1 0 0
1 1 0
4 0 0
1 1

UVB irradiation induces
phosphorylation of EGFR and

increases its kinase activity.

EGFR-mediated phosphorylation

of Gabl results in PI3K activation.

11



0 0 0
° ° ' UVB irradiation induces ASK1
0 . 0 activation.
5 0 ! ! Akt phosphorylates and negatively
1 0 0 regulates ASK1 activity.
1 0 1
1 1 0
1 1 1
EGFR interacts with and activates
X SG complex, which in turn
0 ° ° activates downstream Ras.
6 0 ! ! Activated ERK phosphorylates
! 0 0 Sos and promotes disassociation
! ! 0 of the SG complex.
P13K promotes the binding of
PDK1 with PIP3, which in turn
activates the downstream Akt
7 Kinase.
PTEN acts as a phosphatase to
dephosphorylate PIP3, resulting in
the deactivation of PDK1.
ASK1 phosphorylates and
8 activates MKKG6.
ASK1 activates MKK4 upon UVB
irradiation.
9 0 1 0 Akt negatively regulates MKK4
1 0 1 activity by means of
1 1 0 phosphorylation.
-ﬁ SG complex catalyzes the
10 0 0 exchange of GDP with GTP and
1 1 induces Ras activation.
-Akt__K Upon UVB irradiation, PDK1
11 0 0 phosphorylates Akt to promote its
1 1 activation.

12



UVB-induced active MKK6

12 0 0 phosphorylates and activates p38.
1 1
-£ Active MKK4 directly
13 0 0 phosphorylates JNK and promotes
1 1 its activation.
Raf_K
_a_‘ Ras directly interacts with and
0 0 0 .
activates Raf.
14 0 ! 0 Akt phosphorylates and inhibits
! 0 ! Ser/Thr kinase Raf.
1 1 0
AKT phosphorylates and inhibits
15 kinase activity of GSK3b.
1 0
GSK3b phosphorylates b-catenin
16 0 ! and promotes its degradation.
1 0
-M Raf phosphorylates and promotes
17 0 0 MEK activation.
1 1
-w Akt promotes nuclear localization
18 0 0 and activation of MDM2 by means
1 1 of phosphorylation.
NFAT phosphorylation by active
GSK3b suppresses its nuclear
19 0 ! translocation, which reduces its
1 0

DNA binding activity.
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COX-2_K

0 0 0 0 0
0 0 0 1 1 p38, NFAT, or b-catenin is needed
0 0 1 0 1
0 0 1 1 1 for the transcriptional activation of
0 ! 0 0 0 COX-2, hence forming an OR
0 1 0 1 0
20 0 1 1 0 0 relation.
0 1 1 1 0 e ey .
1 0 0 0 1 Inhibition of COX-2 by GSK3b is
. 0 0 L . dominant to the positive
1 0 1 0 1
1 0 1 1 1 regulators.
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0
m MEK phosphorylates and activates
0 0 0 ERK.
21 0 1 0 When both MEK and p38 are
1 0 1 activated, dephosphorylation of
1 1 0 ERK occurs.
ERK or p38 kinase phosphorylates
p53_K L.
HT p53 protein in response to UVB
irradiation, leading to its
0 0 1 1
0 1 0 1 activation.
22 0 1 1 1 The nuclear localization of p53,
1 0 0 0 which is necessary for its
1 0 1 0 transcriptional activation, is
1 1 0 0 inhibited by direct binding of p53
! ! ! 0 to MDM2.
RSK is directly phosphorylated by
23 ERK, which promotes its kinase

activity.
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24

Phosphorylation of BAD (a Bcl-2
antagonist) by Akt, ERK, or RSK
is needed for the full activation of
Bcl-2 protein.

Beta-catenin and GSK3-beta
upregulates Bcl-2 expression
level.

The activity of Bcl-2 is suppressed
if any of its negative regulators is
activated.

Hence, the activation condition for
Bcl-2_M is
'AND(OR(Akt_K,ERK_K,RSK_K
, b-catenin_K, GSK3b_K),
NOT(OR(p53_K, INK_K,
p38_K)))"

15



24

Phosphorylation of BAD (a Bcl-2
antagonist) by Akt, ERK, or RSK
is needed for the full activation of
Bcl-2 protein.

Beta-catenin and GSK3-beta
upregulates Bcl-2 expression
level.

The activity of Bcl-2 is suppressed
if any of its negative regulators is
activated.

Hence, the activation condition for
Bcl-2 M is
'AND(OR(Akt_K,ERK_K,RSK_K
, b-catenin_K, GSK3b_K),
NOT(OR(p53_K, JNK_K,
p38_K)))"
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24

Phosphorylation of BAD (a Bcl-2
antagonist) by Akt, ERK, or RSK
is needed for the full activation of
Bcl-2 protein.

Beta-catenin and GSK3-beta
upregulates Bcl-2 expression
level.

The activity of Bcl-2 is suppressed
if any of its negative regulators is
activated.

Hence, the activation condition for
Bcl-2_M is '"AND(OR(Akt_K,
ERK_K, RSK_K, b-catenin_K,
GSK3b_K), NOT(OR(p53_K,
INK_K, p38_K)))-
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24

Phosphorylation of BAD (a Bcl-2
antagonist) by Akt, ERK, or RSK
is needed for the full activation of
Bcl-2 protein.

Beta-catenin and GSK3-beta
upregulates Bcl-2 expression
level.

The activity of Bcl-2 is suppressed
if any of its negative regulators is
activated.

Hence, the activation condition for
Bcl-2_M is '"AND(OR(Akt_K,
ERK_K, RSK_K, b-catenin_K,
GSK3b_K), NOT(OR(p53_K,
INK_K, p38_K)))-
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24

Phosphorylation of BAD (a Bcl-2
antagonist) by Akt, ERK, or RSK
is needed for the full activation of
Bcl-2 protein.

Beta-catenin and GSK3-beta
upregulates Bcl-2 expression
level.

The activity of Bcl-2 is suppressed
if any of its negative regulators is
activated.

Hence, the activation condition for
Bcl-2_M is '"AND(OR(Akt_K,
ERK_K, RSK_K, b-catenin_K,
GSK3b_K), NOT(OR(p53_K,
INK_K, p38_K)))".
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24

25

Phosphorylation of BAD (a Bcl-2
antagonist) by Akt, ERK, or RSK
is needed for the full activation of
Bcl-2 protein.

Beta-catenin and GSK3-beta
upregulates Bcl-2 expression
level.

The activity of Bcl-2 is suppressed
if any of its negative regulators is
activated.

Hence, the activation condition for
Bcl-2_M is '"AND(OR(Akt_K,
ERK K, RSK_K, b-catenin_K,
GSK3b_K), NOT(OR(p53_K,
INK_K, p38_K)))-

26

ET-1 K

IL-1 or p53 is needed for ET-1
expression and activation, hence

forming an OR relation.

IL-1 or p53 is needed for SCF
production and activation, hence

forming an OR relation.

27

28

p53 increases the transcriptional
activity of a-MSH upon UVB

irradiation.

29

COX-2 promotes PGE2
production in response to UVB
irradiation in an IL-1 dependent

manner.

ET-1 interacts with and activates
ETR.

20



SCF binds to and activates c-Kit.

30 0
1
MC1R_M Binding of a-MSH to the MC1R
31 0 stimulates activation of MC1R and
1 its downstream signaling proteins.
EP4 is a G protein-coupled
receptor which activates cCAMP

32 signaling in response to PGE2
stimulation.

ET-1 bound active ETR activates

33 PKC.
c-Kit interacts with SG complex,
which in turn activates
downstream Ras.

34 Activated ERK phosphorylates
Sos and promotes disassociation
of the SG complex.
a-MSH-bound activated MC1R

3 stimulates AC activation.

Akt phosphorylates and negatively

36 regulates ASK1 activity.

. Ras interacts directly with the
catalytic subunit of PI3K in a

° GTP-dependent manner.

37 ! CAMP inhibits PI3K activation,

0 which in turn inactivates

1 downstream Akt kinase.

0

1




SG complex catalyzes the
exchange of GDP with GTP and

0 ° ° induces Ras activation.
38 0 ! ! SG does not participate in the
1 0 1 cAMP-dependent Ras activation,
1 1 1 hence forming an OR relation.
0 0 0 0
0 0 . . The activation of EP4 or AC is
required for the conversion of ATP
° ! ° ' to cCAMP.
3 0 L L L PDE hydrolyzes and inhibits the
1 0 0 0 cAMP activity, which is dominant
1 0 1 0 to the positive regulators.
1 1 0 0
1 1 1 0
ASKT1 activates MKK4.
0 0 0 Akt negatively regulates MKK4
40 0 ! 0 activity by means of
! 0 ! phosphorylation.
1 1 0
PI3K promotes the binding of
41 PDK1 with PIP3, which in turn
1 1 activates downstream kinases.
Ras directly interacts with and
_Raf__M activates Raf.
0 0 0 Ras binding of Raf promotes
42 0 1 1 conformational changes of Raf
1 0 1 that relieve Raf autoinhibition.
n 1 1 PKC phosphorylation rescues the
inhibition of Raf by ERK.
CAMP activates PKA by binding
to its regulatory subunits, causing
43 0 0 their dissociation from catalytic
1 1

subunits.
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ASK1 phosphorylates and

44 activates and MKKG6.
PDKZ1 phosphorylates Akt to
45 : —
promote its activation.
Raf phosphorylates MEK, and
46 : -
promotes its activation.
Phosphorylation of PDE by PKA
47 . -
enhances its activity.
MKKG®6 phosphorylates and
48 activates p38.
AKT inhibits kinase activity of
49 GSK3b by phosphorylating
GSK3b at serine 9.
MEK phosphorylates and activates
0 ERK.
50 0 When both MEK and p38 are
1 activated, dephosphorylation of
ERK occurs.
0
MSK_M
0
The MSK activation requires
51 ! phosphorylation by ERK or p38.
1
1
Active MKK4 phosphorylates
52

JNK and promotes its activation.

23



Akt promotes nuclear localization

MDM2_M
53 0 0 and activation of MDM2 by means
1 1 of phosphorylation.
RSK is directly phosphorylated by
54 ERK, which promotes its kinase
activity.
p38 phosphorylates p53 protein at
0 0 0 3 in response to UVB irradiation,
0 0 1 1 leading to p53 activation.
0 1 0 0 The nuclear localization of p53,
55 0 . ! 0 which is necessary for its
1 0 0 0
1 0 1 0 transcriptional activation, is
1 1 0 0 inhibited by direct binding of p53
! ! ! 0 to MDM2.
b-catenin_M .
GSK3b phosphorylates b-catenin
56 0 ! and promotes its degradation.
1 0
0 0 0 0
0 0 1 1
0 1 0 1 Akt, PKA, or MSK stimulates
57 0 1 1 1 CREB activity via a serine 133-
1 0 0 1 dependent mechanism.
1 0 1 1
1 1 0 1
1 1 1 1

24
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CREB or MITF is required for the
transcriptional activation of Bcl-2
gene.

Phosphorylation of BAD (a Bcl-2
antagonist) by Akt, ERK, or RSK
is needed for the full activation of
Bcl-2 protein.

Beta-catenin and GSK3-beta
upregulates Bcl-2 expression
level.

Bcl-2 activity is suppressed if any
of its negative regulators is
activated.

Hence, the activation condition for
Bcl-2_ M is
'AND(OR(MITFprotein_M,
CREB_M), OR(Akt_M, ERK_M,
RSK_M, b-catenin_M,
GSK3b_M), NOT(OR(p53_M,
JNK_M, p38_M)))".
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CREB or MITF is required for the
transcriptional activation of Bcl-2
gene.

Phosphorylation of BAD (a Bcl-2
antagonist) by Akt, ERK, or RSK
is needed for the full activation of
Bcl-2 protein.

Beta-catenin and GSK3-beta
upregulates Bcl-2 expression
level.

Bcl-2 activity is suppressed if any
of its negative regulators is
activated.

Hence, the activation condition for
Bcl-2 M is
'AND(OR(MITFprotein_M,
CREB_M), OR(Akt_M, ERK_M,
RSK_M, b-catenin_M,
GSK3b_M), NOT(OR(p53_M,
JNK_M, p38_M)))".




CREB or MITF is required for the

0
0

transcriptional activation of Bcl-2

0

gene.

Phosphorylation of BAD (a Bcl-2

0

antagonist) by Akt, ERK, or RSK

0
0

is needed for the full activation of

0

Bcl-2 protein.

0

Beta-catenin and GSK3-bheta

upregulates Bcl-2 expression

0

level.

0

Bcl-2 activity is suppressed if any

0
0

of its negative regulators is

activated.

Hence, the activation condition for
Bcl-2 M is

0

'AND(OR(MITFprotein_M,

0
0

0

CREB_M), OR(Akt_M, ERK_M,

RSK M, b-catenin M,

0

GSK3b_M), NOT(OR(p53_M,

0
0

0

, P38_M)))'

INK_M
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CREB or MITF is required for the

0
0

transcriptional activation of Bcl-2

0

gene.

0

Phosphorylation of BAD (a Bcl-2

0
0

antagonist) by Akt, ERK, or RSK

0
0

is needed for the full activation of

Bcl-2 protein.

0

Beta-catenin and GSK3-beta
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CREB or MITF is required for the
transcriptional activation of Bcl-2
gene.

Phosphorylation of BAD (a Bcl-2
antagonist) by Akt, ERK, or RSK
is needed for the full activation of
Bcl-2 protein.

Beta-catenin and GSK3-beta
upregulates Bcl-2 expression
level.

Bcl-2 activity is suppressed if any
of its negative regulators is
activated.

Hence, the activation condition for
Bcl-2 M is
'AND(OR(MITFprotein_M,
CREB_M), OR(Akt_M, ERK_M,
RSK_M, b-catenin_M,
GSK3b_M), NOT(OR(p53_M,
JNK_M, p38_M)))".
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Binding of beta-catenin and CREB
to the MITF gene promoter region
stimulates MITF transcription,

hence forming an AND relation.
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MITFprotein_M The phosphorylation of MITF at

0 0 0 serine 73 by ERK results in
60 0 1 0 upregulation of the MITF
1 0 0 melanogenic function.
1 1 1
Melanin MITF promotes melanin synthesis
61 0 by upregulating expression of
1 1 melanogenic enzymes.

Blue and red boxes denote positive and negative regulators, respectively.
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Supplementary Table S3. In silico node control anaysis for the identification of appropriate strategies to

reduce UVB-induced skin pigmentation.

A Melanin (%) A Bcl-2_K (%) A Bcl-2_M (%)
Perturbation Perturbation Perturbation
Perturbed node
() (+) () (+) ) (+)
Akt K 24.84 -57.02 -29.80 45.62 14.22 -70.77
a-MSH_K 37.27 -1.14 2.46 -0.75 17.23 -41.21
ASK1 K -13.95 31.73 42.15 -100.00 -17.88 -11.96
b-catenin_K 0.00 -4.34 0.00 0.46 0.00 -5.86
COX-2 K 9.82 -27.99 -0.44 0.50 18.40 -44.35
EGFR_K 13.49 -57.03 -31.75 45.62 3.44 -70.77
ERK K -6.00 29.44 -2.67 -56.84 -6.40 -7.69
ET-1 K -60.72 371.98 2.45 36.92 -71.30 178.15
GSK3b_K -27.99 9.82 0.50 -0.44 -44.35 18.40
IL-1 K -78.43 316.83 8.13 26.75 -71.61 151.76
JNK_K 0.00 0.00 0.00 -72.95 0.00 0.00
MDM2_K 10.24 -14.47 -4.44 11.13 5.82 -29.37
MEK_K -6.00 30.85 -2.67 -46.15 -6.40 -5.97
MKK4_K 0.00 0.00 0.00 -72.95 0.00 0.00
MKK6_K -13.95 31.73 28.74 -100.00 -17.88 -11.96
NFAT_K 0.00 -4.34 0.00 0.46 0.00 -5.86
p38 K -13.95 30.43 28.74 -100.00 -17.88 -12.77
p53_K -14.49 62.81 11.12 -70.93 -29.38 -3.30
PDK1 K 24.94 -57.01 -29.78 45.62 14.24 -70.76
PGE2 K 9.82 0.81 -0.44 -0.40 18.40 -40.30
PI3K_K 24.93 -57.03 -29.76 45.62 14.34 -70.78
PTEN_K -10.43 24.93 13.28 -29.76 -11.58 14.34
RAF_K -6.00 30.85 -2.67 -46.15 -6.40 -5.97
RAS K -6.00 -1.00 -2.67 -23.78 -6.40 -15.48
RSK_K 0.00 0.00 -5.35 6.17 0.00 0.00
SCF_K -36.46 34.92 1.31 0.08 -34.08 29.66
SG K -6.00 -0.68 -2.67 -23.78 -6.40 -15.30
AC M 37.35 1.19 2.45 -0.31 17.25 -40.40
Akt M -100.00 157.75 7.78 9.77 -100.00 189.53
ASK1 M 77.58 -100.00 -1.04 7.78 120.00 -100.00
b-catenin_M -100.00 81.02 7.78 -2.07 -8.15 1.82
cAMP_M 51.07 -100.00 3.99 7.78 28.74 -100.00
c-kit M -36.46 34.92 1.31 0.08 -34.08 29.66
CREB M -100.00 6.97 7.78 0.18 -86.62 1.09
EP4 M 9.82 1.19 -0.44 -0.31 18.40 -40.40
ERK M -100.00 118.89 7.78 -3.56 -58.53 0.54
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ETR_M -60.72 372.69 2.45 37.08 -71.30 178.48

GSK3b_M 81.02 -100.00 -2.07 7.78 1.82 -13.75
JNK_M 0.00 0.00 0.00 0.00 0.00 -100.00
MC1R_M 37.35 0.81 2.45 -0.40 17.25 -40.30
MDM2_M 0.00 0.00 0.00 0.00 -22.55 15.48
MEK_M -100.00 9.19 7.78 0.52 -58.53 5.21
MITFmRNA_M  -100.00 95.71 7.78 -1.02 -23.75 1.58
MITFprotein_M  -100.00  402.49 7.78 45.62 -23.75 -100.00
MKK4_M 0.00 0.00 0.00 0.00 0.00 -100.00
MKK6_M 77.62 -100.00 -1.10 7.78 91.15 -100.00
MSK_M -10.72 6.97 0.23 0.18 -7.26 1.09
p38_M 77.70 -100.00 -1.29 7.78 91.35 -100.00
pS3_M 0.00 0.00 0.00 0.00 15.48 -100.00
PDE_M -35.54 51.07 2.45 3.99 -27.01 28.74
PDK1_M -100.00  157.75 7.78 9.77 -100.00 189.53
PI3K_M -100.00 157.19 7.78 9.84 -100.00 189.53
PKA_ M -42.82 51.38 2.83 4.00 -34.06 31.92
PKC_M -60.73 372.69 2.45 37.08 -71.30 178.48
RAF_M -100.00 9.11 7.78 0.54 -58.53 5.30
RAS_M -52.83 372.69 1.77 37.08 -49.26 178.48
RSK_M 0.00 0.00 0.00 0.00 -15.61 17.09
SG_M -36.46 372.69 131 37.08 -34.08 178.48

Node control analysis for the identification of appropriate strategies to reduce UVB-induced skin pigmentation.
Each internal regulatory node was pinned to either ‘0’ or ‘1’ before Boolean model simulations were performed
under UVB stimulation. The perturbation effect of the node control of each internal regulatory node was measured
as described in the Materials and Methods. '-' and '+' denote inhibition and constitutive activation, respectively.

In the model, activation of MITFprotein_M requires activation of both ERK_M and MITFmRNA_M, and
activation of MITFMRNA_M requires activation of both CREB_M and b-catenin_M. Therefore, in the model
simulation, inhibition of either ERK_M or MITFMRNA_M results in inactivation of MITFprotein_M, which
leads to 100% Melanin reduction. Similarly, inhibition of either CREB_M or b-catenin_M results in inactivation
of MITFmRNA_M, which causes inactivation of MITFprotein_M and consequently 100% Melanin reduction. In
conclusion, activation of Melanin node requires activation of ERK_M, CREB_M, beta-catenin_M,
MITFmRNA_M, and MITFprotein_M nodes, and therefore inhibition of any of these nodes results in 100%

Melanin reduction in the model simulation.
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Supplementary Table S4. In silico analysis of changes in UVB-induced melanin synthesis with respect to the

inhibition of beta-catenin, Ras, PKA, or a combination of Ras and PKA.

Node #1 perturbation Node #2 perturbation A Melanin (%)

beta-catenin inhibition - -100.00
Ras inhibition - -52.83
PKA inhibition - -42.82
Ras inhibition PKA inhibition -24.05

Inhibition of beta-catenin, Ras, or PKA can reduce the activity of node ‘melanin’ in response to UVB irradiation.
Among these three intervention strategies, the most effective strategy was beta-catenin inhibition. The
simultaneous inhibition of Ras and PKA was less effective in suppressing the melanin synthesis compared to the

individual inhibition of any of these nodes. See Fig. S4 for the biochemical validation of the simulation results.
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