
Supplementary Material of

“An alignment-free method to find and

visualise rearrangements between pairs of

DNA sequences”

D. Pratas, R. M. Silva, A. J. Pinho & P. J. S. G. Ferreira

IEETA/DETI, University of Aveiro

1 Additional examples

Figure 1: Smash computation of the M. gallopavo (top map) and G. gallus (bottom
map) chromosome 1. Smash has been computed using a threshold T = 1.95, a context
size of k = 20 and discarding blocks smaller than 1 Mb.

Figure 2: Smash result when the reference and the target are swapped. “SF” stands for
S. flexneri and “EC” for the E. coli bacterial genomes. Smash was ran using T = 1.8,
k = 20 and discarding blocks smaller than 20 kb.

Smash has the advantage of being fully capable of dealing with data coming directly
from high throughput sequencing [1], a characteristic usually not found in methods based
on alignments. As an example, Mauve [2], that is known to be one of the most flexible
methods, was unable to create a valid map for permutations of blocks as large as 1Mb
and even unable to provide any output at all (due to several crashes).

In addition to this, the running times are essentially proportional to the number of
matches. Thus, when working with Smash it is irrelevant if the reference sequence is

1

Figure 3: Smash result when the reference and the target are swapped. “HS” denotes
the H. sapiens whereas “PT” indicates the P. troglodytes eukaryotic genomes. Smash
was ran using T = 1.3, k = 20 and discarding blocks smaller than 1 Mb.

Figure 4: Comparison between Smash, Mauve and the VISTA methods on a synthetic
sequence (4,000 bases) with a ground truth. Smash was ran with T = 1.5, k = 10 and
discarding blocks smaller than 5 bases. VISTA was computed online, for both synteny
and alignments.

shuffled (as in a NGS output). In the case of alignment methods this can be a problem
(regarding running time and peak memory), even when running in computer clusters.

We have included two synthetic sequences of 4 kb each and made a comparative study

2

Figure 5: Comparison between Smash, Mauve and the VISTA methods on a more com-
plex synthetic sequence (4,000 bases). Smash ran with T = 1.5, k = 10 and discarding
blocks smaller than 5 bases. VISTA was computed online (syntheny) and the maps were
adapted (colors instead of pointer lines) for better display. First sub-image depicts only
the VISTA alignments.

Figure 6: Comparison between Smash and Mauve methods on S. flexneri and E. coli

bacterial genomes. Smash was ran using T = 1.8, k = 20 and discarding blocks smaller
than 20 kb.

with respect to other techniques: Mauve [2], and VISTA [3]. The synthetic sequences
of Supplementary Figs. 4 and 5 were simulated using [4] and randomly permuted using
different block sizes and inversions. The first one (Supplementary Fig. 4) contains a
small number of block permutations and inversions to allow an easy comparison with
the provided ground truth. The second one contains overlaping permutations and,
therefore, is more complex.

Supplementary Fig. 6 addresses a large-scale comparative study between Shigella

flexneri (NC 017328) and Escherichia coli (NC 017638), using Smash and Mauve.

Regarding the eukaryotic example, we have used chromosome 3 of human and orangutan,
depicted in Supplementary Fig. 7. Smash spent 871 seconds (for the inside Smash map)
and 1291 seconds (for the outside Smash map) using a maximummemory peak of 2.4 GB,

3

Figure 7: Comparison between Smash and Mauve methods on chromosome 3 of H.

sapiens and P. abelii. Smash was ran using T = 1.5 (inside Smash map) and T = 1.6
(outside Smash map), k = 20 and discarding blocks smaller than 1 Mb.

while Mauve spent 2633 seconds and used 6.1 GB of memory. The Mauve version used
is already the improved (latest) version.

All the experimental results have been computed on a common laptop (running Linux
Ubuntu 12.04 LTS with the following hardware characteristics: 4 Intel Core i7-3520M
CPU at 2.90GHz, 8 GB of RAM and a SSD of 243.6 GB). Nevertheless, the RAM
memory usage never surpassed 3.1 GB, even for the larger chromosomes.

For the human/chimp maps, using k = 20 (the default value) and T = 1.3, Smash
needed 212 minutes. We recall that by using properly estimated parameters the elapsed
time might substantially decrease.

1.1 Translocation detection example

In Supplementary Figs. 8 and 9 we show how that Smash detects a well known translo-
cation between human and gorilla chromosomes 5 and 17 [7]. Scripts that allow repro-
ducing these results are included in the package containing the source code of Smash.

Specifically, in Supplementary Fig. 8 we present the detection results provided by
Smash both for the case where the whole concatenated genome of the gorilla is used as
reference (top) as well as when used as target (bottom). In the first case (top map), the
≈ 3 GB of reference required ≈ 22 GB of memory to run. We can clearly identify the
region with homology to the human chromosome splited in two major blocks, placed
in the regions corresponding to the positions of chromosomes 5 and 17 of gorilla (the
precise locations can be obtained from the files produced by Smash). The bottom map
shows similar results, but at the cost of considerable less resources (just 2 GB of memory
and 115 minutes of computing time), because in this case the shortest sequence played
the role of reference sequence.

Supplementary Fig. 9 provides more detail regarding this translocation, because in
this case only chromosomes 5 and 17 of both species were concatenated and hence
considered.

4

Figure 8: Detection of a translocation between the whole genome of gorilla, GG (all
chromosomes concatenated), and human chromosome 5, HS C5. Smash was ran using
the default parameters, twice. In the first case, GG was used as the reference and HS
C5 as the target (it required ≈ 22 GB of memory and ≈ 224 minutes), while in the
second case HS C5 was used as reference and GG as the target (requiring ≈ 2 GB of
memory and ≈ 115 minutes to run).

Figure 9: Detection of a translocation between gorilla and human chromosomes 5 and 17.
The sequences have been concatenated (chromosome 5 and 17) in each species. In the
middle of each concatenation we introduced one million of N symbols to facilitate the
location of the concatenation breakpoint. Smash was ran using the default parameters.

2 Additional notes

Smash can be executed in different ways. Suppose that we are interested in comparing
the sequences a1, a2, a3 with b1, b2, b3, b4. Obviously, the tool can be run on each of the
(ai, bj) pairs. Alternatively, we could form a new sequence a by concatenating all the
ai, another sequence b by concatenating all the bi, and then run the tool (just once) on
the (longer) a and b sequences. There are many other possibilities. For example, we
could apply the tool to each of the pairs (ai, b). Or, swapping a and b, one could focus
instead on the pairs (bi, a).

Regardless of how one decides to organise the analysis, the tool will detect the
relations between the given sequences and will generate appropriate log files that identify
with precision the type of relation, the file offsets etc.

The colors used by the tool are visual clues. They are helpful to visualise and
understand the nature of the rearrangements, but for very precise results (offsets etc.)
one would have to refer to the log files. The results, modulo border effects at the edges
of the sequences, will be essentially the same — regardless of the approach used.

Working with concatenated sequences such as (a, b) can be helpful for exploratory
analysis, when the nature of the relations is totally unknown. The results of this “large
scale analysis” may expose interesting relations between parts of a and b, which can
then be analysed in detail by checking specific pairs (ai, bj).

In our experience, after acquiring some experience with the tool, the user will have
no problem in organising the analysis. The best approach depends on the main goal:

5

whether to check for precise relations within two relatively small sequences, between
one or more small sequences and a large (possibly concatenated) one, or between two
concatenated sequences.

3 The Smash tool

3.1 Installation

We provide a binary for each 64 bits operating systems (Linux, OSX, Windows). How-
ever, for other purposes, such as source code compilation, use the following instal-
lation instructions. Cmake is needed for installation (http://www.cmake.org/), al-
though for Linux there is a possibility to skip its usage. You can download it di-
rectly from http://www.cmake.org/cmake/resources/software.html or use an appropri-
ate packet manager. In the following instructions we show the procedure to install,
compile and create the information map between human and orangutan chromosome
20:

3.1.1 Step 1

Download, install Smash and resolve conflicts.

Linux:

sudo apt−get i n s t a l l cmake
wget https : // github . com/ pratas /smash/ arch ive /master . z ip
unzip master . z ip
cd smash−master
cmake .
make

Alternatively, you can install (without cmake and only for Linux) using

wget https : // github . com/ pratas /smash/ arch ive /master . z ip
unzip master . z ip
cd smash−master
mv Make f i l e . n ix Make f i l e
make

OS X:

I n s t a l l brew :
ruby −e ”$ (cu r l −fsSL
https : // raw . github . com/Homebrew/homebrew/go/ i n s t a l l)?”
only i f you do not have i t . After type :
brew i n s t a l l cmake
brew i n s t a l l wget
brew i n s t a l l gcc48
wget https : // github . com/ pratas /smash/ arch ive /master . z ip
unzip master . z ip
cd smash−master
cmake .
make

With some versions you might need to create a link to cc or gcc (after the brew install
gcc48 command), namely

6

sudo mv /usr /bin / gcc / usr / bin /gcc−old # gcc backup
sudo mv /usr /bin / cc / usr /bin /cc−old # cc backup
sudo ln −s / usr / bin /gcc −4.8 / usr / bin / gcc
sudo ln −s / usr / bin /gcc −4.8 / usr / bin / cc

In some versions, the gcc48 is installed in /usr/local/bin, therefore you might need to
substitute the last two commands by the following two:

sudo ln −s / usr / l o c a l / bin /gcc −4.8 / usr / bin / gcc
sudo ln −s / usr / l o c a l / bin /gcc −4.8 / usr / bin / cc

Windows:
In windows use cygwin (https://www.cygwin.com/) and make sure that it is included
in the installation: cmake, make, zcat, unzip, wget, tr, grep (and any dependencies). If
you install the complete cygwin packet then all these will be installed. After, all steps
will be the same as in Linux.

3.1.2 Step 2

Download the sequences [the links might change over time].

Linux and OS X:

wget f tp : // f tp . ncbi . nlm . nih . gov/genomes/H sapiens /
Assembled chromosomes/ seq /hs ref GRCh38 chr20 . f a . gz
wget f tp : // f tp . ncbi . nlm . nih . gov/genomes/ Pongo abe l i i /
Assembled chromosomes/ seq / pab ref P pygmaeus 2 . 0 . 2 chr20 . f a . gz

3.1.3 Step 3

Unzip, exclude headers and filter content.

Linux:

z cat hs ref GRCh38 chr20 . f a . gz | grep −v ”>” > HS20
zcat pab ref P pygmaeus 2 . 0 . 2 chr20 . f a . gz | grep −v ”>” > PA20

OS X:

gzcat hs ref GRCh38 chr20 . f a . gz | grep −v ”>” > HS20
gzcat pab ref P pygmaeus 2 . 0 . 2 chr20 . f a . gz | grep −v ”>” > PA20

3.1.4 Step 4

Run Smash.

Linux, OS X and Windows:

. / smash −v −c 20 −t 1 . 5 HS20 PA20

This step outputs a SVG image using the respective map under the name: HS20PA20.svg
(for custom name use option: -o ANYNAME.svg).

7

3.2 Parameters

The Smash program has many options in the interface because there is a wide variety
of parameters that can be defined by the user. However, for the detection of the ar-
rangements only two are critical, namely context and threshold. Additional information
about these parameters can be found in the paper.

To see the possible options type

. / smash

or

. / smash −h

These will print the following options:

Usage : smash <OPTIONS> . . . [FILE] [FILE]

−h g ive t h i s help ,
−V d i sp l ay ve r s i on number ,
−v verbose mode ,
−f f o r c e (be sure !) ,

−c <context> context order (DEF: 20) ,
−t <thresho ld> th r e sho ld [0 . 0 , 2 . 0] (DEF: 1 . 5) ,
−m <mSize> minimum block s i z e (DEF: 1000000) ,

− i do not show inve r s i on s ,
−n do not show regu l a r s ,
−r <r a t i o> image s i z e r a t i o (DEF: MaxSeq/150) ,
−a <alpha> alpha es t imator (DEF: 1000) ,
−s <seed> seed f o r random ’N’ ,
−w <wSize> window s i z e ,
−wt <wType> window type [0 | 1 | 2 | 3] (DEF: 0) ,
−d <dSize> sub−sample (DEF: 10000) ,
−nd do not d e l e t e temporary f i l e s ,
−wi <width> sequence width (DEF: 25) ,

−p <posFi l e> output p o s i t i o n s f i l e ,
−o <outFi l e> output svg p l o t f i l e ,

[r e f F i l e] r e f e r e n c e f i l e ,
[t a r F i l e] t a r g e t f i l e .

By default, Smash has many parameters assigned in order to avoid the estimation, en-
abling only to set both reference and target files. However, these defaults are only
partially estimated to detect rearrangements in primates. Therefore, for other purposes
you might need to adjust context and threshold parameters. Moreover, for custom im-
age maps you might also need to set other parameters, such as width. Only [refFile]
and [TarFile] are mandatory.

8

3.3 Options

Parameters Meaning

-h It will print the parameters menu (help menu)
-V It will print the Smash version number, license type and authors.
-v It will print progress information such as positions of the patterns,

times, etc.
-f It will force to write over files already created.
-c <context> Size of the FCM (Markov) context order (interval [1;28]). Contexts

above 14 will be handled with a hash-table, where the implementa-
tion is approximately linear in memory relatively to the size of the
sequence. When the sequence is very fragmented, or the species are
somehow distant, or the sequencing/assembly process has low quality
this value show not be very high.

-t <threshold> It will be used to segment the high from the low regions of information
content (interval [0;2]). For distant species this value might be slightly
below 2 (such as 1.9).

-m <mSize> Minimum size of the block considered as a valid patters after each seg-
mentation process. Values below 1 Million for primate chromosomes
might emerge excessive valid patterns. However for other purposes,
such as gene scale analysis, this value should be set almost to 1.

-i it will not show inversions.
-n it will not show regular patterns (normal).
-r <ratio> Sets the ratio size of the image. Currently it is calculated to MaxSeq-

Sise/150. For the same scale attribution you should set a value, such
as 1000000, which is an estimated value of the medium of the primate
chromosomes sizes relatively to the medium of the screen resolution.
For smaller sequences, perhaps 50000 should be a good value.

-a <alpha> Probabilities estimator. This value relates a linear interpolation be-
tween the maximum likelihood estimator and the uniform distribu-
tion. This also shows that when the total number of events is large,
the estimator behaves as a maximum likelihood estimator. Default
value is set to 1000.

-s <seed> This is a parameter to the pseudo-random generation function. Dif-
ferent seed values ensure different generated values.

-w <wSize> The window size among with the sub-sampling is calculated automat-
ically, nevertheless this value might be adjusted for special needs.

-wt <wType> Window filtering type. Types: 0, 1, 2 or 3. Type 0 stands for Ham-
ming, 1 for Hann, 2 for Blackman, while 3 represents a rectangular
window. For a common example see page 4 of [5] or through several
pages in [6].

-d <dSize> Sub-sampling value. This value among with the window size is cal-
culated automatically. Nevertheless, for special purposes this value
might be adjusted.

-nd Smash will conserve (no delete) all temporary files.
-wi <width> Thickness of the image for each sequence. Default value is set to 25.
-p <posFile> The positions from all the rearrangements detected on the run (see

subsection “Some considerations” for more information).
-o <outFile> The output SVG image filename. The default uses the concatenation

of reference with the target filenames (adding the ”svg” extension).
Beware: if the files are not in the working directory this might have
problems due to several types of characters (such as ’/’).

[refFile] The reference filename.
[tarFile] The target filename.

9

3.4 Some considerations

The coordinates of the different blocks, as well as the direction and the respective block
code, are registered in the “.pos” file, separated by tab symbols, with the following order
and meaning:

• type: reference or target;

• block code (to link reference with target);

• initial position of the block;

• final position of the block;

• direction of the block (inverted or regular);

For example,

TARGET 1 1 39612 0− r e gu l a r
REFERENCE 1 1 39612 0− r e gu l a r
TARGET 2 2287593 2366817 0− r e gu l a r
REFERENCE 2 2267787 2307399 1− i nve r t ed

indicates two similar regions. The first (code:1), of regular type, has similar information
in the first 39612 bases of both sequences. The second one (code:2), inverted, shares in-
formation, respectively, from position 2287593 to 2366817 and from 2267787 to 2307399,
between both sequences.

Nevertheless, to read only the target positions, there is allways the possibility of
using the output of the program with the “-v” mode (verbose). In this case, it outputs
several types of information including, for example, the following:

Running IR pattern 3 with s i z e 13881450
Extract ing pattern [20808750 ;34690200]

This example shows that there is an inverted region with size 13881450 (with starting
position 20808750 and final position 34690200) that is valid, which means that its size
is larger or equal than the minimum region (-m flag) that we want to consider.

3.5 License

The license is GPL v2.
For more information: http://www.gnu.org/licenses/gpl-2.0.html.

References

[1] Kircher, M. Analysis of high-throughput ancient DNA sequencing data. Methods

Mol. Biol. 840, 197–228 (2012).

[2] Darling, A. E., Mau, B. & Perna, N. T. progressivemauve: multiple genome align-
ment with gene gain, loss and rearrangement. PLOS ONE 5, e11147 (2010).

[3] Frazer, K. A., Pachter, L., Poliakov, A., Rubin, E. M. & Dubchak, I. VISTA:
computational tools for comparative genomics. Nucleic Acids Res. 32, W273–W279
(2004).

10

[4] Pratas, D., Pinho, A. J. & Rodrigues, J. M. XS: a FASTQ read simulator. BMC

Res. Notes 7, 40 (2014).

[5] Pinho, A. J., Pratas, D. & Ferreira, P. J. S. G. Bacteria DNA sequence compression
using a mixture of finite-context models. In Proc. of the SSP (Nice, France, 2011).

[6] Pinho, A. J., Garcia, S. P., Pratas, D. & Ferreira, P. J. S. G. DNA sequences at a
glance. PLOS ONE 8, e79922 (2013).

[7] Samonte, R. V. & Eichler, E. E. Segmental duplications and the evolution of the
primate genome. Nat. Rev. Genet. 3, 65–72 (2002).

11

