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Overview

In this document we present a detailed discussion of the datasets used and their analysis. In

particular, we describe the different statistical tests and controls that we applied in the respective

Sections. We also provide additional examples and extensions of the network-based methodology

introduced in the main text. The document is organized as follows: In Section 1 we describe in

detail all biological data we used and their analysis. In particular, we introduce the interactome

sources in Section 1.1 and the gene-disease associations in Section 1.2. In Section 2 we discuss in

more detail than in the main text the network-based measures of localization and separation. In

Section 3 we compare the network-based overlap measure with gene-based measures. An analysis

of the impact of biases and false positives on our main results is presented in Sections 4 and 5. In

Section 6 we derive our main results from percolation theory. We briefly discuss the relationship

between network communities and disease modules in Section 7 and introduce the layout algorithm

we developed to visualize the disease-space in Section 8. Section 9 presents a discussion of several

interesting overlapping disease pairs, including pairs without previously recognized shared disease

genes. In Section 10 we describe how our network-based methodology can be used to enhance the

interpretation of GWAS results. Section 11 summarizes the Supplementary data that we share with

the community with this publication.

1 Data Compilation and Analysis

1.1 Interaction network data

1.1.1 The Human Interactome

In building the interactome, we rely only physical protein interactions with experimental support,

hence we do not include interactions extracted from gene expression data or evolutionary consid-

erations. In order to obtain an interactome as complete as currently feasible, we combine several

databases with various kinds of physical interactions:

(i) Regulatory interactions: We use the TRANSFAC database [51] that lists interactions derived

from the presence of a transcription factor binding site in the promoter region of a certain

gene. The resulting network consists of 271 transcription factors regulating 564 genes via

1,335 interactions.

(ii) Binary interactions: We combine several yeast-two-hybrid high-throughput datasets [12, 14,
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52–55] with binary interactions from IntAct [56] and MINT databases [57]. The sum of these

data sources yields 28,653 interactions between 8,120 proteins. Note that IntAct and MINT

provide interactions derived from both literature curation and direct submissions.

(iii) Literature curated interactions: These interactions, typically obtained by low throughput

experiments, are manually curated from the literature. We use IntAct [56], MINT [57],

BioGRID [58] and HPRD [59], resulting in 88,349 interactions between 11,798 proteins.

(iv) Metabolic enzyme-coupled interactions: Two enzymes are assumed to be coupled if they share

adjacent reactions in the KEGG and BIGG databases. In total, we use 5,325 such metabolic

links between 921 enzymes from [60].

(v) Protein complexes: Protein complexes are single molecular units that integrate multiple gene

products. The CORUM database [61] is a collection of mammalian complexes derived from

a variety of experimental tools, from co-immunoprecipitation to co-sedimentation and ion

exchange chromatography. In total, CORUM yields 2,837 complexes with 2,069 proteins

connected by 31,276 links.

(vi) Kinase network (kinase-substrate pairs): Protein kinases are important regulators in different

biological processes, such as signal transduction. PhosphositePlus [62] provides a network

of peptides that can be bound by kinases, yielding in total 6,066 interactions between 1,843

proteins.

(vii) Signaling interactions: The dataset from [63] provides 32,706 interactions between 6,339 pro-

teins that integrate several sources, both high-throughput and literature curation, into a

directed network in which cellular signals are transmitted by proteins-protein interactions.

The union of all interactions obtained from (i)-(vii) yields a network of 13,460 proteins that are

interconnected by 141,296 physical interactions. Note that we treat the interactome as an undirected

network (see Section 2.3 for a discussion of the impact of directionality). The interactome is

approximately scale-free (Figure S1a) and shows other typical characteristics as observed previously

in many other biological networks [64, 65], such as high clustering or short pathlengths (Figure S1c)

1.1.2 Unbiased high-throughput Interactome

Since our interactome includes data from literature curation, it is inherently biased towards much

studied disease-associated proteins and their interactions. We therefore complement our analysis
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Figure S1: Basic properties of the two interactomes used in this study. a,b, Degree distribu-

tion P (k) of the full interactome and the high-throughput yeast two-hybrid (y2h) network. c, Basic

network properties.

using only interactions from well controlled and completely unbiased high-throughput yeast two-

hybrid (y2h) datasets [12, 14, 53–55]. As detailed below (Sec. 6), these data are particularly suited

to systematically address the effects of incompleteness, since all possible pairwise combinations of

a given set of proteins have been tested in an unbiased fashion on the same platform. It contains

a total of 4,612 proteins and 15,937 interactions and, taking its smaller size into account, shows

expected characteristics such as degree distribution, clustering and pathlengths (Figure S1a,c).

1.2 Disease-gene associations

1.2.1 Data sources

We integrate two sources of disease-gene annotation:
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OMIM: The OMIM database (Online Mendelian Inheritance in Man; http://www.ncbi.nlm.

nih.gov/omim) [48] is a comprehensive collection covering all known diseases with a genetic com-

ponent. The OMIM associations we use also include associations from UniProtKB/Swiss-Prot and

have been compiled by [30].

GWAS: Results from GWAS (Genome-Wide Association Studies), provide unbiased, i.e., not hy-

pothesis driven disease associations. However, the associations are often difficult to interpret, since

many identified polymorphisms cannot be immediately linked to changes of a gene. The disease-

gene associations from GWAS are obtained from the PheGenI database (Phenotype-Genotype Inte-

grator; http://www.ncbi.nlm.nih.gov/gap/PheGenI) [31] that integrates various NCBI genomic

databases. We use a genome-wide significance cutoff of p-value ≤ 5× 10−8.

1.2.2 Combining GWAS and OMIM

GWAS and OMIM yield lists of genes and associated diseases. However, gene and disease anno-

tations and nomenclature are not standardized and furthermore the levels of disease specification

are very heterogeneous. Some are very generic, such as “gene A is associated with cancer”, while

others refer to more specific disorders, e.g. prostatic neoplasms. Typically only the most specific

associations are explicitly reported in the respective database. In order to combine OMIM and

GWAS we use the MeSH (Medical Subject Headings; http://www.nlm.nih.gov/mesh/) vocabu-

lary (Figure S2). Using the hierarchical structure of the MeSH classification, we can find all implicit

associations by expanding from a given specific terms upward to the most general ones. For exam-

ple, OMIM reports an association between the gene MYEOV and prostatic neoplasms. Using the

disease category of the MeSH tree (i.e., the “C”-branch), we infer the implicit associations to the

entire set of more general disease categories, such as male urogenital diseases and neoplasms (Fig-

ure S2a). In this way we can merge OMIM and GWAS, regardless of the level of disease specificity

at which a particular association has been reported (Figure S2b). In total, we obtain 1,489 different

diseases and 3,176 associated genes. Filtering out diseases with less than 20 associated genes, we

are left with 299 diseases and 3,173 genes. Our interactome has connectivity information for 2,436

of the corresponding proteins, the remaining are disregarded.
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Figure S2: Expansion of disease-gene associations using the MeSH hierarchy. a, Example

how the reported association of the gene MYEOV with prostatic neoplasms is expanded to all more

general diseases, yielding a final set of eight associated disease. b, Illustration how gene-disease

associations from OMIM and GWAS are combined along the MeSH hierarchy. Our final corpus

consists of 299 diseases for which we find at least 20 associated genes.
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1.3 Gene Ontology (GO)

1.3.1 Data source

GO annotations [49] for all genes are extracted from [http://www.geneontology.org/, downloaded

Nov. 2011]. We only use high confidence annotations associated with the evidence codes EXP,

IDA, IMP, IGI, IEP, ISS, ISA, ISM or ISO. In particular, we exclude annotations inferred from

physical interactions (evidence code IPI) in order to avoid circularity in the evaluation of the GO-

based similarity of proteins within the interactome. Following the curation process from [66], we

further remove all the associations that have a non-empty “qualifier” column. The original GO files

only contain the most specific annotations explicitly. In a last step, we therefore add all implicit

more general annotations by up-propagating the given annotations along the full GO tree. Note

that the strict filtering procedure reduces the total number of GO terms considerably, in the end

we use only ∼ 50% of all available terms for biological processes and molecular function and 25%

for cellular component.

1.3.2 Similarity of disease genes

We quantify the functional similarity of genes by the specificity of their shared GO annotations,

assuming that genes sharing very specific functions are more similar to each other than those who

only share generic annotations. The specificity of a GO term i is measured by the total number of

genes ni annotated to it in the entire GO corpus. The similarity SGO(a, b) of two proteins a and b

is then given by the most specific GO term they share:

SGO(a, b) ≡ 2

min(ni)
. (S1)

The value of SGO(a, b) ranges from SGO(a, b) ≡ 0 for no shared GO terms, to SGO(a, b) = 1 if a

and b are the only two genes annotated to a specific GO term. The overal functional similarity of a

set of genes associated with a particular disease is measured by the average SGO(a, b) over all npairs

pairs of disease-associated proteins:

〈SGO〉 =
1

npairs

∑

{a,b}
SGO(a, b). (S2)

To test whether the functional annotations of disease proteins are more similar than expected

for randomly chosen proteins, we compare the distribution P (SGO(a, b)) measured for disease-

associated protein pairs with the appropriate null distribution Prand(SGO) of all protein pairs within

the network. The statistical significance of an observed difference in the respective means 〈SGO〉
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and 〈SrandGO 〉 is given by the p-value from a Mann-Whitney U test. The whiskers in Figure 2c-h of

the main text indicate the 5th, 25th, 50th, 75th and 95th percentiles of the data in the respective

bins. In addition to the statistical significance we also determine the effect size using Glass’s ∆

∆ ≡ 〈SGO〉 − 〈SrandGO 〉
σ
(
SrandGO

) , (S3)

where 〈SrandGO 〉 and σ
(
SrandGO

)
denote the mean and the standard deviation of the random distribution

Prand(SGO). Glass’s ∆ compares the observed and the random distribution, so that for example

∆ = 1 indicates that the observed mean is one standard deviation larger than the mean of random

expectation. Since two distributions are being compared to each other, already relatively moderate

∆ values indicate highly significant differences. Figure S3 gives the corresponding ∆ values for the

significances reported in Figure 2c-h of the main text. Again, we find that highly localized diseases

(compare with Section 2 for the topological localization measure) exhibit strongly increased func-

tional similarity.

1.3.3 Similarity of disease pairs

The overall functional similarity of the genes associated with two diseases A and B is determined

as in Eq. (S2) by averaging over all pairs of proteins a and b with a ∈ A and b ∈ B under the

condition a 6= b. This condition ensures that for diseases with common genes we do not take pairs

into account where a gene would be compared to itself. We have also explicitly confirmed that

the inclusion of such pairs would not lead to any noticeable differences for our purposes, as their

contribution to the overall similarity is typically very limited. For example, for two diseases with

100 associated genes each, of which 10 are shared, Eq. (S2) involves a total of 100× 100 = 10, 000

gene pairs, of which only 10 are comparisons of a gene to itself.

The whiskers in Figure 3d-f of the main text indicate the 5th, 25th, 50th, 75th and 95th percentiles

of the data in the respective bins. The global random expectation shown by the gray line gives

the mean value of the full distribution of all pairwise gene similarities, corresponding to the null

hypothesis of completely randomly assigned disease-gene associations.
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Figure S3: Topological localization and biological similarity of disease genes. The degree of

the network-based localization of a disease compared to randomly distributed proteins is measured

by the z-score of its observable module size Si and the effect size ∆ of the mean shortest distance

〈ds〉. Random expectation is given by z-score = ∆ = 0 (indicated by the dotted lines). The biological

similarity of the disease proteins is determined from their gene ontology annotations: For each disease,

we compute how similar its associated genes are in terms of their biological processes (a,d), molecular

function (b,e) and cellular component (c,f) and compare the result to random expectation using the

effect size ∆. Most diseases show functionally more similar genes than expected (∆ > 0), yet the

effect is much more pronounced for diseases that are topologically localized. We find that the more

localized a disease is topologically, i.e., the larger the z-score of Si or the smaller ∆ for 〈ds〉, the more

similar are the associated genes.
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1.4 Gene co-expression analysis

1.4.1 Data source

We use tissue specific gene expression data from [36]. Of the 79 tissues in the dataset, we exclude

five cancerous tissues1 and four fetal tissues2, leaving only data from healthy tissues.

1.4.2 Similarity of disease genes

In order to quantify the extent to which genes associated with the same disease are co-expressed,

we calculate the Spearman correlation coefficient ρ(a, b) and the corresponding p-value for each pair

of genes a and b across all 70 tissues and average over all npair pairs:

〈ρ〉 ≡ 1

npair

∑

{a,b}
|ρ(a, b)| . (S4)

For genes with multiple transcripts we use the transcript with the highest expression level. The

Spearman correlation coefficient is often preferred over other measures like Pearson’s r or Kendall’s

τ as it is more robust to outliers. For our purposes, however, we find that all three measures give

comparable results.

1.4.3 Similarity of disease pairs

The expression similarity of the genes associated with two diseases A and B is computed by aver-

aging |ρ(a, b)| over all pairs of proteins a and b with a ∈ A and b ∈ B. As for the GO similarity of

disease pairs (Section 1.3.3) we only use a 6= b gene pairs to ensure that for diseases with common

genes we do not compare a gene to itself. The whiskers in Figure 3g of the main text indicate the

5th, 25th, 50th, 75th and 95th percentiles of the data in the respective bins. The global random

expectation shown by the gray line gives the mean co-expression of all protein pairs in the network.

1.5 Symptom similarity

We use data from [38], where symptom-disease associations were extracted from large-scale medical

bibliographic records in PubMed and the related MeSH metadata. Therein, each disease j is rep-

resented by a vector ~dj ≡ (w1,j , w2,j , . . . , wn,j), in which wi,j quantifies the PubMed co-occurrence

1Leukemia.chronicMyelogenousK.562, Leukemia.promyelocytic.HL.60, Leukemialymphoblastic.MOLT.4

Lymphoma.burkitt.s.Daudi & Lymphoma.burkitt.s.Raji
2FetalThyroid, Fetalbrain, Fetalliver, Fetallung
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of disease j with symptom i. The symptom similarity of two diseases A and B is measured by the

Cosine similarity cAB of their respective symptom vectors ~dA and ~dB

cAB ≡
∑n

i=1 wi,A wi,B√∑n
i=1 w

2
i,A

√∑n
i=1 w

2
i,B

, (S5)

such that cAB = 0 if A and B have no common symptoms and cAB = 1 for diseases with identical

symptoms. The whiskers in Figure 3h of the main text indicate the 5th, 25th, 50th, 75th and 95th

percentiles of the data in the respective bins. Random expectation is given by the mean of the

distribution of all disease pairs.

1.6 Comorbidity

We use a large Medicare patient medical history dataset [39, 60] to analyse the comorbidity of

disease pairs, i.e., the tendency of two diseases to co-occur in the same patients. The data contains

13,039,018 patients diagnosed with one or more diseases over a period of 4 years. The patients are

over 65 years old, mainly white and with a fraction of 58.3% of women. Comorbidity is quantified

by the relative risk RR:

RR =
nABntot
nAnB

, where (S6)

ntot = total number of patients in the data

nA,nB = number of patients diagnosed with disease A and B, respectively

nAB = number of patients diagnosed with both diseases A and B.

The whiskers in Figure 3i of the main text indicate the 5th, 25th, 50th, 75th and 95th percentiles

of the data in the respective bins. A relative risk RR > 1 between two diseases indicates that

they are diagnosed more often in the same patients than expected by chance given their individual

prevalences. To evaluate the statistical significance of an obtained value of RR, we determine the

lower and upper bounds (bl and bu) of the 99% confidence interval as in [67]:

bl,u = RR× exp(±2.45σ) , with (S7)

σ =
1

nAB
+

1

nAnB
− 1

ntot
− 1

n2tot
.

The diagnoses in the database are given as ICD9 codes (International Statistical Classification of

Diseases and Related Health Problems), which we manually mapped to the corresponding MeSH

term. Similarly to the MeSH hierarchy discussed above in Section 1.2, we include for any given

ICD9 code also all patients diagnosed with any more specific IC9 code.
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1.7 Biological pathways

We use the Molecular Signatures Database (MSigDB) published by the Broad Institute, Version

3.1 [50]. MSigDB integrates several pathway databases, we use the ones from KEGG, Biocarta and

Reactome. The enrichment analysis between a given gene set and a pathway is done using Fisher’s

exact test. The reported p-values are adjusted for the number of tested pathways (Bonferroni

correction).

2 Network Localization

2.1 Measures of localization

We use two complementary measures to quantify the degree to which disease proteins tend to

agglomerate in localized interactome neighborhoods (Figure S4a):

Module Size S. The first measure is given by the size of the largest connected module S, i.e.,

the highest number of disease proteins that are directly connected to one another. In addition to

its intuitive interpretation, we can apply tools from statistical physics to understand many of its

properties analytically. It is, however, relatively sensitive to data incompleteness. In extreme cases,

a single missing link in the interactome or a single protein, whose disease association is not known,

may destroy the connected component and leave the proteins isolated. To further substantiate

our hypothesis of the existence of disease neighborhoods we therefore complement our analysis by

measuring the distribution of shortest distances ds between disease genes.

Shortest Distance ds: For each of the Nd disease proteins we determine the shortest distance ds

to the next closest protein associated with the same disease, resulting in a distribution P (ds) of

Nd data points. The average value 〈ds〉 can be interpreted as the diameter of a disease on the

interactome.

There are several possible variations and extensions of this distance measure. In particular, we

have explored using all pairwise distances instead of only the distance to the next closest protein.

We find that while the general results do not depend on the exact choice, ds is the most predictive

quantity, offering higher effect size with statistical significance. The reason for this is that ds more

appropriately handles cases where a disease module is split into several “islands”, for example due

to network incompleteness. Whereas ds correctly reflects the high degree of localization within the
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Figure S4: Network-based localization. a, Illustration of the network-based localization measures.

The disease proteins (red) form one connected cluster of six proteins, one cluster of two proteins and

one protein without connection to other disease proteins. The size of the observable module is therefore

given by S = 6. For three proteins, A,B and C, the respective shortest distance to the next closest

other disease protein is shown. b, Statistical significance of the observed module as measured by

the z − score and relative module size s = S/Nd for all diseases. Diseases outside the gray area show

statistically significant modules (in total 244 out of 299). c, Statistical significance (p-value) and effect

size (Glass’s ∆) of the localization as measured by the mean shortest distance for all disease. 263

out of 299 exhibit significantly shorter distances compared to random expectation. d, Distribution of

the number of diseases and their respective number of disease proteins for localized and not localized

diseases. e, Table with the 18 diseases that do not show significant localization according to either

module size or shortest distance distribution.
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individual islands, it is diluted when the distances of all pairs are averaged.

Statistical Analysis: To test whether disease proteins have a tendency to agglomerate in specific

interactome neighborhoods, we need to compare the measured values of S and 〈ds〉 with a suit-

able random control. The appropriate null model here is to randomize the disease associations

of the proteins and distribute them uniformly on the network. We then determine the resulting

largest component and shortest distances of these randomized protein sets. Repeating the procedure

100,000 times yields distributions P rand(S) and P rand(ds), from which we compute the statistical

significance of the real data. For the size of the connected component we use the z-score

z-score ≡ S − 〈Srand〉
σ (Srand)

, (S8)

where 〈Srand〉 and σ
(
Srand

)
denote the mean value and standard deviation of the random expecta-

tion P rand(S). Assuming normality of P rand(S), which is a good approximation for giant component

sizes [68], we can analytically calculate a corresponding p-value for each z-score, yielding a threshold

of z-score & 1.6 for modules to be larger than expected by chance with significance p-value ≤ 0.05.

For the shortest distances we compare P (ds) to the respective random distribution P rand(ds) us-

ing a Mann-Whitney-U test. We find that 244 of the 299 diseases have a statistically significant

module size, 263 have significantly shorter distances, and 226 fulfill both criteria (Figure S4b,c).

Figure S4d compares the number of disease genes of these 226 well localized diseases to the number

of diseases genes of the remaining not localized diseases. The average size of the well-localized

diseases is S ≈ 112, twice the size of the non-localized diseases S ≈ 62. This is in agreement with

the predictions from percolation theory that smaller modules require a higher coverage in order to

be observable. Figure S4e lists the diseases which do not show localization in either Si or ds. In

addition to the purely statistical argument based on network coverage, we observe that the not lo-

calized diseases fall roughly into two categories: (i) Diseases that have been extensively studied, like

coronary artery disease, coronary disease, myocardial infarction, and myocardial ischemia. All of

these disorders may also encompass a rather large 〈ds〉 given the many different disease mechanisms

at play in them. (ii) Relatively poorly studied diseases, like stomatognathic diseases or varicose

veins. An exception to the observation that not localized diseases have only few associated genes is

signs and symptoms. While formally being categorized as a disease within the MeSH classification

(MeSH tree number C23.888), it is an umbrella term, rather than a concrete disease, so we would

not expect it to be well localized within the interactome.

Complementing the analysis of randomly distributed disease proteins, we also explored, whether
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the network localization of disease proteins could be the result of a particular wiring structure

intrinsic to scale-free networks such as the interactome: Using the configuration model [69, 70]

we constructed 100,000 randomized versions of the interactome with fixed disease associations and

constant degrees of the proteins, but randomized interaction partners (degree preserving random-

ization [71]). Again, we find the modules of 232 out of 299 diseases to be statistically significant,

hence their localization cannot be attributed to structural network properties alone.

2.2 Network separation

We quantify the network-based separation sAB of two diseases A and B by comparing the mean

shortest distances 〈dAA〉 and 〈dBB〉 within the respective diseases, to the mean shortest distance

〈dAB〉 between their proteins:

sAB ≡ 〈dAB〉 −
〈dAA〉+ 〈dBB〉

2
. (S9)

Note that proteins associated with both diseases A and B contribute with dAB = 0, see Figure S5

for a detailed example. In general, sAB is bound by −dmax ≤ sAB ≤ dmax, where dmax = 13 denotes

the diameter of the network, i.e., the maximal distance of all node pairs. For disease pairs with no

common proteins the minimal value increases to −dmax+1. If we consider only diseases with at least

two associated proteins, the maximal value is given by dmax−1. Note that the separation parameter

sAB is not at intensive quantity, i.e., its magnitude depends on the size (number of proteins) of the

individual diseases. Very large values are therefore obtained for two small, well separated diseases.

Given the finite network space, diseases with a high number of associated genes, which are the

most explored diseases, cannot achieve too high sAB. The current network incompleteness leads to

further scattering for larger diseases and therefore reinforces this effect. Very small sAB values, on

the other hand, are obtained for large diseases with big gene overlap. This is mainly the case for

disease pairs where one disease is a variant of or precursor to the other, such as atherosclerosis and

coronary artery disease (sAB = −2.1), or pathobiologically related diseases with the same broad

classification, such as biliary tract diseases and hepatic cirrhosis (sAB = −1.3). We take this as

a proof of its self-consistency. The most interesting cases, with so far unknown relationships are

found mostly in the range of relatively small negative sAB. In Section 9 we discuss a few examples.

2.2.1 Randomization of disease-gene associations

We have seen above that the value of sAB depends to some extent on the number of proteins

associated with the diseases A and B. We therefore assess the statistical significance of each disease

pair individually, using two complementary random models:
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Figure S5: Network-based separation. Illustration of the network-based separation measure for

two diseases A (blue) and B (red) with one shared protein (“c”). The tables on the right give the

values of the mean shortest distances within the diseases, 〈dAA〉 and 〈dBB〉, as well as the distances

for all protein pairs between them, 〈dAB〉.

Full randomization model. For two diseases A and B we draw the same number of proteins as in

the respective sets of associated proteins completely at random and compute their corresponding

separation srandAB on the network.

MeSH preserving randomization model. As detailed in section 1.2, our method to construct

disease-gene association allows us to identify disease pairs with implicit correlations in their re-

spective gene sets via the MeSH hierarchy. For example, as explained above, prostate cancer is by

definition a complete subset of neoplasms. Even though the vast majority (98%) of the disease pairs

do not involve such a relation, it is instructive to consider them separately using a randomization

model that fully preserves all MeSH relationships between the diseases: Here, we only randomize

the original disease-associations from OMIM and GWAS at the lowest level of the MeSH hierarchy

and then perform the expansion along the MeSH tree in a second step. This procedure ensures
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that the correlation structure imposed by the MeSH relation between certain diseases is kept intact.

For each disease pair, we performed 1,000 randomizations according to these two models and ob-

tained P (srandAB ) as shown in Figure S6a,b for the same two disease pairs as in Figure 3a-c in the

main text. Figure S6c,d shows for all disease pairs the observed sAB vs. their corresponding mean

random expectation 〈srandAB 〉 according to the two randomization schemes. We see that the full ran-

domization yields values sharply centered around srandAB ≈ 0, whereas the real sAB exhibit a much

broader range of values. The MeSH preserving model, in contrast, also exhibits a number of ran-

domized pairs with relatively large negative sAB values. These are disease pairs that by definition

share a considerable number of genes. Overall, however, their number is still very low as can be

seen more clearly in the respective histogram (top panel of Figure S6d; note the logarithmic scale

on the y-axis).

In order to quantify the difference between the observed value sAB and random expectation

P (srandAB ), we use the z-score

z-score ≡ sAB − 〈srandAB 〉
σ
(
srandAB

) , (S10)

where 〈srandAB 〉 and σ
(
srandAB

)
denote the mean value and standard deviation of P (srandAB ). Negative

(positive) z-scores imply that sAB is smaller (larger) than expected by chance. Note that the two

randomization models have some subtle differences regarding their interpretation, in particular for

overlapping disease pairs: In the full randomization model a z-score < 0 indicates that the two

respective diseases are more overlapping than expected by chance. Even though the underlying

null hypothesis assumes completely independent gene sets, this conclusion also applies for disease

pairs that are related via MeSH. Their shared genes contribute to the network overlap and drive sAB

towards negative values, so large negative sAB correctly reflect their close relation. However, since

the MeSH preserving randomization model retains the amount of shared genes, a positive z-score

does not necessarily mean that an observed sAB < 0 is spurious. It rather indicates that the amount

of shared genes dominates the network separation. In comparison to the fully randomized model,

the MeSH preserving model therefore allows us to quantify how surprising an observed overlap is

beyond a known MeSH relationship.

Significance analysis. Assuming normality of P (srandAB ), we can analytically calculate a correspond-

ing p-value for each z-score, yielding a threshold of |z-score| & 1.6 for a disease pair to be more/less

overlapping than expected by chance with significance p-value ≤ 0.05. We also determined an
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Figure S6: Randomization of network separation. a,b, Distribution of srandAB values obtained

from 1,000 random simulations for the two disease pairs shown in Figure 3a-c of the main text. The

observed sAB and the corresponding z-scores are indicated by the yellow arrow. c, Observed separation

sAB vs. random expectation according to the full randomization model for all disease pairs. The values

for the random expectation represent mean values across 1,000 simulations. The histogram at the top

gives the distribution of random sAB values across all disease pairs. c, Same as b, but for the random

expectation according to the MeSH-preserving randomization model. The histogram on the right

gives the distribution of observed sAB values across all pairs. e,f, Distribution of all z-scores of all

disease pairs for the two randomization model. Gray areas indicate the range of random expectation

|z-score| ≤ 1.65 that corresponds to p-value ≥ 0.05.
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empirical p-value for each pair by computing the fraction of random simulations in which srandAB

exceeds the observed sAB in the appropriate direction. We find that within the limitations im-

posed by the finite number of simulations the empirical p-values are in good agreement with the

analytical estimate based on the z-score. Either measure can now be used to asses the statistical

significance of an observed network separation. The two disease pairs in Figure S5a,b, for example,

have z-score = −2.3 and z-score = 12.9, indicating that the diseases are significantly overlapping

and separated, respectively (the diseases are unrelated within MeSH, so both randomization models

yield similar results). Figure S6e,f shows the distribution of z-scores for all disease pairs. For both

randomization models, the vast majority of disease pairs reach nominal significance, i.e., z-scores

outside the random range |z-score| < 1.65. Moreover, the means of the distributions are shifted

towards positive values, indicating that most disease pairs are more separated than expected by

chance. Since most diseases are presumably independent from one another, this results is intuitively

plausible. As expected, the difference between the two randomization models is most pronounced

for negative z-scores. The full randomization model exhibits a tail of large negative z-scores which

is absent in the MeSH preserving model as these z-scores correspond to pairs of related diseases and.

We further estimated the number of spurious results that may arise due to the large number

(44,551) of tested disease pairs. In order to rationalize the often arbitrary choice of a significance

threshold, we adopt a widely used approach from the analysis of microarray data [72, 73] to estimate

the false discovery rate (FDR) directly from random simulations. For each disease pair we determine

how many random simulations i yield a nominally significant result with |zi| > zt, where the z-score

threshold zt is a parameter. These significant outcomes are by definition false positives, so the false

positive rate fAB of disease pair AB can be identified with the fraction of all R = 1, 000 random

simulations with a significant outcome:

fAB(zt) =
#{|zi| > zt}

R
. (S11)

The expected overall false discovery rate across all P = 44, 551 disease pairs can now be estimated

via

FDR(zt) =
1

P

∑

{AB}
fAB , (S12)

where {AB} denotes all combinations of diseases A and B. We find that a global FDR of 5% is

reached at zt ≈ 2.0 (Figure S7a; the two randomization models yield practically identical results, as

they only differ in a small number of pairs). The expected number of truly significant disease-disease

relations can now be estimated by adjusting the number of nominally (uncorrected) significant
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Figure S7: Significance of network separation. a, False discovery rate (FDR) vs. applied z-score

threshold zt (the two randomization models are indistinguishable). b,c, FDR-adjusted expected

number of significant disease pairs with sAB > 0 and sAB ≤ 0 vs. applied z-score threshold for the two

randomization models. d, Distribution of q-values across all disease pairs. The q-value of a disease

pair indicates the minimal global FDR at which it reaches significance. e, Distribution of sAB for

all disease pairs, as well as for pairs that are significant with q-value < 0.05 according to the two

randomization schemes. f, Distribution of sAB for disease pairs that are not significant at a global

FDR of 5%. The gray area indicates the range −0.05 ≤ sAB ≤ 0.35 that contains more than 80% of

all such pairs for both randomization models.

pairs with (1-FDR). Figure S7b,c shows the FDR-adjusted number of significant disease pairs as

a function of zt, separately for pairs with positive and negative sAB. The results confirm that

indeed the network-based separation is significant for a large number of disease pairs. Comparing

Figures S7b and c, we observe a smaller number of significant pairs with negative sAB in the MeSH

preserving randomization scheme, indicating that effects from shared genes often dominate the

network-based overlap for MeSH-related diseases.

In addition to estimating the global FDR, the approach presented above also enables us to further

quantify the level of confidence for the observed separation of each individual disease pair. For this

we use the so-called q-value [73], defined as the minimal global FDR at which the particular disease

pair reaches significance. Figure S7d shows the distribution of q-values for all disease pairs. In
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agreement with our previous results, for small q-values we find a clear deviation from the flat dis-

tribution expected for purely random events. Indeed, 75% of all disease pairs have q-value < 0.05,

again indicating that the majority of observed network relationships are non-random. We further

examined the relation between the magnitude of sAB and its significance. Figure S7e compares the

distribution of sAB of all disease pairs with the respective distributions of significant pairs only (at

q-value < 0.05). For both randomization models we find that the significant pairs exhibit the full

range of sAB values. In Figure S7f we only show the sAB distribution of disease pairs that did not

reach significance. The MeSH preserving model identifies a number of disease pairs whose overlap is

not more surprising than expected from their MeSH relation. Yet, overall their number is relatively

low and the majority of overlapping disease pairs are found significant. In both randomization

models, the vast majority of insignificant pairs have small positive sAB values: more than 80% of

all disease pairs whose network separation is indistinguishable from random are found in the small

range −0.05 < sAB < 0.35.

In summary, we conclude that the proposed separation measure sAB offers a robust quantification

of the network-based relationship between diseases. As expected, we find that most disease pairs

are clearly separated (sAB > 0), however, we also identified a considerable number of disease pairs

with statistically significant overlap (sAB < 0).

2.3 Generalization for directed networks.

Throughout our analysis, we treated the interactome as an undirected network. Yet, the interac-

tome does contain a number of regulatory and signaling interactions that are directed. Note that

there is very little robust information available for the directionality of interactions in the current

interactome data: less than 6% of the links in our network have an unambiguous direction. Yet,

as illustrated in Figure S8a,b, in principle the presence of directed links can affect the extent to

which local perturbations spread in the interactome. Moreover, link directionality is important for

the biological interpretation of the map of a specific disease module and for designing experiments

to test the predictions derived from it. In order to estimate the extent to which the presence of

directed links affects our main results, we repeated our analysis on a modified directed interactome

and with a generalized distance measures.

The two sources of the interactome that contain link directions are the kinase-substrate net-

work and signaling interactions (see Section 1.1 above). We only considered the direction of a

specific interaction if it was unambiguous, i.e., if the two sources reported the same direction, and
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Figure S8: a,b, Schematic illustration of the potential impact of directed links on the separation of

two disease modules. In a, the directed links inhibit the spread of a perturbation from either module

to the other. In contrast, in b they facilitate interactions between the modules. c-e, Comparison of

the network-based quantities dAA (c), dAB (d) and sAB (e) between the undirected interactome and

a modified version with directed links. The fact that the data points lie along the diagonal indicates

that the direction does not affect the measured sAB values.

24



if there was no simultaneous undirected interaction for the same protein pair, for example, from

the binary y2h dataset. In total, we find 7,863 directed links (3,785 signaling and 4,078 kinase-

substrate interactions), representing 5.6% of all interactions in the interactome. We assume that

all other interactions act in both directions and consequently replaced each undirected link by two

directed links pointing in opposite directions, resulting in an interactome in which all interactions

are directed.

On this directed interactome, we recalculated our distance measures introduced above by replac-

ing the undirected network distances with the respective distances along directed paths [64, 65].

Figure S8c-e compares the values of dAA, dAB and sAB for all diseases and disease pairs in the

directed and the undirected interactome. We find that the results are not affected by the direc-

tionality of the links, which may be due to the low fraction of directed links in our data. The link

direction may play an increasingly important role as more complete and accurate directed data

become available. Yet, directed links do not represent a methodological roadblock to our approach.

3 Comparison with Gene-based Overlap Measures

In this section we compare the introduced network-based overlap of diseases with overlap measures

that are solely based on shared genes.

3.1 Gene-set overlap

We use two measures to quantify the overlap between two gene sets A and B:

overlap coefficient C =
| A ∩B |

min(| A |, | B |) , (S13)

Jaccard-index J =
| A ∩B |
| A ∪B | . (S14)

Their values lie in the range [0, 1] with J,C = 0 indicating no common genes in both cases. A

Jaccard-index J = 1 indicates two identical gene sets, whereas the overlap coefficient C = 1 when

one set is a complete subset of the other. Figures S9a,b show the distribution of C and J for all

44,551 considered disease pairs. The overlap is relatively low for most disease pairs, the majority

(59%) do not share any genes. For a statistical evaluation of the observed overlaps we use a basic

hypergeometric model with the null hypothesis that disease associated genes are randomly drawn

from the space of all N genes in the network. The overlap expected for two gene sets A and B is

then given by

crand =
| A | × | B |

N
. (S15)
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Figure S9: Comparison of network- and gene-based overlap. a,b Distributions of C and J

across all disease pairs. c, Distribution of the fold-change of the number of shared genes compared

to random expectation across all disease pairs; fc < 1 indicates depletion, i.e., fewer common genes

than expected, whereas fc > 1 indicates enrichment. d, Distribution of the statistical significance

of the observed number of shared genes. Nominal (i.e., uncorrected) significance p-value < 0.05 is

indicated by the shaded area. e,f Phase-diagrams showing the gene-overlap measures C and J vs. the

network-based separation sAB for all 44,551 considered disease pairs. The green area highlights the

1,101 pairs with C = 1, i.e., for which the genes of disease A are a complete subset of the genes of

disease B. The red are highlights disease pairs without common genes, representing 59% of all disease

pairs.
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For every observed overlap cobs =| A ∩B | we then determine the fold-change

fc =
cobs
crand

(S16)

and separately the p-values for enrichment and depletion, i.e., for a surprisingly high or low overlap,

from the full hypergeometric distribution (Figures S9c,d). Note that these two tests are equivalent

to the two one-tailed Fisher exact tests. We find that the overlap of 98% of all disease pairs with

at least one common gene is larger than expected (fc > 1). For 60% of these pairs the enrichment

reaches nominal significance (p-value < 0.05), 23% are significant even after applying the most

conservative Bonferroni correction. Depletion, on the other hand, is virtually absent, i.e., there are

no disease pairs for which the observed overlap is significantly smaller than expected (only 0.02%

of all pairs with fc < 1 reach nominal significance, none after correction).

3.2 Network-based overlap and gene-set overlap

In the previous section we found that the basic statistical evaluation of the gene-based overlap

suggests significant overlap for most disease pairs that share genes. Diseases without shared genes,

on the other hand, cannot be further differentiated. We now explore the relation between the gene-

based overlap measures and the network-based separation introduced in this work. Figure S9e,f

shows the gene-based overlap measures C and J vs. sAB for all 44,551 considered disease pairs.

For disease pairs with common genes the two measures generally correlate. However, 59% of all

disease pairs do not share any associated genes (C = J = 0), hence the relationships of more than

half of all possible disease pairs cannot be quantified using gene-based measures. In contrast, our

network-based approach reveals that these disease pairs exhibit a range of different relationships,

from overlapping disease modules (sAB < 0) to strictly separated disease pairs (sAB > 0). On

the other side of the spectrum, we also find a number of diseases with considerable gene overlap,

but insignificant network similarity. Even disease pairs for which the gene set of one disease is a

complete subset of the other (C = 1; 1,101 disease pairs) can exhibit the full range of network-based

relations, from overlapping to separated disease modules (Figure S9e).

3.3 Additional control sets for the network-based disease similarity

In the main text we compare the biological similarity of disease pairs with and without network-

based overlap for all considered disease pairs (Figure 4b-g) and disease pairs without common genes

(Figure 4h-m). To further substantiate our finding that the network-based separation measure is

predictive for biological similarity we repeated the analysis on two additional sets of disease pairs,
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see Figure S10. (i) As indicated above, our disease corpus includes by construction diseases at

different levels of the MeSH hierarchy, such that one disease is a more specific variant of the other.

(compare with Figure S2). There are relatively few of these disease pairs (1,101; representing 2.5%

of all pairs), yet in order to confirm that our results are not distorted by disease pairs, we have

repeated our analysis removing all respective pairs. Figure S10c shows that the overall results

prevail. (ii) We also considered the opposite situation, where the genes associated with one disease

are a complete subset of the genes of the other (C = 1). Consequently, the diseases exhibit very

high levels of biological similarity. Yet, almost half (47%) of the respective pairs have sAB > 0,

i.e., from a network perspective they are separated. We find that even for the disease pairs with

high disease gene overlap, the network separation reveals significant differences in biological simi-

larities (Figure S10d). These pairs mostly represent a broad disease category, like nutritional and

metabolic diseases, and a specific variant of it, like obesity. Their separation indicates that the

proteins associated with the specific variant reside in a different neighborhood of the interactome –

indicating that the variant may lead to quite different disease mechanisms than the broad disease

class. These cases, therefore, reflect shortcomings of traditional disease classification that is based

on clinical manifestations rather than molecular origins. Indeed, the molecular mechanisms of obe-

sity are expected to be more closely related to disorders of the hypothalamus and its satiety center

and perturbations in the endocrine system through gut and brain hormones that affect hunger and

satiety rather than nutritional diseases, thereby justifying the separation of obesity from the latter.

In summary, we find in all considered controls that the network-based measure is highly predictive

for biomedical similarity, thereby offering additional insights into disease pairs for which gene-based

overlap measures cannot offer further discrimination.

4 Comparison with Unbiased Datasets

Both the interactome data, as well as the disease associations are prone to investigative biases. We

therefore systematically explore how our results are affected when only high-throughput data, or

combinations of high-throughput and literature curated data are used.

Using only yeast-two-hybrid (y2h) interaction data. Figure S11a shows the observed module

sizes for all diseases as a function of the total number of disease genes when only high-throughput

interactions from y2h (see Sec. 1.1.2) are used instead of the full interactome. In total, 34 out of 299

diseases show a statistically significant module. According to our results from percolation theory
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Figure S10: Additional control sets for the network-based disease similarity. Comparison of

the biological similarity of overlapping (sAB < 0) and non-overlapping disease pairs (sAB > 0) for four

different sets of disease-pair selections. Error bars show the standard error of the mean, p-values are

computed using a Mann-Whitney U test. a and b show the same results as in Figure 4b-m in the main

text and are repeated here for comparison: a, all disease pairs. b, only disease pairs without common

genes. c, Only disease pairs without hierarchical MeSH relation. For example, prostatic neoplasms

vs. neoplasms has been excluded (compare with Figure S2a). d) Only disease pairs, where the gene

set of one disease is a complete subset of the other, i.e., C = 0 (compare with Figure S9).
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Figure S11: Localization in unbiased datasets. a, Size of the observed modules in the yeast-two-

hybrid network (y2h). Bars indicate the module sizes obtained from random removal of links from

the full interactome. b, Significance of the observed modules when only GWAS disease associations

are used. c-k, Correlation of network localization measures between the full datasets and unbiased

high-throughput data only. Note that in c,f,i all interactions of the y2h data have been removed from

the interactome in order eliminate possible confounding factors in the correlation analysis.
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this is expected, given that the y2h dataset contains only 15,937 interactions between 4,612 proteins.

To further confirm this, we also constructed 100,000 random subnets from the full interactome with

the same number of proteins and links as in the y2h dataset and measured the module sizes. We

find that the module sizes as measured in the y2h network lie within the expected range (see bars in

Figure S11a). We also computed the shortest distances for all diseases within the y2h interactome,

finding that 62 diseases have statistically significantly shorter distances than expected by chance.

Using only GWAS disease associations. Figure S11b shows the module sizes within the full

interactome when only disease associations from GWAS are used. We find that 96 of the 218

diseases that have gene associations from GWAS show a statistically significant module size, a

surprisingly high number given that there are considerably fewer disease genes as compared to the

full set that includes associations from OMIM.

Comparing network localization using different datasources. In Figure S11c-k we analyse the

values of the mean shortest distance 〈dAA〉 of all diseases (c,d,e), as well as the pairwise distances

〈dAB〉 and separation sAB (i,j,k) for different combinations of high-throughput data only, compared

to data that includes literature curated data. Figure S11c,f,i shows strong and highly significant

correlations between the respective values of 〈dAA〉, 〈dAB〉 and sAB within the interactome and

those within the y2h network. Note that we have removed all links contained in the y2h data from

the interactome, even those for which additional literature evidence exists, thereby ensuring that

the observed correlations are not an artefact due to common links. Equally strong correlations

are found when comparing the values obtained using the full gene sets to those obtained using

GWAS gene associations only, both in the full interactome (Figure S11d,g,j) and the y2h network

(Figure S11e,h,k).

Taken together, we find that within the limitations imposed by the sparser data, the localization of

disease proteins in the human interactome systematically persists also in unbiased high-throughput

data and that the values of 〈dAA〉, 〈dAB〉 and sAB correlate strongly between different combinations

of datasources.

Biological similarity for overlapping and separated diseases. Since the topological properties of

diseases strongly correlate between full and restricted unbiased datasets, the main findings shown

in Figures 3 and 4 of the main text are expected to be conserved. In order to test this explicitly, we

repeated the analysis of our main results concerning the predictive power of the network-based sep-
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aration for biological similarity in Figure 4b-m of the main text. The results provided in Figure S12

indeed confirm that our main finding can be reproduced even in the much sparser y2h network.

co-expression

 0.0014

 0.0015

 0.0016

 0.0017

 0.0018

 0.0019

 0.002

 0.0021

 0.0022

 0.0023

sAB!  0 sAB>  0

G
O

 te
rm

 s
im

ila
rit

y

p < 10−50

 0.0028

 0.003

 0.0032

 0.0034

 0.0036

 0.0038

 0.004

 0.0042

 0.0044

sAB!  0 sAB>  0

G
O

 te
rm

 s
im

ila
rit

y
p < 10−3

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0.011

 0.012

sAB!  0 sAB>  0

G
O

 te
rm

 s
im

ila
rit

y

p < 10−150

 0.245

 0.25

 0.255

 0.26

 0.265

 0.27

 0.275

sAB!  0 sAB>  0

co
-e

xp
re

ss
io

n

p < 10−20

 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14

sAB!  0 sAB>  0

re
la

tiv
e 

ris
k 

R
R

p = 0.3

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0.011

sAB!  0 sAB>  0

G
O

 te
rm

 s
im

ila
rit

y

p < 10−45

 0.0029
 0.003

 0.0031
 0.0032
 0.0033
 0.0034
 0.0035
 0.0036
 0.0037
 0.0038
 0.0039

sAB!  0 sAB>  0

G
O

 te
rm

 s
im

ila
rit

y

p < 10−12

 0.0015

 0.0016

 0.0017

 0.0018

 0.0019

 0.002

 0.0021

sAB!  0 sAB>  0

G
O

 te
rm

 s
im

ila
rit

y

p < 10−7

 0.24

 0.245

 0.25

 0.255

 0.26

 0.265

sAB!  0 sAB>  0

co
-e

xp
re

ss
io

n

p < 10−10

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

-0.5  0  0.5  1  1.5

re
la

tiv
e 

ris
k 

R
R

p = 0.01

Disease Pairs without shared Genes

biological process molecular function cellular component

comorbidity

biological process molecular function cellular component

symptom similarity comorbidity

All Disease Pairs 

a b c

f

g h i

kj lco-expressiond symptom similaritye

 0.09

 0.095

 0.1

 0.105

 0.11

 0.115

 0.12

 0.125

-0.5  0  0.5  1  1.5

sy
m

pt
om

 s
im

ila
rit

y

p < 10−4

 0.09
 0.095

 0.1
 0.105
 0.11

 0.115
 0.12

 0.125
 0.13

 0.135
 0.14

 0.145

-0.5  0  0.5  1  1.5

sy
m

pt
om

 s
im

ila
rit

y

p < 10−6

Figure S12: Network separation and biological similarity in the unbiased y2h network.

Biological similarity shown separately for the predicted overlapping and non-overlapping disease pairs,

compare with Figure 4b-m of the main text . Error bars indicate the standard error of the mean. Gray

lines indicate random expectation, either for random protein pairs (a-d,g-j) or for random disease pairs

(e,f,k,l), p-values denote the significance of the difference of the means according to a Mann-Whitney

U test. a-f show the biological similarity for all considered disease pairs, g-l for the subset of pairs

that do not share genes (control set).

5 False Positive Links and Network Localization

Current interactome maps are expected to contain a considerable number of false positive interac-

tions. We therefore systematically explored the extent to which such links could lead to a spurious

clustering of disease proteins. For both the interactome, as well as the unbiased hight-throughput

y2h dataset we artificially increased the false positive rate by introducing random connections into

the network. We use two mechanisms: (i) Completely randomly scattered links by repeatedly

choosing two proteins from the network at random and connecting them. (ii) Choosing two pro-

teins with a probability proportional to their degree in the original network, thereby mimicking the

effects that may arise from highly-studied proteins that may also have a higher local false-positive

rate of interactions. For varying levels of introduced random links we then measured the signifi-

cance of the largest connected component for one well localized disease (multiple sclerosis for the

interactome and genetic skin diseases for the y2h network), as well as one non-localized disease
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Figure S13: Observable module size and false positive interactions. To evaluate the impact of

false positive interactions on a well-localized and a non-localized disease we compute the significance

of the size of the respective observable disease modules for different fractions of added random links.

Gray lines indicate the significance level z − score = 1.6. a,b, Completely randomly added links for

the interactome (a) and the high-throughput y2h network (b). c,d, Random links are added according

to the degree of the proteins. We observe that in general false positive interaction only increase the

noise-level, but do not artificially inflate the disease modules.

(cerebellar ataxia for the interactome and multiple sclerosis for the y2h network) using random

simulations as described above in Section 2. Figure S13 shows the results from 1,000 randomly

inflated networks with 1,000 randomized disease protein configurations for each false positive rate.

As expected, we find that random links generally do not increase the localization of neither the

well localized, nor the non-localized diseases. To the contrary, in the case of the degree adapted

randomization scheme the degree of localization is diminished as the fraction of false positive links

increases (Figure S13c,d). We conclude that our initial observation of well-localized disease modules

is not a consequence of false positive interactions.
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6 Identifiability of Disease Modules

In the following we quantify the fragmentation of disease modules in incomplete interactome data.

We derive several exact results that are independent of many network parameters, and hence, offer

reliable predictions pertaining to the identifiability of disease modules.

The current interactome can be viewed as an incomplete version of the underlying complete

network, in which both links and nodes are missing [74–77]. The y2h dataset [12, 55], for example,

results from a systematic screen of all pairwise combinations between a set of proteins comprising

∼ 66% of all known proteins, i.e., ∼ 33% of the nodes are missing, together with all their links. The

number of missing links is further increased by limitations of the experimental assay, whose overall

sensitivity is estimated to be ∼ 20%. The effects of removing nodes and/or links from a network

have been studied extensively in the framework of percolation theory [78–81]. In the most general

setting, it has been found that as long as a certain critical fraction of all N nodes (or M links) is

present in the network, it exhibits a giant component, i.e., a connected subgraph, which contains

a number of nodes comparable to the size of the complete network (Figure S14a). The fraction of

nodes in that giant component S can be computed using the formalism of generating functions.

Let P (k) be the degree distribution of a network and Q(k) the probability that the node at the

end of a randomly chosen link has degree k. The generating functions of these two quantities are

G0(x) =
∑

k

P (k)xk (S17)

G1(x) =
∑

k

Q(k)xk . (S18)

The detailed shape of the curve in Figure S14a depends on the network structure and the details of

the link and node removal. For unbiased incompleteness, i.e., when all nodes (links) have the same

probability p of being present in the network, the size of the giant component S can be computed

by solving

S =




p[1−G0(u)] [node percolation]

1−G0(u) [link percolation]

(S19)

u = 1− p+ pG1(u) . (S20)

The percolation threshold, i.e., the critical completeness pc at which S appears and the previously

disconnected small fragments merge to a giant component is given exactly by

pc =
〈k〉

〈k2〉 − 〈k〉 , (S21)
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Figure S14: The Identifiability of Disease Modules. a, The relative size of the giant component in

function of network completeness. Generally, the completeness is given by the product of the fractions

of all nodes p and all links q that are present in the incomplete network. At p q = 1 all nodes and

links are present and the network has a single connected component. As more and more nodes/links

are removed, the size of the giant component shrinks until it vanishes at the critical completeness pc.

b, Percolation curves (link percolation) for the interactome (top) and a random subset of it (bottom),

obtained by removing 33% of the nodes and 80% of the links. c, The curves from b collapse when the

curve of the incomplete subset is rescaled according to Eq (S23). d, Comparison of the percolation

curves (link percolation) for three connected subgraphs of size m = 100 in the interactome that were

constructed using different methods. e, Schematic illustration of the percolation curve in a when

subgraphs of size m are considered instead of the whole network. Generally, the percolation threshold

pc(m) will be larger for smaller subgraphs, i.e., smaller subgraphs require a higher completeness in

order to be observable. f, Phase diagram showing the minimal completeness needed, such that a

module of a given size in the complete network still exhibits a giant component in the incomplete

network.
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where 〈k〉 and 〈k2〉 denote the first and second moment of the degree distribution P (k). Therefore

P (k) is sufficient to compute the critical completeness, as well as the expected size of the giant

componen at any given level of network completeness above the threshold. Note that the percola-

tion threshold is the same for node and link removal.

While the general framework introduced above predicts the percolation threshold, it requires

knowledge of the complete network, information that is not currently available for the interactome.

We can circumvent this problem by recognizing that the percolation curve of a complete network

can be partially reconstructed from a sample of the network, provided that the sample is uniform.

To demonstrate this principle, let us assume that the current interactome is complete. Figure S14b

(top panel) shows the corresponding percolation curve Sfull(p) (link percolation), predicted by

Eqs. (S17)–(S21). To simulate the effects of the network incompleteness introduced above (66% of

all proteins screened with a sensitivity of 20%), we generated a second, smaller network by randomly

removing 33% of the nodes and subsequently 80% of the remaining links. The percolation curve

S∗(p) for this pruned network is shown in Figure S14b (bottom panel). By construction, this second

network represents a version of the original one at the completeness level p = p∗ q∗ with

p∗ q∗ = (fraction of screened proteins) p∗ × (sensitivity to detect a link) q∗ . (S22)

It follows that we can obtain a fraction of the original –and in the case of the true interactome

unknown– percolation curve by rescaling the curve measured of the incomplete network as

Sfull(p) = S∗(p p∗q∗) . (S23)

Figure S14c shows the collapse of the two curves in Figure S14b after rescaling according to

Eq. (S23). We see that Sfull(p) can be recovered up to p∗ q∗. In particular, we can obtain the

critical percolation threshold pfullc of the unknown full network from measuring py2hc of the available

incomplete network:

pfullc = py2hc p∗ q∗ . (S24)

This relation is exact for arbitrary networks and can be directly applied to the y2h dataset [12, 55],

which, with good approximation, represents a uniform subset of the corresponding full interactome:

For an unbiased fraction p∗ of all proteins, all pairwise interactions have been tested, so the present

fraction of all real interactions corresponds to the sensitivity q∗ of the experimental protocol.

Thus far we viewed the current interactome as a subset of the unknown complete interactome.

Next, we show that we can use the formalism introduced above to determine properties of the
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connected subgraphs, allowing us to explore the integrity of the disease modules. In general, the

observability of a disease module depends on the structure of the complete network, its incom-

pleteness, and in particular on the structural details of the subgraph itself. Consider, for example,

the percolation curves for three connected modules in the interactome (Figure S14d). The curves

were obtained by first constructing connected subgraphs, then measuring their degree distributions

Psub(k), and finally applying the formalism from Eqs. (S17)–(S21). The three modules have the

same size m = 100, but were constructed using different methods that result in slightly different

topological properties: (i) Starting from a randomly chosen node, we iteratively added randomly

chosen nodes from the neighborhood of the current cluster. (ii) Starting from a node at the end

of a randomly chosen edge, we iteratively added nodes reached by following a randomly chosen

edge that leads out of the current cluster. (iii) We placed random nodes on the empty network

until a giant component of size m emerges. Comparing the three curves in Figure S14d, we find

that the modules obtained by the different methods exhibit different percolation thresholds pc. The

threshold represents the critical level of incompleteness at which the subgraphs disintegrate into

isolated fragments and are no longer observable as being connected in the global network. The

module generated by method (iii) exhibits the highest pc, i.e., the highest required completeness

for observability. This is expected, given that the method is a percolative process itself and should,

therefore, result in modules that are close to the percolation threshold.

We have seen that the exact percolation properties of specific submodules require a detailed

knowledge of their properties in the complete network that is generally not available for disease

modules. Yet, we can use the results above to estimate the minimal completeness at which a module

of a given size m can be observed. We start by considering the ensemble of connected subgraphs

obtained by random selection of nodes as in method (iii). By construction, these subgraphs exhibit

a high threshold pc that provides an upper limit for denser modules with lower thresholds (compare

with Figure S14d). The threshold pc, in turn, is bound from above by the threshold of the subgraphs

left from the full network at node completeness p = m/N . We have seen above that their threshold

can be obtained from Eq. (S24), so by using m/N = p∗ q∗, we finally obtain

pc(m) =
Npfullc

m
(S25)

as an upper bound for the minimal completeness pc(m) at which we expect to be able to observe

the remainders of a module of size m. Note that for brevity we referred to this quantity as pmc in

the main text. It follows from (S22)–(S25) that for incomplete networks which are a uniform subset

of the complete network, a detailed knowledge of the complete network is not required to determine

pc(m). Instead, it is sufficient to know only the level of incompleteness, as pfullc can be obtained from
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py2hc , which can be measured directly. Figure S14d illustrates schematically how the percolation

curve changes for subgraphs of different sizes m. Eq. (S25) indicates that the percolation threshold

increases with decreasing subgraph size, i.e., smaller subgraphs require a higher network complete-

ness in order to exhibit a giant component. Figure S14e shows the minimal subgraph size for which

we expect to find a remaining connected component for a given level of network completeness as

derived from Eqs. (S17)–(S25) using the y2h network as input. The yellow arrow indicates the

estimated values for the current dataset. We find that the coverage of the current y2h dataset is

still too small to observe significant clustering for the given number of disease associated genes. We

expect, however, that this will improve significantly, once the ongoing efforts to screen a yet larger

number of proteins are completed.

The 1/m scaling of the percolation threshold in Eq. (S25) is valid for arbitrary degree distribu-

tions. To offer a more intuitive understanding of this general result, in the following we present

an alternative derivation for the special case of Erdős-Rényi random graphs:3 Consider a random

graph with m nodes, in which every possible link is present with probability p. The expected

number of links is then given by

M = p
1

2
m(m− 1). (S26)

According to the famous results derived in [82], the critical probability at which the giant component

emerges in a random graph is given by

pER
c =

1

〈k〉 . (S27)

Eq. S27 implies that random graphs exhibit a giant component for 〈k〉 ≥ 1, i.e., when each node

has one neighbor on average. With Eq. (S26), the mean degree can be written as

〈k〉 =
2M

m
= (m− 1)p ∼ m, (S28)

substituting in Eq. (S27) finally yields

pER
c ∼ 1

m
, (S29)

which recaptures the scaling from Eq. (S25).

In summary, we have shown that the percolation formalism can be used to quantify the de-

tectability of modules in the interactome. Our first key finding is that a detailed knowledge of the

complete network is not required to determine its percolation threshold. Given a uniform subset of

3We thank an anonymous Referee for bringing this to our attention.
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the complete network, it is sufficient to know only the level of incompleteness. This result is exact

for arbitrary degree distributions. Our second key result is the inverse relationship, pc(m) ∼ 1/m,

between the size of a module and the minimal network completeness for its observability. This

relationship is exact for Erdős-Rényi graphs and provides a lower bound for the general case of

arbitrary networks. We expect that these general results will also find applications beyond the

presented case of disease modules in the interactome.

7 Comparison of Disease Modules and Network Communities

In principle, one can distinguish between (i) topological, (ii) functional and (iii) disease modules

[6]. Topological modules are generally defined as locally dense network areas [83]. Functional mod-

ules are sets of proteins that are associated with a specific biological function. Disease modules

represent the set of proteins whose perturbation is associated with a particular pathophenotype.

From a network science perspective, one may ask to what extent disease modules and topological

modules coincide. We evaluated this hypothesis using three representative, methodologically dis-

tinct community detection algorithms: (i) an algorithm that is based on link-similarities (LC) [84],

(ii) the Louvain method (LM), which maximizes a global modularity function [85], and (iii) the

flow-based Markov Cluster algorithm (MCL) [86]. Each of these methods identifies a large number

of communities within the interactome (LC: 61,647; LM: 163; MCL: 2,029), containing up to several

thousands of proteins. In order to evaluate whether some of these communities may be candidates

for specific diseases modules, we determined their enrichment with genes associated with any of

the 299 diseases. We find that only between 1%-5% of the communities detected by the different

methods show nominal significance (p-value < 0.05, Fisher’s exact test). However, even these few

associations are most likely spurious, as the respective communities are small and mostly contain

only a single disease genes. Not a single identified enriched community included the full observable

module (i.e., the largest connected component) of any disease. As we have shown in the main text,

disease modules are indeed not particularly densely interconnected and therefore do not represent

topological modules in the traditional sense established in network science.

Similarly, existing topological community detection methods are also not adequate to quantify

the overlap of diseases modules as they define overlap simply based on common nodes. The con-

cept of overlapping modules introduced in our manuscript is fundamentally different as it allows

for overlapping modules even when no proteins are shared.
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8 Disease Space Layout Algorithm

In order to display the network-based relationships between diseases visually, we introduce a three-

dimensional disease space, in which diseases are represented by spheres with diameter 〈ds〉. The

spatial distance rAB between two diseases approximates their network-based distance 〈dAB〉. An

exact mapping is not possible in three dimensions, since the network distances of all 44,551 disease

pairs impose many conflicting constraints which cannot be fully resolved. Related problems of

placing points into an n-dimensional space according to a given distance matrix have been studied

extensively in the field of multidimensional scaling. Here, we use the following algorithm aiming to

match spatial and network-based distances as closely as possible (see Figure S15): We start with a

rAB

dAB

�A �B

x

y

x

y

disease B1

disease B2

disease B3

disease B4

disease Bdisease A disease A

�C
�A∗

a b c

Figure S15: Disease Space layout algorithm. a, Illustration of the calculation of the optimal

position ~A∗ of disease A with respect to disease B. b, The new position of disease A is given by

the center of mass ~C of all pairwise optimal postions ~A∗
i with respect to all other diseases Bi. c,

Comparison of the final spatial distance rAB versus network distance dAB for all disease pairs.

random initial placement of all diseases. Next, we individually update the postion of each disease

according to the following procedure: Starting from the position of disease A, given by the vector

~A, we calculate for all other diseases Bi a new position ~A∗i along the lines that connect ~A and ~B,

such that the spatial distance rAB between ~A∗i and ~Bi matches exactly their network distance dAB

(Figure S15a):

~A∗i = ~B +
dAB

rAB

(
~A− ~Bi

)
. (S30)

Disease A will then be moved to the center of mass ~C of all pairwise optimal positions ~A∗i (Fig-

ure S15b):

~C =
1

n

n∑

i=1

~A∗i . (S31)

In this fashion we repeatedly update the position of all diseases until they converge. While the exact

final coordinates do depend on the random initial configuration, we find that the total mismatch
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between spatial and network-based distance for all disease pairs
∑

pairs |dAB− rAB| is rather robust

and varies very little between different random realizations. Figure S15c shows dAB and rAB for

all disease pairs for the coordinates that we used to layout the spheres in Figure 4a,h in the main

text. We find the spatial and network-based distance to be strongly correlated.

9 Discussion of selected disease pairs

As discussed in the main text, we identified several topologically overlapping disease pairs that

lack known pathobiological relationships. Here we briefly discuss twelve additional examples, as

summarized in Table S1.

disease A disease B NA NB NA ∩NB common genes LAB sAB RR

asthma celiac disease 37 36 3 HLA-DQA1,

IL1RL1, IL18R1

7 -0.13 6.1

glomerulonephritis liver cirrhosis, biliary 18 23 2 HLA-DQB1,

HLA-DQA2

4 -0.05 1.6

psoriasis vasculitis 54 15 9 IER3, DDR1, MICA,

IL23R, HLA-B,

HLA-C, PSORS1C2,

C6orf15, CCHCR1

11 -0.35 1.8

graves disease vasculitis 13 15 2 C6orf15, MICA 0 -0.30 1.9

lymphoma myocardial infarction 24 13 0 – 3 -0.24 2.1

glioma myocardial infarction 17 13 0 – 3 -0.19 6.3

metabolic bone diseases myocardial infarction 27 13 0 – 1 -0.15 1.4

glioma gout 17 13 0 – 2 -0.14 2.4

liver cirrhosis spondylitis, ankylosing 24 12 0 – 3 -0.20 1.0

leukemia, lymphocytic,

chronic, b-cell

motor neuron disease 15 31 0 – 6 -0.14 1.2

albuminuria asthma 15 37 0 – 2 -0.13 1.2

myeloproliferative

disorders

proteinuria 19 15 0 – 0 -0.14 1.9

Table S1: Basic characteristics of chosen disease pairs with overlapping modules within

the interactome. NA, NB : number of genes associated with the diseases A and B, respectively;

NA ∩NB : number of common associated genes; LAB: number of direct interactions between proteins

associated with A and B; sAB: network-based separation; RR: comorbidity as measured by the

relative risk.

Glomerulonephritis & biliary cirrhosis. Glomerulonephritis, an inflammatory renal disease, and

biliary cirrhosis, an autoimmune disease of the liver, are associated with 26 and 32 genes, respec-

tively, and show moderate localization in the same network neighborhood (sAB = −0.05). They
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share two GWAS genes (HLA-DQA2, HLA-DQB1). Although the overall gene annotations are not

significantly similar, they do share significant pathways and are highly comorbid (RR = 1.6). It has

previously been observed that primary biliary cirrhosis is associated with membranous glomeru-

lonephritis in some patients [87].

Psoriasis & vasculitis. Psoriasis, an immune-mediated skin disease, and vasculitis, an inflamma-

tory disease affecting blood vessels, have 77 and 36 known gene associations, respectively. Both are

well localized and overlap in the interactome (sAB = −0.35). This overlap also reflects the large

number (17) shared genes, all of which are derived from GWAS. Overall the gene annotations are

similar and the genes participate in very similar pathways. The two diseases are highly comorbid

(RR = 1.8). Yet, an association of psoriasis and vasculitis has only rarely been reported in the

literature [88–90].

Graves’ disease & vasculitis. Graves’ disease, an autoimmune disease affecting the thyroid,

and vasculitis are associated with 24 and 36 genes, respectively. Both of their gene associa-

tions are mostly derived from GWAS, five of which are shared (C6orf15, HCG22, HLA-S, MICA,

NCRNA00171). The two diseases show network localization in the same neighborhood (sAB =

−0.3), share significant pathways and are strongly comorbid (RR = 1.9). While there is no lit-

erature support for an association between the two diseases, the shared inflammatory component

suggest common molecular mechanisms.

The following eight disease pairs exhibit strong network-overlap, despite the fact that they lack

known shared genes:

Lymphoma & myocardial infarction. While lymphoma, malignancies that develop from lympho-

cytes, and myocardial infarction, a cardiovascular disease, have no known shared disease genes,

they have strongly overlapping modules in the interactome (sAB = −0.24). We therefore expect

that these two diseases are related at the molecular level. Indeed, we find that SMARCA4, asso-

ciated with myocardial infarction, interacts with three lymphoma disease genes (ALK, MYC and

NFKB2). Cancer cells frequently depend on chromatin regulatory activities to maintain a malig-

nant phenotype. It has been shown that leukemia cells require the SWI/SNF chromatin remodeling

complex containing the SMARCA4 protein as the catalytic subunit for their survival and aberrant

self-renewal potential [43]. The molecular relatedness between the two diseases is further supported

by a high comorbidity (RR = 2.1) and the clinical finding that intravascular large cell lymphoma
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affects and obstructs the small vessels of the heart [44].

Glioma & myocardial infarction. A similar molecular relation is also found between myocardial

infarction and glioma, a central nervous system tumor (sAB = −0.2). Here, SMARCA4 interacts

with the glioma disease genes APC, PPARG and CTNNB1, offering a hint of the potential molecular

mechanism of the relatedness of the two diseases. The two diseases have a particularly strong

comorbidity (RR = 6.3).

Metabolic bone disease & myocardial infarction. The myocardial infarction module also overlaps

with the module of metabolic bone disease (sAB = −0.14) despite no common disease genes. While

there is only a single direct protein interaction between the two diseases (SMARCA4 interacts

with VDA), the two diseases are associated with common pathways: The hemostasis pathway,

for example, contains six metabolic bone disease genes (GNAS, SLC7A11, THBD and COL1A1)

and two myocardial infarction genes (LRP8 and OLR1). Recently, it has been shown that the

expression of OLR1 is promoted by exposure of human T lymphocytes to minimally oxidized low

density lipoprotein (LDL) [91]. This link between oxidized lipids and T-lymphocytes indicates a

new pathway by which T lymphocytes contribute to bone changes. Furthermore, COL1A1 knockout

mice were shown to have lower mean arterial and systolic blood pressure, reduced ventricular systolic

function, and decreased diastolic function, compared with wild-type littermates [92].

Glioma & gout. The interactome overlap (sAB = −0.14) of the diseases glioma and gout, the

latter a metabolic disease associated with arthritis and kidney stress, is mediated by two protein

interactions (the glioma genes BRAF and SGK1 interact with the gour genes GOPC and GRID2,

respectively). This association is further supported by a recently reported upregulation of SGK1

in tumor tissue [93] and a high comorbidity between the two diseases (RR = 2.4).

Liver cirrhosis & spondylitis. The overlap (sAB = −0.2) between liver cirrhosis and spondylitis,

an inflammatory disease of the axial skeleton, is supported in part by the clinical observation that

vertebral fractures occur in 12%-55% of patients with cirrhosis [94]. At the molecular level, the two

diseases have three interacting protein pairs (TNFRSF1A and ERAP1; IL12A and IL12B; IL12RB2

and IL12B).

Chronic lymphocytic leukemia & motor neuron disease. While the two diseases do not have

common disease genes, there are six direct interactions between the respective disease proteins

(ATM and VCP; BCL2 and SOD1; ATM and FUS; SP110 and SMN1; MYC and TIAM1; BCL2
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and SMN1). Indeed, the chronic lymphocytic leukemia gene BCL2 and its analogs have been found

to protect different classes of neurons from apoptosis in several experimental situations [95]. On

the other hand, the gene TIAM1, associated with motor neuron disease, has been shown to exhibit

decreased transcription in unstimulated peripheral chronic lymphocytic leukemia cells [96]. A recent

case of a female patient with chronic lymphocytic leukemia presenting with lower motor neuron

disease offers clinical evidence for the relation between the two diseases [97].

Albuminuria & bronchial and respiratory diseases. Albuminuria, a form of proteinuria charac-

terized by the presence of albumin in the urine and indicative of renal damage, overlaps with

bronchial and respiratory diseases, such as asthma (sAB = −0.13). At the molecular level, two

albuminuria-associated proteins (KCND2 and PARD3B) interact directly with two proteins as-

sociated with respiratory diseases (DPP10 and SMAD3). The diseases also exhibit an elevated

comorbidity (RR = 1.23). Furthermore, it has been suggested that poor lung function, particularly

the restrictive pattern, is related to kidney damage as well as atherosclerosis [98].

Proteinuria & myeloproliferative disorders. Other unsuspected diseases found in the network

neighborhood of proteinuria are myeloproliferative disorders, a group of conditions wherein blood

cells grow abnormally in the bone marrow (sAB = −0.137). In support of this association, nephrotic-

range proteinuria appears to be a late complication of myeloproliferative disorder [99].

10 A disease module approach for the interpretation of GWAS

results

In the following we show how our network-based approach can be used to enhance the interpreta-

tion of GWAS data by identifying proteins with promising disease associations even though they

do not meet the conservative significance criteria of GWAS. GWAS typically identifies a few sta-

tistically significant loci, together with hundreds of weaker loci eliminated by the large multiple

hypothesis correction. Protein-interaction data, combined with various other -omics or functional

association data, have been used previously to prioritize disease gene candidates, resulting in tools

like GeneMania [100] and others [8, 9, 17, 19–28, 101, 102]. Here, we tested whether the observed

localization of disease proteins in the interactome could help identify the potential biological role

of statistically less significant GWAS loci. If we consider a combination of OMIM and only GWAS

genes with genome-wide significance (p-value ≤ 5 × 10−8), the observable type 2 diabetes (T2D)
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module has only nine genes, three of which are derived from GWAS. When we add GWAS genes

of lower significance in the order of their p-value, we observe that while most GWAS genes are

isolated, a few connect to the module (Figure S16a), resulting in distinct jumps in the module size

S and its z-score obtained from simulations using randomly chosen genes from the network. These

jumps help us single out GWAS candidate genes that may play an important role in the integrity

of the T2D disease module (Figure S16a), an approach similar to that used in functional brain

networks [103]. For example, at step 7 calmodulin 2 (CALM2), a gene lacking genome-wide signifi-

cance (7× 10−7), links three previously separated OMIM genes to the observable module. CALM2

has been identified in a GWAS analysis of diabetic complications, but its central position in the

module suggest an important role in T2D. Indeed, CALM2 is expressed in pancreatic beta cells and

is activated by glucose, resulting in exocytosis of insulin [104]. The cluster connected by CALM2

links apolipoprotein B (APOB) to the module, which, once again alone lacks genome-wide signifi-

cance (p-value = 8 × 10−8), suggesting that its known role in affecting circulating lipid levels also

plays a role in genetic predisposition to T2D, a long debated hypothesis [105–107]. Equally inter-

esting is the addition of IDE at step 9. Indeed, variations near HHEX (hematopoietically-expressed

homeobox protein)/IDE/KIF11 have shown the strongest association with T2D in a meta-analysis,

with HHEX believed to be the disease-related gene. Yet, the incorporation of IDE in the module

signifies its potential importance to T2D. Finally, protein kinase C α (PRKCA), which again lacks

genome-wide significance, helps link the potassium inward rectifying channel subfamily J (KCNJ11)

to the module, a gene of genome-wide significance regulated by PRKCA, which is itself connected

to ABCC8, another OMIM gene associated with T2D.
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Figure S16: Identifying biologically relevant GWAS genes. a, GWAS studies yield a plethora of

genes with moderate effect size, lacking genome-wide significance. For type 2 diabetes, starting from

an initial module of six connected OMIM genes, we add GWAS genes in the order of their p-value

(top), monitoring the growth of the module (bottom) and its statistical significance compared to

randomly chosen genes from the network (middle). b,c, Five of the 77 genome-wide significant genes

connect to the initial OMIM module. With the addition of CALM2 two initially disconnected clusters

merge, leading to a distinct jump in the module size and its significance. After the consideration of 200

GWAS genes, another disconnected cluster is integrated, which contains the genome-wide significant

gene KCNJ11 and the OMIM gene ABCC8.
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11 Supplementary Data

The following datasets are available together with this publication. The full data can also be

downloaded from the website www.barabasilab.com.

Human interactome. Table with the interactome as described in Section 1.1.

Disease-gene associations. Table with 299 diseases and their associated genes as described in

Section 1.2.

Network properties of all diseases. Table with the observable module size Si, the mean shortest

distance 〈ds〉, as well as their respective statistical significance for all 299 diseases.

Network properties of all disease pairs. Table with network-based mean distance 〈dAB〉, sepa-

ration sAB and the respective statistical significance according to two randomization schemes (see

section 2.2.1) for all 44,551 disease pairs.

Source code. The source code to compute network localization and separation is available as a

python package.
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