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Supporting Information

Additional supporting information may be found in the online
version of this article at the publisher’s web-site:

Figure S1: Gene expression networks associated with
determinants of midbrain dopamine synthesis and inactiva-
tion. Genes (top 25) with highest correlations with Th (a) or
Slc6a3 (b) are graphed separately based on the direction of
correlation (green: positive; red: negative). Gene node sizes
represent the significance of correlation. Gene pairs with cor-
relation coefficients (Spearman rho) above 0.5 are connected
by edges (green: positive; red: negative).

Figure S2: Gene expression networks associated with
determinants of midbrain acetylcholine synthesis and choline
reuptake. Genes (top 25) with highest correlations with Chat
(a) or Slc5a7 (b) are graphed separately based on the direction
of correlation (green: positive; red: negative). Gene node
sizes represent the significance of correlation. Gene pairs
with correlation coefficients (Spearman rho) above 0.5 are
connected by edges (green: positive; red: negative).

Figure S3: Pcdh15av-3J mice have altered midbrain 5-HT
levels. (a) Males [P < 0.05, Kruskal–Wallis test followed by
Dunn’s multiple comparison test, N = 4 (wt), 17 (het) and 7
(hom)] and (b) females [NS, N = 3 (wt), 8 (het) and 5 (hom)].

Figure S4: The genotype for SNP rs6191324 is correlated
with (a) midbrain SERT expression levels (P < 0.0001,
Student’s t-test), (b) midbrain Slc18a2 mRNA expression
levels (P < 0.05, Student’s t-test), (c) midbrain 5-HT levels
(P < 0.05, Student’s t-test) and (d) blood 5-HT levels
(P < 0.05, Student’s t-test). rs6191324 is the nearest mapped
marker to gene Slc18a2 in BXD strains.

Figure S5: Gene expression networks associated with
midbrain Pcdh15. Genes (top 25) with highest correlations
with Pcdh15 (probe A_55_P2176176, see Discussion) are
graphed separately based on the direction of correlation
(green: positive; red: negative). Gene node sizes represent
the significance of correlation. Gene pairs with correlation
coefficients (Spearman rho) above 0.5 are connected by
edges (green: positive; red: negative).

Table S1: Animals used in this study. Number of animals
and their genders from each BXD strain are listed for each
experiment.

Table S2: Midbrain 5-HT gene networks seeded by Tph2
or Slc6a4 expression (P < 0.05, Spearman’s rank test).
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Table S3: Midbrain DA gene networks seeded by Th
(P < 0.05, Spearman’s rank test) or Slc6a3 expression
(P < 0.05, Spearman’s rank test).

Table S4: Midbrain ACh gene networks seeded by
Chat (P < 0.05, Spearman’s rank test) or Slc5a7 expression
(P < 0.05, Spearman’s rank test).

Table S5: GeneNetwork archived phenotypes that corre-
lated with SERT protein expression levels (P < 0.05, Spear-
man’s rank test).

Table S6: Genes under loci above suggestive significance
levels from interval mapping analysis of SERT protein
expression levels.

Table S7: Gene network seeded by correlation with male
midbrain SERT protein expression (P < 0.05, Spearman’s
rank test).

Table S8: List of common genes associated with male
midbrain SERT protein expression levels identified from
transcriptome and QTL analyses.

Table S9: Gene network seeded by correlation with male
midbrain Pcdh15 (A_55_P2176176) expression (P < 0.05,
Spearman’s rank test) and common genes between this
network and gene network associated with male midbrain
SERT protein expression (Table S7).
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