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Supplementary Figure legends 

Figure S1: Knockdown of a subset of kinases decreases viability and alters 

cell cycle of both MES and PN GSCs. Related to Figure 1 

(A) Kinases that induce a significant level of cell death (*: p<0.05) in MES and PN 

GSCs when targeted with shRNA. The color code represents the fold increase of 

SubG1 phase cells after knockdown of the indicated gene compared to cells 

transduced with a non-targeting shRNA (shNT). 

(B) Kinases that significantly alter the cell cycle in MES and PN GSCs (*. p<0.05) 

when targeted with shRNA. The color code represents the fold increase of cell 

numbers in the respective cell cycle phases compared to cells transduced with shNT. 

Stacked bar charts on the right panels represent the percentage of cells in the 

different phases of the cell cycle in MES and PN GSCs for the top two genes in each 

of the indicated cell cycle phases, as determined by FACS analysis of propidium 

iodide DNA staining. The average of the shNT used for normalization and the 

shRNAs targeting the indicated gene are shown. Error bars represent the standard 

deviation. 

 

Figure S2: Knockdown of a subset of kinases differentially alters cell cycle in 

MES or PN GSCs. Related to Figure 2 

(A) List of kinases that significantly (*: p<0.05) impair the cell cycle in MES GSCs 

(blue) or in PN GSCs (red) when targeted with shRNA. Data were normalized to the 

respective shNT. mRNA expression fold change between PN and MES GSCs is 
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indicated on the right side of the heatmap. 

(B) Stacked bar charts depicting cell percentage of the top two genes in each cell 

cycle phase that when targeted with shRNA significantly impair the cell cycle. 

Average of the shNT used for normalization and the shRNAs targeting the indicated 

gene are shown. Error bars represent the standard deviation. 

 

Figure S3: Gene ontology analysis using the DAVID tool of the candidate 

genes that impair MES or PN viability. Related to Figure 2 

Kinases whose silencing increases SubG1 phases (described as apoptosis kinases) 

were separated from those that impair G1, S or G2 phases (described as 

proliferation impairing kinases). The human kinome was used as background to 

ensure statistical correctness. 

 

Figure S4: Representative photographs of mice brains. Related to Figure 5 

Animals were injected with 83 GSCs transduced with shAXL#2 and representative 

H&E staining of shAXL mouse xenografts, 30 days after transplantation, is shown.  

 

Figure S5: Staining of AXL and CD44. Related to Figure 6 

Staining was perfomed on a mouse brain tumor sample close to a necrotic area (83 

GSCs). Scale bar: 50 µm. 
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Materials and methods 

Lentiviral Production and Transduction  

To assess transduction efficiency, cells on each plate were infected with lentivirus 

expressing green fluorescent protein (GFP). Transduction was deemed efficient 

if >70% cells were GFP-expressing. To reduce any position effects, the 3-5 shRNAs 

targeting each kinase where divided onto two plates and each plate included three 

replicates of a non-targeting shRNA (shNT). Measurements were standardized by 

the average of the shNT measurements separately for each plate. The titer was 

measured using lentiviral particles that contained the pLKO.1 vector expressing GFP 

and ranged from 2×106 to 4×106  Transduction Units/ml. Transductions were 

performed at the multiplicity of infection (MOI) of 10. 

 

Reagents and Antibodies 

The following primary antibodies and reagents were used in this study: EGF 

(Peprotech); bFGF (Peprotech); B27 (invitrogen); Heprin (Sigma); DMEM-F12 

(Gibco, 10565-018); anti-AXL (Cell signaling, #8661) for immunocytochemistry, 

immunoflurescence and Western blot, anti-phospho-AXL (R&D AF2228) for 

immunocytochemistry, immunohistochemistry and Western blot; anti-GAPDH 

(Abcam, ab9482) for Western blot; anti-CD44 (Cell Signaling #3570) for 

immunofluorescence and (Miltenyl Biotec #130-090-854) for FACS; and anti-CD133 

(Biolegend #103016) for FACS. Fetal bovine serum (Gibco, 10082-147); Albumin 

from bovine serum (Sigma, A2153); Accutase solution (Sigma, A6964-100); alamar 
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Blue (invitrogen, DAL1100); RIPA buffer (Sigma, R0278-50ml); Phophatase inhibitor 

cocktail (Sigma, P0044-5ml); Protease inhibitor cocktail (P8340); Bradford (BIO-

RAD, 500-0006); BSA used in Bradford assay (BioLabs, B9001S); PageRuler plus 

prestained protein (Thermo scientific, 26619);. iScript Reverse Transcription 

supermix for RT-qPCR (Bio-rad, 170-8841); Caspase-Glo®3/7 Assay (Promega). 

 

Western blot analysis 

The cell lysates were prepared in RIPA buffer containing protease and phosphatase 

inhibitor cocktail (Sigma Aldrich) on ice. The sample protein concentrations were 

determined by the Bradford method. Equal amounts of protein lysates (10 µg/lane) 

were fractionated on NuPAGE Novex 4-12% Bis-Tris Protein gel (Invitrogen) and 

transferred to a PVDF membrane (Invitrogen). Subsequently, the membranes were 

blocked with 5% skimmed milk for 1 h and then treated with the relevant antibody at 

4°C overnight. Protein expression was visualized with Amersham ECL Western Blot 

System (GE Healthcare Life Sciences). GAPDH served as a loading control. 

 

Quantitative RT-PCR 

Total RNA was prepared using a RNeasy mini kit (Qiagen) according to the 

manufacturer’s instructions. RNA concentration was determined using a Nanodrop 

2000 (Thermo scientific). RNA integrity was examined with an Agilent 2100 

Bioanalyzer. For reverse transcription, the average RNA integrity number (RIN) was 

larger than 9.0. cDNA was synthesized by using iScript reverse transcription 



	   5	  

supermix for RT-qPCR (Bio-rad) according to the manufacturer’s protocol. 

Quantitative RT-PCR was performed using a StepOnePlus real-time PCR system 

with a SYBR Select Master Mix (Applied Biosystems). GAPDH was used as an 

internal control. The following cycles were performed during DNA amplification: 94°C 

for 2 min, 50 cycles of 94°C (30 s), 60°C (30 s), and 72°C (40 s). The primer 

sequences for qPCR were as follows:	  

AXL forward: GTTTGGAGCTGTGATGGAAGGC; 

AXL Reverse: CGCTTCACTCAGGAAATCCTCC (Gioia et al., 2011); 

CD44 forward: CCCAGATGGAGAAAGCTCTG; 

CD44 reverse: ACTTGGCTTTCTGTCCTCCA; 

CD133 Forward: ACTCCCATAAAGCTGGACCCC;  

CD133 Reverse: TCAATTTTGGATTCATATGCCTT; 

GAPDH forward: GAAGGTGAAGGTCGGAGTCA; 

GAPDH reverse: TTGAGGTCAATGAAGGGGTC. 

Relative quantitation of cDNAs to GAPDH was determined by 2-ΔΔCt method. 

 

Statistical analysis 

For analysis of FACS data, measurements with less than 2000 cell counts were 

excluded. Measurements were standardized by the average of the non-target shRNA 

measurements separately for each plate. Ratios were log2 transformed to more 

closely follow a normal distribution. Relevant kinase directed shRNAs were identified 

using the empirical Bayes approach (Smyth, 2004) based on moderated t-statistics 
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as implemented in the Bioconductor package limma (Smyth, 2005). Kinase directed 

shRNAs with differential activity between cell lines were identified for each cycle 

phase separately using one-sided p-values and a fold change (FC) threshold of the 

median FC plus two median absolute deviations. shRNAs showing an equivalent 

increase of cell number in the respective cell cycle phase in both cell lines were 

defined based on the following criteria: increase across cell lines was determined as 

for individual cell lines but based on shRNAs from both cell lines pooled using one-

sided p-values and a FC threshold. The two-sided 90 % confidence interval for the 

difference between both cell lines was computed. Confidence limits had to fall within 

pre-specified boundaries in order to establish equivalence. Boundaries were defined 

in terms of acceptable absolute FC. Since magnitude and variability of cell number 

levels were very different for each cycle phase, different equivalence boundaries (FC 

1.1 to 1.6) were applied for each phase. All p-values were adjusted for multiple 

testing using Benjamini-Hochberg correction in order to control the false discovery 

rate. Adjusted p-values below 0.05 were considered statistically significant. All 

analyses were carried out using software R 3.0.1. (Team, 2011). 

 

MACS Cell Separation 

PN_528 GSCs were separated according to their level of CD133 expression by 

MACS according to manufacturer’s instruction. In brief, single cell suspensions were 

prepared with Accutase (Life technology). After 30 mins incubation with CD133 

MicroBeads (Miltenyi Biotec) at 4°C, cells were added on LS columns (Miltenyi 
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Biotec) and placed in a MidiMACS separator. The flow-though cells were collected 

as CD133 low cells. The cell fraction retained in the column was eluted as CD133 

high cells.	  
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