1	Tubulation by amphiphysin requires concentration-dependent switching from wedging to scaffolding
2 3	J. Mario Isas ^{1,*} and Mark R. Ambroso ^{1,*} , Prabhavati B. Hegde ¹ , Jennifer Langen ² , Ralf Langen ^{1,¥}
4 5 6 7	¹ Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California 90033, USA. ² Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA.
8 9 10	[¥] Corresponding Author: Ralf Langen, Zilkha Neurogenetic Institute, 1501 San Pablo St., 121 ZNI, Los Angeles, CA 90033. Tel.: 323-442-1323 Fax: 323-442-4404. Email langen@usc.edu
11 12	Supplemental Data
13 14	Figure S1, related to Figure 1.
15	EPR continuous wave spectra, as well as NiEDDA and O ₂ accessibilities, of spin labeled derivatives of
16	amphiphysin bound to 100 nm vesicles.
17	(A) Continuous wave (CW) EPR spectra of spin labeled amphiphysin containing spin label R1 at position 13 in
18	solution (black) and bound to vesicles (red). Sharp spectral lines indicate high spin label mobility in solution.
19	The broadened spectra for the vesicle bound form indicate reduced mobility. All other N-terminal labeling sites
20	had similar spectra in solution indicating an unfolded structure.
21	(B) The CW EPR spectra of N-terminally spin labeled derivatives of amphiphysin when bound to vesicles.
22	(C) The N-terminal amino acid sequence of <i>Drosophila melanogaster</i> amphiphysin.
23	(D) Accessibility to oxygen (ΠO_2) and NiEDDA ($\Pi NiEDDA$) as function of labeling position for vesicle bound
24	amphiphysin. The periodicity in the respective accessibilities is indicative of α -helical secondary conformation
25	(Hubbell et al., 1998) and the out-of phase periodicity indicates that this helical structure is amphipathic.
26	(E) Lipids containing spin labels at known bilayer immersion depths (Bretscher et al., 2008; Dalton et al., 1987)
27	were analyzed for accessibility to O ₂ and NiEDDA in vesicles bound by non-spin labeled amphiphysin. These
28	values were used to calibrate (Φ) with respect to membrane immersion depth (d) in Å (Altenbach et al., 1994).
29	The values were fit to a hyperbolic tangent function (black line), Φ = A tanh[B(x-C)] + D, as previously
30	described (Frazier et al., 2002), where A= 2.7, B= 0.08, C= 14, D= 2.5, and x is depth given in Å. Error bars
31	represent SD, $n = at$ least three independent experiments.

32	(F-G) CW EPR spectra of vesicle bound (red) and soluble (black) amphiphysin spin labeled in the BAR domain
33	at the indicated positions, which are also shown in Figure 1A. High or low spectral amplitudes were rescaled
34	using the indicated scaling factor (e.g., "2x") for space considerations. Scan width is 100 gauss.

- 35
- 36
- 37 Figure S2, related to Figure 2.

EPR continuous wave spectra, as well as NiEDDA and O₂ accessibilities, of spin labeled derivatives in the N-terminus of amphiphysin bound to lipid tubes.

- 40 (A) CW EPR spectra of amphiphysin R1-labeled at position 13 in solution (black) and bound to tubes (red).
- 41 (B) CW EPR spectra of tube bound amphiphysin labeled with R1 at the indicated N-terminal sites.
- 42 (C) Accessibility to O_2 (ΠO_2) and NiEDDA ($\Pi NiEDDA$) as a function of labeling position for tube bound 43 amphiphysin.
- 44 (D) Accessibility to O₂ and NiEDDA of spin labeled lipids in tubes formed by non-spin labeled amphiphysin
- 45 were used to calibrate Φ with respect to immersion depth (Altenbach et al., 1994). The values were fit to a
- 46 hyperbolic tangent function (black line), Φ = A tanh[B(x-C)] + D, where A= 3.1, B= 0.04, C= 10, D= 1.2, and x
- 47 is depth given in Å. Error bars represent SD, n = at least three independent experiments.
- 48

49 Figure S3, related to Figure 3.

50 Spin label mobility and accessibility for spin labeled amphiphysin bound to tubes or to vesicles.

- 51 (A-B) CW EPR spectra of amphiphysin derivatives spin labeled in the BAR domain at the indicated positions in
- 52 solution (black) or bound to tubes (red). High or low spectral amplitudes were rescaled using the indicated
- 53 scaling factor (e.g., "2x") for space considerations. Scan width is 100 gauss.

54 (C) The percent change in CW EPR spectral central line width for spin labeled amphiphysin derivatives bound 55 to tubes or to vesicles is plotted versus residue number. Derivatives with a percent change in central line width 56 greater than or equal to 10% (dashed line) are highlighted (green).

(D) Crystal structure of drosophilia amphiphysin dimer (pdb, 1URU) indicating spin labeled derivatives with
percent central line width changes greater than 10% in green as determined in (C). Residue numbers are given
for only one subunit of the dimer.

60 (E) Plot of IIO₂ versus IINiEDDA for spin labeled sites in the BAR domain bound to tubes (black) or vesicles 61 (red). Prior studies have shown that the accessibilities to O_2 and NiEDDA are linearly related for proteins in solution (Isas et al, 2002). This is indeed the case for all sites in the BAR domain upon vesicle binding, in 62 agreement with the notion that the BAR domain is too far from the membrane to experience enhanced O₂ 63 64 accessibility. In contrast, accessibility values for several tube bound derivatives do not fall into the same diagonal region delineated by the dashed lines. A number of sites fall below the dashed line as a consequence of 65 enhanced O_2 accessibility due to membrane proximity. The plot also shows that the enhanced Φ values in 66 Figure 3A are not due to the "excluded volume effect". In very rare cases, enhanced Φ values can be the 67 consequences of the "excluded volume effect" in exceedingly immobilized regions (Isas et al., 2002). In such a 68 scenario, sites may be very inaccessible to both O_2 and NiEDDA, but due to its smaller size, accessibility to O_2 69 is non-zero while accessibility to the larger molecule of NiEDDA is near zero. The plot indicates that this is not 70 71 the case here.

- 72
- 73
- 74
- 75
- 76
- 77

- 78 Table S1, related to Figures 1 and 3.
- **O**₂ and NiEDDA accessibilities for all of the spin labeled amphiphysin derivatives in vesicle or tube
- **bound states.** Values are the average of at least 3 independent measurements.

86 Figure S1

Figure S3

139	Spin Jabalad	n A Tube-bound		Vesicle-bound	
140	derivative	ПО,	ПNiEDDA	ΠO,	ПNiEDDA
140	5	0.46	0.23	0.36	0.52
141	6	0.61	0.09	0.52	0.16
142	7	0.52	0.17	0.30	0.37
1.42	8	0.37	0.33	0.39	0.54
143	9	0.52	0.09	0.39	0.18
144	10	0.50	0.09	0.39	0.18
145	11	0.42	0.24	0.22	0.66
	12	0.43	0.25	0.30	0.33
146	13	0.59	0.07	0.49	0.12
147	15	0.20	0.18	0.20	0.26
148	16	0.33	0.04	0.32	0.15
140	17	0.53	0.03	0.34	0.11
149	19	0.28	0.12	0.17	0.65
150	20	0.45	0.06	0.22	0.10
	54	0.10	0.18	0.08	0.40
151	58	0.13	0.18	0.18	1.29
152	59	0.08	0.15	0.08	0.42
153	94	0.27	1.36	0.22	1.10
155	97	0.19	1.17	0.31	1.43
154	101	0.27	1.07	0.23	1.11
155	103	0.16	1.25	0.16	1.03
	105	0.22	1.16	0.21	0.99
156	107	0.22	1.41	0.23	1.15
157	111	0.23	1.65	0.18	1.43
158	113	0.24	1.25	0.21	0.85
150	133	0.17	0.25	0.17	0.91
159	144	0.23	0.18	0.11	0.49
160	145	0.26	0.80	0.20	0.72
1.61	146	0.15	0.30	0.16	0.64
161	147	0.08	0.08	0.08	0.21
8	148	0.11	0.14	0.10	0.36

162 '	Table S1	(continued)
-------	----------	-------------

163					
	149	0.19	0.74	0.18	1.44
164	150	0.18	0.37	0.16	0.86
165	151	0.14	0.05	0.08	0.37
105	152	0.14	0.27	0.11	0.53
166	153	0.24	0.79	0.20	0.72
167	154	0.16	0.20	0.15	0.85
	156	0.26	1.00	0.20	1.04
168	157	0.23	0.97	0.21	1.83
169	158	0.20	0.52	0.18	1.27
170	159	0.25	1.01	0.22	1.07
170	160	0.28	0.72	0.22	0.97
171	161	0.27	1.16	0.22	1.82
170	162	0.26	0.92	0.23	1.58
172	163	0.24	1.32	0.24	1.28
173	164	0.22	0.90	0.20	1.26
174	165	0.26	1.48	0.18	1.54
	166	0.16	1.24	0.19	1.34
175	167	0.15	0.58	0.16	1.07
176	168	0.22	1.18	0.20	1.10
	169	0.23	1.76	0.23	1.32
177	170	0.18	0.24	0.11	0.99
178	171	0.04	0.06	0.06	0.29
	172	0.28	1.83	0.17	1.07
179	173	0.18	0.89	0.16	1.38
180	174	0.08	0.30	0.08	0.57
181	176	0.22	1.16	0.17	1.09

186 Supplemental references:

Altenbach, C., Greenhalgh, D.A., Khorana, H.G., and Hubbell, W.L. (1994). A collision gradient method to
determine the immersion depth of nitroxides in lipid bilayers: application to spin-labeled mutants of
bacteriorhodopsin. Proc. Natl. Acad. Sci. *91*, 1667–1671.

Bretscher, L.E., Buchaklian, A.H., and Klug, C.S. (2008). Spin-labeled lipid A. Anal. Biochem. 382, 129–
131.

Dalton, L.A., McIntyre, J.O., and Fleischer, S. (1987). Distance estimate of the active center of D-beta hydroxybutyrate dehydrogenase from the membrane surface. Biochemistry 26, 2117–2130.

Frazier, A.A., Roller, C.R., Havelka, J.J., Hinderliter, A., and Cafiso, D.S. (2003). Membrane-Bound
 Orientation and Position of the Synaptotagmin I C2A Domain by Site-Directed Spin Labeling. Biochemistry 42,
 96–105.

Hubbell, W.L., Gross, A., Langen, R., and Lietzow, M.A. (1998). Recent advances in site-directed spin
labeling of proteins. Curr. Opin. Struct. Biol. *8*, 649–656.

Isas, J.M., Langen, R., Haigler, H.T., and Hubbell, W.L. (2002). Structure and Dynamics of a Helical
 Hairpin and Loop Region in Annexin 12: A Site-Directed Spin Labeling Study. Biochemistry *41*, 1464–1473.

201