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1 NPHZ-V model of microbial ecosystem dynamics

1.1 Model with viruses

We propose the following systems of equations to represent the dynamic changes of biotic populations,
including heterotrophs (H), cynanobacteria (C), eukaryotic autotrophs (E), zooplankton (Z) and viruses
(Vi where i = H,C, and E), along with organic and inorganic nutrients (xon and xin respectively). The
system of equations (S1-S9) are nonlinear, coupled ODEs. Eq. (S10) makes explicit the export from the
system to higher trophic levels. We use units of particles/L for all populations and µmol/L for nutrient
concentrations. Hence, conversion factors, q, denote the equivalent nitrogen content of cells. Definition of
parameters are in Table S1. Parameters include those associated with interactions and with the nutrient
content of each biotic population on a per-cell basis.
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Heterotrophs: Ḣ =

H growth︷ ︸︸ ︷
µHHxon
xon +Kon

−
viral lysis︷ ︸︸ ︷
φV HHVH −

grazing︷ ︸︸ ︷
ψZHHZ −

organic loss︷ ︸︸ ︷
mon,HH −

respiration︷ ︸︸ ︷
min,HH (S1)

Cyanobacteria: Ċ =

C growth︷ ︸︸ ︷
µCCxin

xin +Kin,C
−

viral lysis︷ ︸︸ ︷
φV CCVC −

grazing︷ ︸︸ ︷
ψZCCZ −

organic loss︷ ︸︸ ︷
mon,CC −

respiration︷ ︸︸ ︷
min,CC (S2)

Euk. autos: Ė =

E growth︷ ︸︸ ︷
µEExin

xin +Kin,E
−

viral lysis︷ ︸︸ ︷
φV EEVE −

grazing︷ ︸︸ ︷
ψZEEZ −

organic loss︷ ︸︸ ︷
mon,EE −

respiration︷ ︸︸ ︷
min,EE (S3)

Zooplankton Ż =

grazing︷ ︸︸ ︷
pg

(
qH
qZ
ψZHHZ +

qC
qZ
ψZCCZ +

qE
qZ
ψZEEZ

)
−

respiration︷ ︸︸ ︷
mZZ −

consumption︷ ︸︸ ︷
mZPZ

2 (S4)

Viruses of H: ˙VH =

lysis︷ ︸︸ ︷
βHφV HHVH −

decay︷ ︸︸ ︷
mV HVH (S5)

Viruses of C: V̇C =

lysis︷ ︸︸ ︷
βCφV CCVC −

decay︷ ︸︸ ︷
mV CVC (S6)

Viruses of E: V̇E =

lysis︷ ︸︸ ︷
βEφV EEVE −

decay︷ ︸︸ ︷
mV EVE (S7)

Organic N: ẋon = −

H growth︷ ︸︸ ︷
qH
εH

µHHxon
xon +Kon

+

viral decay︷ ︸︸ ︷
qVmV HVH + qVmV CVC + qVmV EVE

+

H lysis by viruses︷ ︸︸ ︷
(qH − qV βH)φV HHVH +

C lysis by viruses︷ ︸︸ ︷
(qC − qV βC)φV CCVC +

E lysis by viruses︷ ︸︸ ︷
(qE − qV βE)φV EEVE

+

loss of H︷ ︸︸ ︷
qHmon,HH +

loss of E︷ ︸︸ ︷
qCmon,CC +

loss of C︷ ︸︸ ︷
qEmon,EE

+

H grazing by Z︷ ︸︸ ︷
ponqHψZHHZ +

C grazing by Z︷ ︸︸ ︷
ponqCψZCCZ +

E grazing by Z︷ ︸︸ ︷
ponqEψZEEZ (S8)

Inorganic N: ẋin =

import︷ ︸︸ ︷
−ω(xin − xsub) +

H growth︷ ︸︸ ︷
qH(1− εH)

εH

µHHxon
xon +Kon

−

C growth︷ ︸︸ ︷
qCµCCxin
xin +Kin,C

−

E growth︷ ︸︸ ︷
qEµEExin
xin +Kin,E

+

respiration︷ ︸︸ ︷
qZmzZ

+

respiration of H︷ ︸︸ ︷
qHmin,HH +

respiration of E︷ ︸︸ ︷
qCmin,CC +

respiration of C︷ ︸︸ ︷
qEmin,EE

+

H grazing by Z︷ ︸︸ ︷
pinqHψZHHZ +

C grazing by Z︷ ︸︸ ︷
pinqCψZCCZ +

E grazing by Z︷ ︸︸ ︷
pinqEψZEEZ (S9)

Export : Jout =

consumption︷ ︸︸ ︷
pexqZmZPZ

2 (S10)
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1.2 Model without viruses

We propose an alternative model without viruses:

Heterotrophs: Ḣ =

H growth︷ ︸︸ ︷
µHHxon
xon +Kon

−
grazing︷ ︸︸ ︷
ψZHHZ −

organic loss︷ ︸︸ ︷
mon,HH −

respiration︷ ︸︸ ︷
min,HH (S11)

Cyanobacteria: Ċ =

C growth︷ ︸︸ ︷
µCCxin

xin +Kin,C
−

grazing︷ ︸︸ ︷
ψZCCZ −

organic loss︷ ︸︸ ︷
mon,CC −

respiration︷ ︸︸ ︷
min,CC (S12)

Euk. autos: Ė =

E growth︷ ︸︸ ︷
µEExin

xin +Kin,E
−

grazing︷ ︸︸ ︷
ψZEEZ −

organic loss︷ ︸︸ ︷
mon,EE −

respiration︷ ︸︸ ︷
min,EE (S13)

Zooplankton Ż =

grazing︷ ︸︸ ︷
pg

(
qH
qZ
ψZHHZ +

qC
qZ
ψZCCZ +

qE
qZ
ψZEEZ

)
−

respiration︷ ︸︸ ︷
mZZ −

consumption︷ ︸︸ ︷
mZPZ

2 (S14)

Organic N: ẋon = −

H growth︷ ︸︸ ︷
qH
εH

µHHxon
xon +Kon

+

loss of H︷ ︸︸ ︷
qHmon,HH +

loss of E︷ ︸︸ ︷
qCmon,CC +

loss of C︷ ︸︸ ︷
qEmon,EE

+

H grazing by Z︷ ︸︸ ︷
ponqHψZHHZ +

C grazing by Z︷ ︸︸ ︷
ponqCψZCCZ +

E grazing by Z︷ ︸︸ ︷
ponqEψZEEZ (S15)

Inorganic N: ẋin =

import︷ ︸︸ ︷
−ω(xin − xsub) +

H growth︷ ︸︸ ︷
qH(1− εH)

εH

µHHxon
xon +Kon

−

C growth︷ ︸︸ ︷
qCµCCxin
xin +Kin,C

−

E growth︷ ︸︸ ︷
qEµEExin
xin +Kin,E

+

respiration︷ ︸︸ ︷
qZmzZ

+

H grazing by Z︷ ︸︸ ︷
pinqHψZHHZ +

C grazing by Z︷ ︸︸ ︷
pinqCψZCCZ +

E grazing by Z︷ ︸︸ ︷
pinqEψZEEZ

+

respiration of H︷ ︸︸ ︷
qHmin,HH +

respiration of E︷ ︸︸ ︷
qCmin,CC +

respiration of C︷ ︸︸ ︷
qEmin,EE (S16)

Export : Jout =

consumption︷ ︸︸ ︷
pexqZmZPZ

2 (S17)

1.3 Simulation framework

All simulations are conducted in MATLAB. The two models, with and without viruses, are simulated using
the same codebase. The code accepts a set of interactions and then builds a coupled system of ODE-s out
of this set. Numerical integration of the coupled system of ODE-s is done using a higher order Runga-Kutta
integration scheme (ode45 in MATLAB). A complete README is available and the source code is available
for use without restriction as a Supplementary File and is available for download at GitHub.

2 Parameter estimation

2.1 Rationale for upper and lower bounds of model parameters

Initial parameter ranges in Table S2 were based on established values in models of aquatic food webs with
viruses [27, 17] and without viruses [28, 22]. Because the current model differs in structure, some of the
parameter variation may have been due to virus effects and not explicitly modeled. As such, we tried, when
possible, to select broader potential parameter regimes for model selection, and utilized our targeted param-
eter search to identify those combinations of parameters that were compatible with biologically plausible
concentrations. Below are details on the rationale for parameter range selection, organized by event type.
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H growth : Heterotrophs can double on rates that vary from hourly to daily. However, as a functional
group, we utilized conventions of µH of approximately 0.5 to 2 days−1, consistent estimates ranging
from 0.1− 2 days−1 [7]. The half-saturation constant, Kon, are based on estimates of 0.5 µM N cited
in [4]. The growth efficiency εH is based on ranges established in [6] for ocean systems that have the
bulk of their variation between 0.1-0.3, with biological variation outside of that range.

C growth : Cyanobacteria doubling times are approximately 12 hrs-24 hrs [29] - which we expand to include
rates that correspond to approximately 0.5 to 2 days−1. The half-saturation rates are chosen from the
low end of reported phytoplankton ranges, which have been reported to be less than 0.2 µmol/L for
natural oceanic communities, to include the range 0.05 to 1 µmol/L [9, 8].

E growth : Eukaryotic autotrophs have maximum growth rates of hours to days, with substantial variation
given variation in nutrient availability. Yet, they can also have higher half-saturation constants than
do cyanobacteria with estimates of Kin,E reaching 10 µmol/L [14, 21, 15]. In practice, we select
half-saturation constants in the range of reported values from 0.5 to 10µmol/L [9, 21], and maximum
growth rates from 0.2 to 2 days−1.

Viral lysis : Maximum values of diffusion-limited adsorption rates are approximately 2× 10−9 L/(viruses-
days) given a microbial host with 2 µm diameter and a virus with a 50 nm diameter capsid. This rate
increases proportionately with host diameter and the inverse of virus effective radius. However, realized
diffusion-limited adsorption rates are less for biophysical reasons, e.g., receptors are not uniformly
distributed on cell surfaces, and ecological reasons, e.g., not all host cells are targeted by all viruses [18].
Here we set the upper limit of adsorption to be 5 times below the maximum. In practice, we selected
a lower range two or three orders of magnitude below. Next, burst sizes vary significantly for viruses
of marine microbes. We used baseline estimates that burst sizes range from 20-40 for lysis of marine
heterotrophs [20]. We permitted higher upper ranges (up to 100) for infections of cyanobacteria even
higher upper ranges (up to 500) for infections of microeukaryotes [3]. Upper limits of lysis in certain
infections of large phytoplankton have been reported but were not included in the ranges [3].

Viral decay : Residence times of virus particles in the upper surface ocean have been estimated to be on
the order of 1 day [25]. Here we permit potentially faster clearance, at a rate up to 5 days−1. Intrinsic
decay rates have been estimated to be on the order of weeks at room temperature [5] which sets our
lower limit of decay of 0.05 days−1.

Zooplankton grazing Stock and Dunne [22] implemented a Type-II functional response for grazing. Here,
we utilize a Type-I functional response. These can be compared in the limit of small prey densities.
Stock and Dunne [22] report:

Imax,SZ
KI,SZ

=
5

[0.68− 1.18]

m3

daymmolesN
= 4.2− 7.4

L

day µmolN

The range used here is inclusive with:

ψ

qZ
=

[10−6 − 10−4]

[5× 10−54× 10−4]

L

day µmolN
= 0.025− 20

L

day µmolN

consistent with observations in [12]. The use of an extended lower limit enables the exploration of a
dynamic range in which zooplankton are relatively less efficient than viruses in clearing hosts. The
value of the half-saturation constant, KI,SZ in [22] was calibrated to their data and does not have an
analogous parameter in the current model. The fixed value of 40% assimilation efficiency pg is based on
measurements of approximately 20%-40% efficiency for nano-microflagellates, with additional variation
outside of this 75% confidence interval [23]. The breakdown between egestion, pon, and respiration,
pin, are based on outcomes reported in [19].

Grazer respiration Stock and Dunne [22] used ranges: 0.05-0.4 day−1 for small zooplankton and 0.02-0.16
day−1 for large zooplankton. Here we utilize the range 0.025− 0.1day−1.
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Consumption by higher predators The parameter mZP enables the closure of the model, as it corre-
sponds to consumption of the “top” predator in the current model by other, larger predators. A
fraction, pex of this is transferred out of the system to higher trophic levels. The limits were calibrated
to ensure model coexistence in a plausible regime.

Import The concentration of inorganic nutrient below the nutricline determined the value of xsub [28]. The
stable mixed layer has a turnover time ranging from 50 to 200 days. This is a feature of the assumption
of a highly retentive surface microbial ecosystem as modeled here.

Nutrient levels Cyanobacteria nitrogen content can vary with strain and growth conditions, e.g., from
approximately 10 to 50 fg per cell with the strains Prochlorococcus MED4, Synechococcus WH8012
and Synechococcus WH8013 respectively [2]. This range corresponds to 0.7×10−9 to 3.5×10−9 µmol
N per cell, which is used as the basis for the selected range of 0.5-4×10−9. Note that although
heterotrophic cell sizes can be smaller, e.g., on the order of 20 fg per cell [7], they also differ in the
nutrient content, with larger-than-expected nitrogen-to-carbon ratios [24]. Here, an identical range for
nitrogen content is used for heterotrophs. Eukaryotic autotrophs spanning a size range 2 − 5 µm in
size are approximately 5 times large in size. This increase in physical dimension translates into an
approximately two-order of magnitude increase in carbon and nitrogen content, such that we assume
qE ≈ 2× 10−7 µmol N/cell and include variation around this baseline. The nano-/micro-zooplankton
group are assumed to be 1 order of magnitude larger in physical dimension, i.e., between 10−50 µ m in
size, such that they have a baseline nitrogen content of qZ ≈ 10−4 µmol N/cell with variation around
that value. Finally, viral nitrogen content, qV , has been estimated via a first principles biophysical
theory to range between 1.4 × 10−12 − 14 × 10−12 µmol N/(virus particle) for viruses whose capsids
have diameters between 30-70 nm [13]. Estimates for nutrient content of viruses are based on estimates
focusing on the heads of bacteriophage particles containing dsDNA without lipids. We expand this
range to account for potential biological variation, in both size and structure, across all three types,
ranging from 0.5× 10−12 to 20× 10−12 µmol N/particle.

Cellular loss We include a linear loss of phytoplankton to inorganic material to represent basal metabolic
losses and a similar loss to organic material to represent exudation. Basal respiration ranges were
informed by baseline estimates of 10% relative to production rates, using 1 per day production as
a baseline [10] (while noting that variation can be substantial, particular during starvation periods).
Basal exudation rates were informed by [1], which estimates that approximately 13% of total fixed
organic matter is released. We set the upper range to be approximately 1/10 of maximum growth
rates when growing at a rate of 1 per day. The model analysis is robust to choices in these ranges, so
long as dominant forms of mortality are due to interactions rather than death due to loss of viability
in the absence of nutrients (i.e., exudation and respiration).

2.2 Constraints on parameter combinations

Parameters within bounds, delineated above, cannot always be chosen independently. In particular, the
nitrogen content of virions released upon lysis cannot exceed the nitrogen content of uninfected hosts. Hence,
we find the following self-consistency conditions:

qH > qV βV H qC > qV βV C qE > qV βV E

where β denotes the burst size of a particular viral-host interaction (denoted in the subscript). Similarly,
for self-consistency, the nitrogen content of zooplankton produced due to grazing cannot exceed the nitrogen
content of hosts consumed. This is ensured by using ratios of the species q-values multiplied by a fractional
use. Note that the ultimate destination of organic material grazed by zooplankton must satisfy:

growth︷︸︸︷
pg +

egestion︷︸︸︷
pon +

respiration︷︸︸︷
pin = 1

Finally, at steady state export must balance import, which reflects the balance of net import of inorganic N
with the export of organic N (either up the food chain or exported out of the surface layer).
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3 Analytical solutions of the coexistence steady state in models
with and without viruses

3.1 Algebraic solutions of the steady state for the model with viruses

The derivation of steady states is the multi-trophic model with viruses is straightforward, though not all of
the algebraic solutions yield significant insight. For completeness, we present the derivation in its entirety.
To begin, set equations (5-7) to 0, yielding:

H∗ =
mV H

βHφV H
(S18)

C∗ =
mV C

βCφV C
(S19)

E∗ =
mV E

βEφV E
(S20)

where the asterisks denote steady state densities. Further, note that grazer dynamics only depend on Z and
the densities of the three microbial guilds. Hence, Z∗ can also be solved:

Z∗ =

pg
qZ

(qHψZHH
∗ + qCψZCC

∗ + qEψZEE
∗)−mZ

mZP
(S21)

Because of nutrient balance, we also have a solution for x∗in:

x∗in = xsub −
qZmZP (Z∗)

2

ω
(S22)

With this in hand, we also have solutions for the viral levels of cyanobacteria and eukaryotes:

V ∗C =

µCx
∗
in

x∗
in+Kin,C

− ψZCZ∗ −min,C −mon,C

φV C
(S23)

V ∗E =

µEx
∗
in

x∗
in+Kin,E

− ψZEZ∗ −min,E −mon,E

φV E
(S24)

Finally, there are two equations that we can use to help solve for x∗on and V ∗H . First, from the dynamics
of heterotrophs (Equation 1):

µHx
∗
on

x∗on +Kon
= φV HV

∗
H + ψZHZ

∗ +min,H +mon,H (S25)

This implies that:

x∗on =
Kon (φV HV

∗
H + ψZHZ

∗ +min,H +mon,H)

µH − φV HV ∗H − ψZHZ∗ −min,H −mon,H
(S26)

This equation is implicit in V ∗H , which we solve next. Then, recalling the dynamics of organic N:

Organic N: ẋon = −

H growth︷ ︸︸ ︷
qH
εH

µHHxon
xon +Kon

+

viral decay︷ ︸︸ ︷
qVmV HVH + qVmV CVC + qVmV EVE

+

H lysis by viruses︷ ︸︸ ︷
(qH − qV βH)φV HHVH +

C lysis by viruses︷ ︸︸ ︷
(qC − qV βC)φV CCVC +

E lysis by viruses︷ ︸︸ ︷
(qE − qV βE)φV EEVE

+

loss of H︷ ︸︸ ︷
qHmon,HH +

loss of E︷ ︸︸ ︷
qCmon,CC +

loss of C︷ ︸︸ ︷
qEmon,EE

+

H grazing by Z︷ ︸︸ ︷
ponqHψZHHZ +

C grazing by Z︷ ︸︸ ︷
ponqCψZCCZ +

E grazing by Z︷ ︸︸ ︷
ponqEψZEEZ (S27)
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we replace the first term and isolate V ∗H (ignoring the ∗ for now, but we will re-insert them later):

VH

(
qHφV HH

εH
− qVmV H − (qH − qV βH)φV HH

)
= −qHH

εH
(ψZHZ +min,H +mon,H) + qVmV CVC + qVmV EVE

+(qC − qV βC)φV CCVC + (qE − qV βE)φV EEVE

+ponqHψZHHZ + ponqCψZCCZ + ponqEψZEEZ

+qHmon,HH + qCmon,CC + qEmon,EE

≡ ℵ (S28)

And so, omitting ∗ on the right hand side given the size of the equation):

V
∗
H =

ℵ
qHφVHH

εH
− qVmVH − (qH − qV βH)φVHH

(S29)

Our finding of an algebraic solution facilitates rapid evaluation of the dependence of steady state densities
on parameters. We do not claim that the algebraic forms, in and of themselves, are necessarily insightful.

3.2 Algebraic solutions of the virus-free steady state

As discussed in the main text, viruses act to enrich for diversity. Without viruses, then either the cyanophage
or the eukaryotic phytoplankton go extinct. From a model standpoint, the reason is that both cyanophage
and the eukaryotic phytoplankton functional groups compete for the same (single) resource and are subject
to the same grazer. If we had used different functional responses or multiple resources then coexistence could
be possible, even without viruses. Hence, let us for a moment consider the case where C∗ = 0 and all the
viruses are zero. In that case, and dropping the ∗ for now, we recognize that the steady state solution can
be found as follows.

First, because of nutrient balance, we also have a solution for xin:

xin = xsub −
qZmZPZ

2

ω
(S30)

However, because of the conditions implied by Ė = 0, then

Z =
1

ψZE

[
µExin

(xin +Kin,E)
−mon,E −min,E

]
(S31)

which can substitute back to yield (with mE ≡ min,E +mon,E):

xin = xsub −
qZmZP

ωψ2
ZE

[(
µExin

xin +Kin,E

)2

− 2mEµExin
xin +Kin,E

+m2
E

]
.

Noting that C = qZmZP
ωψ2

ZE
, we can rewrite this as:

xin = xsub − C

[(
µExin

xin +Kin,E

)2

− 2mEµExin
xin +Kin,E

+m2
E

]
.

and re-arranging terms yields:

xin (xin +Kin,E)
2

= xsub (xin +Kin,E)
2 − Cµ2

Ex
2
in + 2CmEµExin (xin +Kin,E)− Cm2

E (xin +Kin,E)
2
.

(S32)
We then expand this out in like terms such that

x3in + C2x
2
in + C1xin + C0 = 0

where

C2 = 2Kin,E − xsub + Cµ2
E − 2CmEµE + Cm2

E (S33)

C1 = K2
in,E − 2xsubKin,E − 2CmEµEKin,E + 2Cm2

EKin,E (S34)

C0 = −xsubK2
in,E + Cm2

EK
2
in,E (S35)
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We can then solve this cubic algebraically to find x∗in. It is well known that this may admit 1 or 3 real
solutions (ignoring degenerate cases). Defining ∆ = 18C2C1C0− 4C3

2C0 +C2
2C

2
1 − 4C3

1 − 27C2
0 , we note that

when ∆ > 0 then there will be three real roots and when ∆ < 0 there will be one real root. The sign of ∆
and the positivity (or not) of roots is examined numerically.

Next, we work progressively to solve the remainder of the steady state values algebraically, implicit given
the value of x∗in. First, zooplankton:

Z =

[
ω (xsub − xin)

qzmZP

]1/2
(S36)

then using the Ḣ = 0 condition:

xon =
Kon (ψZHZ +mon,H +min,H)

µH − ψZHZ −mon,H −min,H
(S37)

then using the ẋon equation and the relationship implied by the Ż equation, yields:

H

[
qHµHxon

εH (xon +Kon)
− qHmon,H + qEmon,E

qHψZH
qEψZE

]
=

ponqZZ (mZ +mZPZ)

pg

+qEmon,E
qZ (mZ +mZPZ)

pgqEψZE
(S38)

such that

H =

ponqZZ(mZ+mZPZ)
pg

+ qEmon,E
qZ(mZ+mZPZ)

pgqEψZE[
qHµHxon

εH(xon+Kon)
− qHmon,H + qEmon,E

qHψZH
qEψZE

] (S39)

and finally,

E = (mZPZ +mZ − pgqHψZHH/qZ)
qZ

pgqEψZE
(S40)

Due to the symmetry of the model construction, a similar steady state is found in cases where E → 0 and,
instead C∗ > 0.

3.3 Stability of equilibria

We evaluated the expected stability of feasible fixed points. The stability was evaluated by calculating the
Jacobian at the equilibrium. An analytic expression for the Jacobian was evaluated automatically based
on the first derivatives of the predicted steady states. The Jacobian was then evaluated given parameters
and predicted densities for each fixed point (complete expressions available as a source file in the software
release). The stability of the steady state was classified into stable nodes, stable spirals, unstable nodes
and unstable spirals. The conditions for each were based on the real and imaginary components of the
largest eigenvalue. Stability was determined based on whether the largest eigenvalue was negative (stable)
or positive (unstable). Nodes had no imaginary component where spirals did. For example, a fixed point
was considered to be a stable spiral if the real part of the largest eigenvalue was negative, but at least one
eigenvalue had a non-zero imaginary term.

4 Sensitivity analysis

4.1 Latin-hypercube sampling of parameters

A LHS approach was used to sample parameter space [16]. Of the 38 parameters, 35 were allowed to
vary. The three that remained fixed for all models were related to the fractional allocation of prey biomass
consumed by zooplankton, i.e., pg, pon, and pin. We used uniform distributions in logarithmic space where
the lower and upper bounds for all parameters are shown in Table S1. We used 10 resamples for each of 105

independent selection of midpoints within the stratified 35-dimensional parameter space, for a total of 106

random parameter sets.
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4.2 Identifying baseline parameters consistent with “known” system densities

Initial parameters were chosen by first establishing approximate values for all parameters from the literature
and from first-principle derivations. Given that parameters represent functional groups, these initial values
were used to seed an automatic approach to finding parameter sets compatible with steady state densities
commonly observed in the surface oceans. Because there are 38 parameters and multiple constraints among
parameters, the following automated procedure was developed:

1. An initial guess for all parameters was chosen, denoted as x0. This value was selected via LHS approach
(see Table S2).

2. Lower and upper bounds were selected for all parameters, denoted as xl and xh, respectively. The
bounds were in most cases a factor of 2 below and above the initial guesses, except for interaction rates
which are often most uncertain, which were allowed to vary by 3 or 4 orders of magnitude.

3. A nonlinear minimization routine (fmincon in MATLAB) was utilized to find an optimal set of 38

parameters which we aggregate as a single vector ~θ. The objective was to find a parameter set ~θ∗ that
satisfied:

~θ∗ ∈ ~θ such that Min
13∑
i=1

log

(
yti(
~θ)

y∗i

)2

(S41)

where yt(θ) is the model output given a candidate parameter set θ and y∗ is the vector of target
densities, i.e.,

y∗d ≡ (H∗, C∗, E∗, Z∗, V ∗H , V
∗
C , V

∗
E , x

∗
on, x

∗
in, . . .) (S42)

augmented by four additional features, the ratio of virus to hosts, and the fraction of mortality of H,
C and E due to viruses, for a total of 13 targets. The index i denotes one of the 13 components of
the model output. The choice of this is meant to weight all output features equally, while balancing
deviations on vastly different scales.

The following are the “target” set of densities utilized in this procedure:

H∗ = 2× 108

C∗ = 2× 108

E∗ = 2× 106

Z∗ = 5× 104

V ∗H = 2× 109

V ∗C = 2× 109

V ∗E = 2× 107

x∗on = 5

x∗in = 0.1

Ratio of viruses to hosts = 10,

Fractional mortality due to viruses of H = 0.5

Fractional mortality due to viruses of C = 0.25

Fractional mortality due to viruses of E = 0.1

Here, the densities are in units of particles/L with the exception of x∗on and x∗in which are in units of µmol/L.
The nonlinear optimization process yielded parameter sets, of which the top 5% are seen in Figure 4.

4.3 Sloppy-stiff analysis

Parameters in a model can have substantially different effects on model output. One approach to characterize
these effects is via a form of sensitivity analysis termed sloppy-stiff analysis [11, 26]. Parameters which cause
large changes to output given small variations in their values are referred to as stiff. In contrast, parameters
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which cause small changes to output given small variations in their values are referred to as sloppy. The
information necessary to characterize the relative sloppiness and stiffness of all parameters can be derived
from a Hessian matrix, where the ij-th element is defined as:

Hij =
∑
n

∂log yn
∂log θi

∣∣∣∣
~θ∗

∂log yn
∂log θj

∣∣∣∣
~θ∗

=
∑
n

θ∗i θ
∗
j

(y∗n)2
∂yn
∂θi

∣∣∣∣
~θ∗

∂yn
∂θj

∣∣∣∣
~θ∗
. (S43)

There are n total variables in the model and the reference parameters are represented by a vector ~θ.
The bar notation emphasizes that the partial derivatives are evaluated at the reference parameter set. The
argument of the sum is made unitless by a prefactor involving the reference parameter set, ~θ∗ and the
respective equilibrium values of the variables, ~y∗. Each element of the Hessian is interpreted as the sum of
the relative changes of each variable due to relative changes of the respective parameters. Here, we considered
perturbations to all parameters except pg, pon, and pin due to the algebraic constraint restricting their values
to a subspace. Moreover, we focus the sloppy-stiff analysis on the reference parameter set associated with
the lowest deviation from the target densities.

Eigenvalues of the Hessian quantify the total amount of change to all variables given a perturbation to
a combination of parameters defined by the respective eigenvector. The eigenvalue spectrum shows that
perturbations to some combinations of parameters cause a majority of the effect on variables (Figure S6).
Each eigenvalue corresponds to some combination of parameters. In our case, the eigenvalue spectrum is
dominated by the principle eigenvalue. To get a sense of which parameters are stiff and sloppy We compute
the orientation of the principle eigenvector in parameter space to identify those parameters that are most
“stiff” (Figure S7). For this reference set and metric of perturbations, small values associated with the
cyanobacteria processes and with zooplankton respiration are predicted to have the largest effect on output.
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Figure S1: Dynamics of the model near putative steady states. (A) Dynamics shown to asymptotically
converge to steady state. (B) Dynamics shown to diverge from a steady state leading to a limit cycle. In
both cases, filled circles denoted at 300 days denote predicted equilibrium values of populations and nutrients,
given parameters listed in Supplementary Table S1.
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Figure S2: Cumulative distributions, p≤(d), of deviations d from the target set of 13 densities and indices
associated with equilibria of the multi-trophic ecosystem model (see text for main details). Distributions
are associated with fixed points that are stable (solid line) or unstable (dashed line). The inset focuses on
deviations d ≤ 20, where it is evident that smaller deviations are associated with fixed points that are stable.
94% of the top 5% of parameters sets corresponded to equilibrium that were locally stable. Further, we find
that the distribution of deviations associated with stable and unstable fixed points are significantly unequal
(p � 10−10). In particular, as is evident in Figure S2, the cumulative distribution of the deviations, d, has
significantly greater mass at low values of d for equilibria associated with stable fixed points than it does for
those associated with unstable fixed points.
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Figure S3: Distributions of parameter values obtained via nonlinear optimization. The distribution corre-
spond to the top 5% of model feature output. The barcodes represent intensity histograms (white denotes
greater number of replicates). There are two “barcodes” associated with each parameter. The top barcode
corresponds to the distribution of parameters associated with feasible parameter sets obtained via the LHS
sampling. The bottom barcode corresponds to the distribution of parameters in the targeted parameter sets
obtained via nonlinear optimization. The green diamond denotes the value of the parameter associated with
the best hit model replicate.
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Figure S4: NPP for the top 5% of model replicates. NPP in units of mg C m−2 days−1 was calculated
by multiplying the total net primary productivity in units of µmol N L−1 days−1 by the conversion factors
(106/16) (denoting a baseline C:N ratio), 25 m (denoting a euphotic zone, above the nutricline), and 12.01
(denoting g C per mole). Note that moving from µmol to mmol and L to m3 involving canceling factors of
1000. The NPP has a mean of 1030 with a standard deviation of 260.

15



1 1.5 2 2.5

x 10
8

1.5

2

2.5

Density /L

T
u
r
n
o
v
er

(d
a
y
s) H

1 2 3 4

x 10
8

0

2

4

6

Density /L

T
u
r
n
o
v
e
r
(d

a
y
s
)

C

1 2 3 4

x 10
6

0

10

20

30

Density /L

T
u
r
n
o
v
er

(d
a
y
s) E

1 2 3 4

x 10
4

0

10

20

30

40

Density /L

T
u
r
n
o
v
er

(d
a
y
s) Z

1 2 3 4

x 10
9

2

4

6

8

Density /L

T
u
rn

o
v
er

(d
a
y
s) VH

1 2 3

x 10
9

0

5

10

15

Density /L

T
u
rn

o
v
er

(d
a
y
s) VC

2 3 4

x 10
7

5

10

15

20

Density /L

T
u
rn

o
v
e
r
(d

a
y
s) VE

3 4 5 6
5

10

15

20

25

Density /L

T
u
rn

o
v
e
r
(d

a
y
s) xon

0 0.2 0.4
0

0.1

0.2

0.3

0.4

Density /L

T
u
rn

o
v
e
r
(d

a
y
s) xin

Figure S5: Turnover time, in days, for all dynamic variables, as estimated for the targeted parameter sets.
In general, given a nonlinear dynamical system of the form ẋ = a − kx where a is an input rate and k is
a turnover rate, the expectation is that the variable x has a residence time (or equivalently, turnover time)
of τ = 1/k. Note that the equilibrium, x∗ = a/k. Hence, the turnover time can be estimated based on the
loss rate τ− = x∗

kx∗ = 1
k or the input rate τ+ = x∗

a = a
ak = 1

k . These must be equal at equilibrium as inputs
balance losses. We apply this same principle to estimate the turnover time for each of the nine variables in
the model. In each case, the dynamical system in Eqs. (A1-A9) can be separated into input terms, I, and
loss terms, D. Then, for each equilibrium x∗(θ) associated with a parameter set θ, the turnover time was
estimated at the equilibrium.
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in model output are due to deviations along a single, principle eigenvector, associated with the principle
eigenvalue. Analysis done by considering perturbations to all parameters except pg, pon, and pin.
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Event Variable Meaning Units Attracting Limit cycle

H growth
µH Max H growth rate day−1 0.51 0.61
Kon Half-saturation constant µmol/L 0.94 0.68
εH Efficiency N/A 0.20 0.19

C growth
µC Max C growth rate day−1 1.97 0.68
Kin,C Half-saturation constant µmol/L 0.053 0.059

E growth
µE Max E growth rate day−1 7.5 5.4
Kin,E Half-saturation constant µmol/L 5.4 5.8

Viral lysis

φV H Lysis rate L/(virus·day) 8.0× 10−12 4.3× 10−11

φV C Lysis rate ibid 9.9× 10−11 1.9× 10−11

φV E Lysis rate ibid 5.8× 10−11 6.7× 10−11

βH Burst size N/A 25 15
βC Burst size N/A 16 82
βE Burst size N/A 440 370

Viral decay
mV H Decay rate day−1 0.17 0.59
mV C Decay rate day−1 0.63 0.76
mV E Decay rate day−1 0.058 0.56

Zooplankton
grazing

ψZH Grazing rate L/(zoopl·day) 1.9× 10−6 2.2× 10−5

ψZC Grazing rate ibid 2.1× 10−5 4.2× 10−5

ψZE Grazing rate ibid 1.5× 10−6 2.8× 10−5

pg Fraction for growth N/A 0.4 0.4
pon Fraction egested N/A 0.3 0.3
pin Fraction respired N/A 0.3 0.3

Grazer respiration mZ Basal respiration day−1 0.048 0.051

Consumption by
higher predators

mZP Mortality rate L/(cells·day) 3.3× 10−7 2.8× 10−5

pex Fraction exported N/A 0.49 0.37

Import
ω Surface-deep mixing rate 1/day 0.016 0.077
xsub Deep inorganic N conc. µmol N/L 7.7 2.67

Nutrient levels

qH Nitrogen content of H µmol N/cell 8.8× 10−10 1.4× 10−9

qC Nitrogen content of C ibid 3.9× 10−9 3.0× 10−9

qE Nitrogen content of E ibid 2.1× 10−7 6.7× 10−8

qZ Nitrogen content of Z ibid 2.3× 10−4 3.9× 10−4

qV Nitrogen content of V ibid 2.0× 10−12 2.2× 10−12

Cellular loss

min,H H respiration day−1 0.0069 0.0067
min,C C respiration day−1 0.0050 0.016
min,E E respiration day−1 0.0043 0.0023
mon,H H organic loss day−1 0.014 0.034
mon,C C organic loss day−1 0.022 0.0063
mon,E E organic loss day−1 0.011 0.022

Table S1: Parameters used in simulations of Figure S1A (attracting) and Figure S1B (limit cycle) ecosystem
dynamics.
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Event Variable Meaning Units Lower Bound Upper bound

H growth
µH Max H growth rate day−1 0.50 2
Kon Half-saturation constant µmol/L 0.25 1
εH Efficiency N/A 0.05 0.2

C growth
µC Max C growth rate day−1 0.5 2
Kin,C Half-saturation constant µmol/L 0.05 1

E growth
µE Max E growth rate day−1 0.2 2
Kin,E Half-saturation constant µmol/L 0.5 10

Viral lysis

φV H Lysis rate L/(virus·day) 10−13 10−10

φV C Lysis rate ibid 10−13 10−10

φV E Lysis rate ibid 10−12 10−10

βH Burst size N/A 12.5 50
βC Burst size N/A 12.5 100
βE Burst size N/A 125 500

Viral decay
mV H Decay rate day−1 0.05 5
mV C Decay rate day−1 0.05 5
mV E Decay rate day−1 0.05 5

Zooplankton
grazing

ψZH Grazing rate L/(zoopl·day) 10−6 10−4

ψZC Grazing rate ibid 10−6 10−4

ψZE Grazing rate ibid 10−6 10−4

pg Fraction for growth N/A 0.4 0.4
pon Fraction egested N/A 0.3 0.3
pin Fraction respired N/A 0.3 0.3

Grazer respiration mZ Basal respiration day−1 0.025 0.1

Consumption by
higher predators

mZP Mortality rate L/(cells·day) 10−8 10−4

pex Fraction exported N/A 0.25 1

Import
ω Surface-deep mixing rate 1/day 0.005 0.02
xsub Deep inorganic N conc. µmol N/L 2.5 10

Nutrient levels

qH Nitrogen content of H µmol N/cell 5× 10−10 4× 10−9

qC Nitrogen content of C ibid 5× 10−10 4× 10−9

qE Nitrogen content of E ibid 5× 10−8 4× 10−7

qZ Nitrogen content of Z ibid 5× 10−5 4× 10−4

qV Nitrogen content of V ibid 0.5× 10−12 20× 10−12

Cellular loss

min,H H respiration day−1 0.001 0.1
min,C C respiration day−1 0.001 0.1
min,E E respiration day−1 0.001 0.1
mon,H H organic loss day−1 0.005 0.1
mon,C C organic loss day−1 0.005 0.1
mon,E E organic loss day−1 0.005 0.1

Table S2: Parameter ranges used for LHS sampling of initial parameters.
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