

**Supplementary Figure S1** Growth curves of *Polaribacter* sp. Hel1\_33\_49. The strain was grown at 12 °C in modified HaHa\_100 medium with 0.1 g L<sup>-1</sup> peptone, 0.1 g L<sup>-1</sup> casamino acids, 200  $\mu$ M NH<sub>4</sub>Cl, and 16  $\mu$ M KH<sub>2</sub>PO<sub>4</sub>. Laminarin (L9634, Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany) or chondroitin 4-sulfate (27042, Sigma-Aldrich) were used as carbon source, and D-mannose served as control (concentrations: 2.0 g L<sup>-1</sup>). Experiments with laminarin and chondroitin sulfate were carried out in triplicates. Maximum doubling times (Td) were estimated from semi-logarithmic plots of the data.



**Supplementary Figure S2** Variation of abundant GH families in 27 marine *Flavobacteriaceae* genomes (Supplementary Table S3). Data are shown as box and whisker plots with boxes representing inner quartiles Q2 and Q3 and whiskers extending to 5% and 95% percentiles. Circles represent data outside these boundaries. Only those 58 GH families are shown that are represented by at least three copies in the entire dataset. Only families GH3, GH13 and GH23 were universally present in all analyzed genomes (red triangles).



**Supplementary Figure S3** Comparison of CAZyme categories (CBM, CE, GH, GT, PL) between *Polaribacter* species (Po) and other marine reference *Flavobacteriaceae* (RF) with sequenced genomes (Supplementary Table S3). Data are shown as notched box and whisker plots with boxes representing quartiles Q2 and Q3 and whiskers and extending to 5% and 95% percentiles. Circles represent data outside these boundaries. CBM = carbohydrate-binding module; CE = carbohydrate esterase; GH = glycoside hydrolase; GT = glycosyltransferase; PL = polysaccharide lyase.



**Supplementary Figure S4** PULs of the *Polaribacter* sp. Hel1\_33\_49 genome (all located on the larger of the two contigs). Numbers in genes indicate family affiliations of glycoside hydrolases, carbohydrate esterases, sulfatases and carbohydrate-binding modules. The asterisk indicates a likely sequencing error in an A-homopolymer stretch that results into two seemingly fused genes.



**Supplementary Figure S5** PULs and a PUL-like gene cluster (E) of the *Polaribacter* sp. Hel1\_85 genome. Superscript characters indicate contigs (a-c = from the largest down to smaller contigs). Numbers in genes indicate family affiliations of glycoside hydrolases, carbohydrate esterases, sulfatases and carbohydrate-binding modules.



**Supplementary Figure S6** Abundant peptidase families in 27 marine *Flavobacteriaceae* with sequenced genomes (Supplementary Table S3). Data are shown as box and whisker plots with boxes representing quartiles Q2 and Q3 and whiskers extending to 5% and 95% percentiles. Circles represent data outside these boundaries. Ninety different MEROPS families were found, but only families with at least three peptidases in the entire dataset are shown. Red triangles indicate the total of 27 families that were universally present in all *Flavobacteriaceae*.



**Supplementary Figure S7** Comparison of MEROPS categories (C-, M- S-, A-, T-, U-type peptidases) between *Polaribacter* species (Po) and other marine reference *Flavobacteriaceae* (RF) with sequenced genomes (Supplementary Table S3). Data are shown as notched box and whisker plots with boxes representing quartiles Q2 and Q3 and whiskers extending to 5% and 95% percentiles. Circles represent data outside these boundaries. The abundant cysteine- (C), metallo- (M), and serine- (S) peptidases are shown in the upper panel, and the less abundant aspartic- (A), threonine- (T), and unknown (U) type peptidases in the lower panel.



0.01

**Supplementary Figure S8** Phylogenetic tree of proteorhodopsin (PR) genes sequences of *Polaribacter* sp. Hel1\_33\_49 and related *Flavobacteriaceae*. PR gene sequences were retrieved from Genbank and aligned using MAFFT. Full-length PR sequences were used to construct phylogenetic trees in Arb using a 40% base conservation filter with the neighbor-joining with Jukes-Cantor correction and the RAxML maximum likelihood methods. A consensus tree was built and partial PR sequences were subsequently added by parsimony. Strains were PR activity was shown are indicated by a hash; strains for which genomes are available are indicated by an asterisk. Bar: 0.01 substitutions per nucleotide position.



**Supplementary Figure S9** Synteny of the DNA photolyase/cryptochrome (red) gene clusters among the three rhodopsin-containing *Polaribacter* strains  $23-P^{T}$  (A), Hel1\_33\_49 (B), and MED152 (C). Genes in white are conserved hypotheticals or genes that belong to generic superfamilies, but for which the exact functions are unknown. Genes that are not present in all three strains are depicted in bold.



**Supplementary Figure S10** Comparative genomics of 27 *Flavobacteriaceae* genomes (Supplementary Table S3): Relationship between mannitol dehydrogenase, bacteriorhodopsin and sulfatase gene copy numbers (based on matches to the Pfam profiles Mannitol\_dh, Bac\_rhodopsin with  $\leq$  E-5 and sulfatase with  $\leq$  E-13) and the number of CAZyme families (trend lines: 2nd order polynominal regressions).



Supplementary Figure S11 (A) Structure of the *rnf* operon of *Polaribacter* sp. Hel1\_85 and the two most similar rnf operons in terms of best BLAST hits from *Methylomicrobium alcaliphilum* 20Z<sup>T</sup> and *Halorhodospira halophila* SL1<sup>T</sup>. Numbers above genes refer to locus tags of strain Hel1\_85. (B) Distribution of phylum-level best BLAST hits for the Polaribacter sp. Hel1\_85 rnf operon indicating lateral acquisition from a gammaproteobacterial species.



| Locus | P. sp. Hel1_33_49 | P. sp. Hel1_85   | Annotation                                                                                    |
|-------|-------------------|------------------|-----------------------------------------------------------------------------------------------|
|       | PHEL49_           | PHEL85_          |                                                                                               |
| 2     | 846               | 2160             | nitrite reductase (NAD(P)H), large subunit                                                    |
| 6     | 845               | 2159             | nitrate reductase (NAD(P)H), small subunit                                                    |
| 12    | 844               | 2158             | conserved hypothetical protein (DUF4202)                                                      |
| 5     | 843               | 2157             | multi-sensor signal transduction histidine kinase                                             |
| 4     | 842               | 2156             | transcriptional regulator                                                                     |
| 1     | 841               | 2154             | periplasmic nitrate reductase/nitrite reductase                                               |
| 3     | 840               | 2153, 2150, 2149 | rubredoxin                                                                                    |
| 9     | 839               | 2152, 2148       | transcriptional regulator                                                                     |
| 17    | 838               | _                | nitrate ABC transporter, nitrate-binding protein                                              |
| 18    | 837               | _                | nitrate transporter, permease                                                                 |
| 14    | 836, 835          | _                | nitrate transporter, ATP-binding protein                                                      |
| 7     | 834               | _                | conserved hypothetical protein                                                                |
| 8     |                   | 2155             | nitrate/nitrite transporter                                                                   |
| 11    | _                 | _                | nitrate ABC transporter, ATP-binding protein                                                  |
| 15    | -                 | _                | molybdenum cofactor biosynthesis protein MoaC / molybdenum cofactor biosynthesis protein MoaB |
| 10    | _                 | _                | nitrate ABC transporter, permease protein                                                     |
| 13    | _                 | _                | nitrate/nitrite transporter                                                                   |
| 16    | _                 | _                | uroporphyrinogen-III methyltransferase                                                        |

**Supplementary Figure S12** Clustered assimilatory nitrate reduction genes in the *Polaribacter* sp. Hel1\_33\_49 and sp. Hel1\_85 genomes as well as in other *Flavobacteriaceae*.