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S1 Text

1 Stochastic patch occupancy models

The starting point for stochastic patch occupancy models (SPOMs, [21]) is Levins’s
model [2]. The model assumes a large number of identical patches of suitable habitat
that may or may not be occupied by a local population. The proportion of patches p(t)
that are occupied at time t is governed by the equation

dp(t)

dt
= cp(t) (1− p(t))− ep(t), (1)

where c is the colonization rate and e is the extinction rate. The metapopulation is
persistent whenever e/c < 1, i.e., the colonization rate exceeds the extinction rate.

This model is spatially implicit: individual patches and local population persistence
probabilities are not modeled explicitly. To make the model spatially explicit, one
should specify the location of the patches in the landscape. The geometry of the
landscape will then dictate the rate at which individuals in a patch colonize other
patches, with colonization rates typically decreasing with the distance between the
patches. Moreover, patches can differ in size or suitability such that the dynamics of a
local population depends on the patch “value”.

Hanski & Ovaskainen [3,20,21] proposed a model in which the colonization and
extinction rates depend both on the particular patch under consideration and the
occupancy state of all the other patches:

dpi(t)

dt
= (1− pi(t))Ci − pi(t)Ei, (2)

where pi(t) is the probability that patch i is occupied at time t, and
Ci = Ci (p1(t), . . . , pN (t)) and Ei = Ei (p1(t), . . . , pN (t)) are the colonization and
extinction rates of patch i as a function of the current distribution of the population
over the landscape (N is the total number of patches).

The model also incorporates the notion of patch “value” (e.g., a function of the
patch size and the density of available resources), which measures the probability of
incidence on a given patch without any immigration from other patches, and can
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therefore be interpreted as the carrying capacity of the patch. The colonization rates
are assumed to be directly proportional to this value, while the extinction rates are
assumed to be inversely proportional to it. Denoting the value of patch i by Ai, the
extinction rate in patch i is Ei = δ/Ai, where δ is the extinction rate per unit patch
value. Without loss of generality we assume that, up to a rescaling of δ, the mean patch
value (averaged over all the N patches) is one, i.e.,

∑
iAi/N = 1.

The colonization rate of patch i is composed of the contribution of all other patches,
with the contribution of each patch being a function of the distance between the
patches. This function is called the dispersal kernel and is denoted f (|xi − xj |/ξ),
where xi is the spatial position of patch i, |xi − xj | is the Euclidean distance between
patches i and j, and ξ is the dispersal distance, i.e., the characteristic distance the
population can traverse in a unit of time. The colonization rate is therefore
Ci =

∑N
j 6=i f (|xi − xj |/ξ)Ajpj . Hanski & Ovaskainen [2] studied the special case of an

exponential dispersal kernel f (|xi − xj |/ξ) = exp (−|xi − xj |/ξ), but for a general
kernel, we have:

dpi(t)

dt
=

N∑
j 6=i

(1− pi(t)) f
(
|xi − xj |

ξ

)
Ajpj(t)−

δ

Ai
pi(t). (3)

Introducing the matrix M with the definition

Mij =

 f

(
|xi − xj |

ξ

)
AiAj , i 6= j,

0, i = j,
(4)

Hanski & Ovaskainen [2] derived a simple persistence rule: the metapopulation persists
as long as the extinction rate δ < λ, where λ is the leading (largest, rightmost)
eigenvalue of M . Thus, the criterion for metapopulation persistence has the same form
found in Levins’s model, with the leading eigenvalue λ (dubbed the “metapopulation
capacity” [2]) playing a key role for persistence.

2 The dispersal matrix

The dispersal matrix M (Eq. 4) has special properties as long as the dispersal rate
depends only on the distance between patches, which we will assume throughout. In
this case M is symmetric (Mij = Mji) and nonnegative (Mij ≥ 0). Symmetry implies
that all the eigenvalues of M are real. Then, as long as M is irreducible (a condition
typically met by the matrices studied here), M will have a unique largest
eigenvalue [40,41], which is the leading eigenvalue λ referred to above. Moreover, the
eigenvector associated with this eigenvalue can be chosen with strictly positive
components. Note that, since we are interested in the largest eigenvalue overall as
opposed to the largest in absolute value, primitivity of M is not required.

Moreover, using the symmetry of M , one can derive a lower bound for the
magnitude of λ. Since by definition

λ = max
θi 6=0

(∑N
i=1

∑N
j=1 θiMijθj∑N
k=1 θ

2
k

)
, (5)

we may arbitrarily set θi = 1 for every i to obtain

λ ≥ 1

N

N∑
i=1

N∑
j=1

Mij (6)
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(e.g., [29]). This sum can be interpreted as the arithmetic mean of the row sums of the
matrix M . Therefore, the average row sum provides a lower bound for the leading
eigenvalue of symmetric matrices.

This approximation is in fact a special case of the more general formula

λ ≥
∑N
i=1

∑N
j=1 (Mq)ij∑N

i=1

∑N
j=1 (Mq−1)ij

(7)

where q is a positive integer. Note that for q = 1 we recover Eq. (6).

3 The stationary state

The metapopulation capacity λ provides a persistence condition, but does not contain
information on the structure of the metapopulation. In order to study metapopulation
structure, we need to know the equilibrium patch occupancy probabilities pi for each
patch as a starting point. In principle, this amounts to solving Eq. (3) at equilibrium,
i.e., when dpi(t)/dt = 0:

N∑
j 6=i

(1− pi) f
(
|xi − xj |

ξ

)
Ajpj =

δ

Ai
pi. (8)

For brevity, we write pi for the probability that patch i is occupied, evaluated at
equilibrium. Multiplying both sides by Ai and using Eq. (4), we get

N∑
j=1

(1− pi)Mijpj = δpi. (9)

Unfortunately, Eq. (9) cannot be solved analytically in the general case. It is
possible however to derive approximate expressions for the pi under various limiting
scenarios. One of these limits is the strong persistence limit, when λ� δ; as we will
show, in this case we have

pi ≈ 1−

(
δ∑N

l=1Mil

)
. (10)

The other is the λ ≈ δ limit, i.e., when the metapopulation is close to the extinction
threshold. In this case

pi ≈
λ− δ
λ

wi∑N
j=1 w

3
j

(11)

holds [20], where wi is the ith component of the leading eigenvector of M (i.e., the
eigenvector associated with λ). The quality of this approximation is shown in Fig. S1.
In Section 10 we explicitly derive the two approximations.

From a conservation standpoint, the goal is to have metapopulations which persist
robustly, and are therefore well described by the first approximation scheme (λ� δ). As
we have seen, the equilibrium patch occupancy probabilities are then given by Eq. (10),
and only depend on δ and the matrix M . The general structure of the metapopulation
distribution, however, is already evident just from the row sum structure of M . Despite
the fact that Eq.(3) is a complicated object that is difficult to solve in general, much of
its behavior can be deduced from knowledge of just this matrix.

The most interesting case, and unfortunately the one closer to reality for many
populations, is the situation in which the metapopulation is close to extinction. For
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Fig. S1 The goodness of the approximate solution Eq. (11) when λ ≈ δ. Top panel:
exact (x-axis, obtained by solving Eq. (9) numerically) vs. approximate (y-axis,
obtained using Eq. (11)) solution for the sum of all persistence probabilities. Bottom
panel: maximum probability of patch occupancy, max(pi). In each panel, the top row is
obtained for δ = 0.9λ, and the second for populations even closer to extinction
(δ = 0.99λ). The columns represent different dispersal kernels (Section 5). The axes are
scaled by (1− δ/λ)−1 to make the visual comparison of the rows easier. The curves are
obtained from simulations (1000 for each parameter combination) in which patches of
identical value are randomly arranged on a square landscape of unit area, and the
dispersal distance ξ is varied between 0 and 0.2 (see Section 5). The different colors
stand for different numbers of patches. Shaded regions indicate the 95% of the resulting
distribution. Clearly the approximation is quite good for δ = 0.9λ and improves
dramatically for δ = 0.99λ.
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these metapopulations, the second approximation scheme (λ ≈ δ) is appropriate. In this
case the equilibrium patch occupancies are well described by Eq. (11) (Fig. S1), an
expression which—apart from the constant δ—depends only on the leading eigenvalue
and eigenvector of M . Again, the interesting steady-state properties of Eq. (3) follow
from M alone.

Having established that M governs not just the persistence condition [2], but also
the equilibrium occupancies, in the remainder of this document we concentrate solely on
M and its properties instead of the full dynamical equation Eq. (3).

4 Euclidean Random Matrices

Consider a region Ω in a d-dimensional Euclidean space (the landscape). Take a set of
N points xi randomly distributed over this region (the patches). Let f(xi, xj) be an
arbitrary function of any two points xi, xj in Ω. Then the matrix A with
Aij = f(xi, xj) is called a Euclidean Random Matrix [15].

We analyze particular types of Euclidean Random Matrices: first, the points xi are
assumed to be uniformly distributed within the region Ω; second, we study dispersal
kernels f that depend only on the distance between xi and xj :
f(xi, xj) = f(|xi − xj |/ξ), where ξ is a positive constant; third, the function f is
assumed to be nonnegative. These assumptions arise from the interpretation of f as a
dispersal kernel.

Sometimes, instead of working with the Euclidean Random Matrix A, we consider
the matrix B = A− f(0)I, where I is the identity matrix. Since f is assumed to depend
only on the distance between points, all diagonal elements of A are equal to f(0).
Therefore the only difference between A and B is that the latter has its diagonal entries
set to zero. The effect of this is simply to shift the eigenvalues by a constant: if

Awα = λαwα (12)

(where wα, λα are the αth eigenvector and eigenvalue of A, respectively), then

Bwα = (A− f(0)I)wα = (λα − f(0))wα. (13)

meaning that the eigenvectors of B are the same as those of A, and that the eigenvalues
of A are those of B shifted by f(0).

Note that both A and B are symmetric nonnegative matrices, therefore the results
of Section 2 hold. In particular, Eq. (6) provides a lower bound for their leading
eigenvalues.

In the special case when f is equal to one for |xi − xj |/ξ < 1 and to zero otherwise
(i.e. a rectangular dispersal kernel), the Euclidean Random Matrix this kernel generates
is called a Random Geometric Graph [10]. We sometimes make use of Random
Geometric Graphs, as they provide the most intuitive case of Euclidean Random
Matrices, and they can be seen as the adjacency matrix of an undirected graph.

5 Metapopulation persistence

Whether a metapopulation can persist depends on the metapopulation capacity λ,
which in turn depends on the dispersal kernel f , the number of spatial dimensions d,
and the density of suitable habitat patches. Using the Euclidean Random Matrices
introduced in Section 4, we derive a metapopulation persistence criterion for the case in
which patches are uniformly distributed.

In this section we examine the case when all patches have equal value Ai = 1, and
therefore the matrix M defined by Eq. (4) is a Euclidean Random Matrix, with diagonal
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entries set to zero. Therefore the lower bound Eq. (6) can be used to approximate its
leading eigenvalue. This bound is expressed as a double sum over the indices i and j
which, in our case, means summing over the randomly distributed points in space:

λ ≥ 1

N

N∑
i=1

N∑
j=1

Mij =
1

N

N∑
i=1

N∑
j 6=i

f

(
|xi − xj |

ξ

)
. (14)

As discussed in Section 2, the expression above can be seen as the average row sum
of matrix M . When M is a Random Geometric Graph (Section 4), each entry Mij is
either equal to 1 if patch i can be reached from patch j, or to 0 otherwise. Then, the
sum of all entries in row i is the number of patches that are reachable from the ith
patch. In other words, it is the number of neighbors of patch i. The average row sum is
then the average number of neighbors of the patches over the landscape.

For other dispersal kernels, we do not have such a clear distinction between patches
that are reachable and those that are not. Still, the row sum of row i can be thought of
as the effective number of neighbors of patch i, because patches that are more likely to
be reached from i contribute more to the sum than those that are difficult to reach.
Therefore, we interpret the average row sum of matrix M as the average effective
number of neighbors, denoted ne.

When the number of patches is large, i.e., N � 1, any summation over random
points in a finite region Ω of space may be approximated by a continuous integral:

1

N

N∑
i=1

g(xi)
N→∞−−−→ 1

VΩ

∫
g(x) dx, (15)

where g is an arbitrary function, VΩ is the volume of the region Ω (or area for d = 2,
length for d = 1), the integral runs over all of Ω, and it is understood that “dx” refers
to integration for all d components of x. Hence, for N →∞

1

N2

N∑
i=1

N∑
j 6=i

f

(
|xi − xj |

ξ

)
N→∞−−−→ 1

V 2
Ω

∫∫
f

(
|x− y|
ξ

)
dx dy. (16)

The effective number of neighbors ne can therefore be written, using the right hand
side of Eq. (14), as

ne =
ρ

VΩ

∫∫
f

(
|x− y|
ξ

)
dx dy , (17)

where ρ = N/VΩ is the density of patches over the landscape when N � 1. Then, from
Eq. (14), we have λ ≥ ne. Since λ must be greater than δ for metapopulation
persistence, this is a conservative estimate for the persistence condition: the
metapopulation is expected to persist whenever the effective number of neighbors,
estimated by the above integral, is larger than δ.

If we assume that the region Ω is the whole d-dimensional Euclidean space, the
integration becomes especially simple. More precisely, we take the limit N →∞ and
VΩ →∞ such that ρ = N/VΩ remains finite. We then perform the change of variables
z = x− y to obtain

ne = ρ

∫
f

(
|z|
ξ

)
dz, (18)

a much simpler integral than in Eq. (17).
Given the dispersal kernel, we can now derive the persistence condition. We

illustrate how this is done using three different kernel forms assuming Ω is the whole
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d-dimensional Euclidean space. The same calculation can be done for arbitrary other
kernels in an analogous way.

� Exponential kernel. This kernel is given by

f

(
|xi − xj |

ξ

)
= exp

(
−|xi − xj |

ξ

)
, (19)

where ξ is the dispersal distance. Let the points of Ω be denoted by x with x(k)

being its kth coordinate (k = 1 . . . d). Since we are integrating over the whole
space, we can use Eq. (18), yielding

ne =ρ

∫
exp

−
√∑d

k=1 x
2
(k)

ξ

 dx(1) · · · dx(d)

=
2πd/2Γ(d)

Γ(d/2)
ρξd ,

(20)

where Γ is the gamma function.

� Gaussian kernel. This is given by

f

(
|xi − xj |

ξ

)
= exp

(
−|xi − xj |

2

2ξ2

)
(21)

with dispersal distance ξ. Again, we apply Eq. (18) to obtain

ne =ρ

∫
exp

(
−
∑d
k=1 x

2
(k)

2ξ2

)
dx(1) · · · dx(d)

=(2π)d/2ρξd .

(22)

� Rectangular kernel. This kernel is the basis for Random Geometric Graphs [10]. It
reads

f

(
|xi − xj |

ξ

)
=

{
1, |xi − xj | ≤ ξ,
0, |xi − xj | > ξ,

(23)

with ξ again being the dispersal distance. Integrating over the whole Euclidean
space, we are actually obtaining the volume of a d-dimensional sphere of radius ξ.
The effective number of neighbors is therefore given by

ne =
πd/2

Γ (d/2 + 1)
ρξd. (24)

It is surprising to notice that, for d = 1 and d = 2, the expected ne is equal for two
different kernels. Specifically, when d = 1 the exponential and the rectangular kernel
have the same value of ne, while in two dimensions the Gaussian and exponential kernel
have the same value of ne. This means that two large matrices built with different
kernels can have approximately the same λ.

Since the effective number of neighbors ne is an approximation for the average row
sum of M , and this quantity is itself a lower bound for the metapopulation capacity λ,
we used simulations to see how well the approximation works in practice. Fig. S2 shows
λ against ne for various dispersal kernels and number of dimensions d. The region Ω is
taken to be a d-dimensional cube of unit volume, and the dispersal distance ξ is varied
between 0 and 0.2. The effective number of neighbors ne is obtained by evaluating the
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Fig. S2 Approximating the metapopulation capacity λ using the effective number of
neighbors ne. There are 4× 3 insets; the rows correspond to the dimension d, and the
columns to different dispersal kernels. Each curve is obtained from a set of simulations
with given d, kernel, number of patches (colors), and dispersal distance ξ (varied
between 0 and 0.2). For each parameter combination, we performed 1000 simulations.
In each simulation patches of identical value are scattered uniformly in the
d−dimensional unit cube, M is calculated using the parameters, λ is obtained by
numerically finding the leading eigenvalue of M , and ne is obtained by performing the
integral in Eq. (17). The approximation is conservative when ne is small, and is very
accurate for larger values.
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integral Eq. (17) numerically within the unit cube, while λ is numerically calculated as
the actual leading eigenvalue of the Euclidean Random Matrix M .

Fig. S2 shows that, unless the effective number of neighbors is very low, the
approximation is very good. Even when ne is small, the approximation errs on the
conservative side: the actual leading eigenvalue is in fact larger than predicted, leading
to a greater likelihood of persistence than ne predicts.

To better show the difference between the two quantities, Fig. S3 shows the value
(λ− ne)/ne against ne, i.e., the relative deviation of λ from ne. Interestingly, this
relative deviation seems to satisfy a simple power-law relationship, with an exponent of
approximately −1/4. Despite the fact that we do not have an analytic explanation for
this empirical result, Fig. S3 shows that this seems to be a very robust pattern, with
potential implications for further developments in the theory of Euclidean Random
Matrices.

6 The effect of randomly arranging patches

The results above are found when patches are uniformly distributed over the landscape.
However, often the case of regular arrangement of patches is considered in the
literature [16-18]. Here we investigate the effects of a regular arrangement of the
patches in a perfect grid, and how persistence is influenced by random arrangements.

Starting from patches perfectly arranged in a d−dimensional grid, we choose a
nonnegative number η and perturb the coordinates of every patch around their original
values by a random number drawn from the range ±η with a uniform distribution.
Small values of η lead to a patch arrangements that are almost regular, while a large
enough η means that the patch distribution is essentially random, as in the case studied
above (Section 4). We continuously increase η from zero up, and for each of its values
calculate λ. Since the perturbation is random, we perform 1000 replicate simulations for
every value of η.

In these simulations we set d = 2 and Ω to be a square of unit area. Since
coordinates may become less than zero or greater than one when perturbing the grid,
we took the modulus of each coordinate with respect to one to contain all patches
within the unit square (reflective perturbations). We chose a Gaussian dispersal kernel
and varied the dispersal distance ξ between 0 and 0.2. The total number of patches N
was set to 2500, i.e., the unperturbed case consisted of a regular 50× 50 grid of patches.

Fig. S4 shows the results. In each and every case, the metapopulation capacity λ
increases with η, regardless of the value of the dispersal distance. The dependence of λ
on η exhibits a saturating trend: the increase is rapid at first, but then λ settles down
at a constant for larger perturbations. This means that even slight deviations from a
perfect grid make the system behave as if the patches were randomly scattered. We can
also see that the more regular the grid, the better approximation ne provides for λ.

6.1 Analytical argument

In the case of monotonically decreasing dispersal kernels one can justify the above
results analytically. As shown in Section 5, the metapopulation capacity for a random
arrangement of patches is bounded from below by the average row sum of the matrix.
In the case of randomly distributed points we can approximate the row sum by
evaluating the integral of Eq. (17). In the case of a regular arrangement of points the
metapopulation capacity is exactly equal to the average row sum of the matrix.
Therefore, if we indicate the (expected) metapopulation capacity in the random case by
λR and the expected row sum of the matrix by E(rR), and we assume a large landscape
(ξ � L, with L effectively infinite), we have
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Fig. S3 Relative deviation of the metapopulation capacity λ from the effective number
of neighbors ne. Zero deviation means the effective number of neighbors provides a
perfect estimate of the metapopulation capacity. Methods and notation as in Fig. S2.
The gray dashed lines indicate a power-law relationship with exponent −1/4. The
actual results approximate this ideal curve very well, suggesting the simple rule

(λ− ne)/ne ≈ Q(d, f)n
−1/4
e . The factor Q depends on the number of dimensions d and

the general form of the dispersal kernel, but not on the dispersal distance ξ or the
number of patches N . Rearranging, we get the improved approximation

λ ≈ ne +Q(d, f)n
3/4
e for the metapopulation capacity in place of λ ≈ ne. Efficient

practical usage of this improved formula would of course require a knowledge of the
function Q.
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Fig. S4 The effect of a grid structure versus randomly distributed patches on the
metapopulation capacity λ and the approximation λ ≈ ne. The perturbation size η
measures the deviation of the patch distribution from a regular layout: η = 0
corresponds to a perfect grid, η = 1 corresponds to randomly distributed patches. Left
panel: λ as a function of increasing η; this saturating pattern was recovered in every
simulation. The λ on the vertical axis is rescaled using the expected effective number of
neighbors ne. Small deviations from the perfect grid distribution cause an increase in
the metapopulation capacity, after which the curve quickly saturates. In other words,
even mild deviations from a perfect grid behave as if the patches were randomly
scattered. Right panel: approximation of λ using ne as a function of the perturbation
size. The dashed line is the identity line ne = λ. One can see that the larger the
perturbation, the more conservative the estimate, regardless of the magnitude of ne. For
large values of ne, the separate curves for various perturbation sizes converge so that
ne ≈ λ.

E(rR) = 2

∫ ∞
0

f(x) dx ≤ λR , (25)

where for simplicity we assumed d = 1. In the case of a grid arrangement the
metapopulation capacity λG is equal to the expected row sum E(rG)

E(rG) = 2

∞∑
i=1

f(i) = λG (26)

for the regular one-dimensional grid. These relations are true without any assumptions
on the form of the dispersal kernel. In Section 9 we consider the general case of
non-monotonically decreasing dispersal kernels, while in the following we focus on
monotonically decreasing ones.

One can prove [42] that if f(x) is monotonically decreasing,∫ ∞
1

f(x) dx ≤
∞∑
i=1

f(i) ≤ f(1) +

∫ ∞
1

f(x) dx (27)

and

f(1) ≤
∫ 1

0

f(x) dx. (28)

By combining these inequalities with the definitions of λG and λR, we obtain
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λG = 2

∞∑
i=1

f(i) ≤ 2

∫ ∞
0

f(x) dx ≤ λR, (29)

showing that for monotonically decreasing dispersal kernels a random arrangement of
patches always leads to a larger metapopulation capacity than a grid arrangement.

7 Localization

In this section we discuss two further features of metapopulation structure over random
fragmented landscapes. The first is variance in patch importance, meaning that some
habitat patches are more important for the metapopulation’s persistence than others.
The second is spatial localization: patches with high occupancy probabilities pi tend to
be close together in space.

The components of the leading eigenvector of M provide a measure of the
importance of a patch for persistence. It can be shown [27] that the relative change in
the metapopulation persistence due to the removal of patch i is approximately equal to
w2
i , where wi is the ith component of the leading eigenvector. As we have shown above,

the eigenvector is also related, in the limit δ ≈ λ, to the stationary patch occupancy
probabilities pi. High variance in the eigenvector components therefore corresponds to
heterogeneity in patch importance.

To study the variance in patch importance quantitatively, we use a metric applicable
to any nonzero vector w with nonnegative components that is normalized to have length
1,

N∑
i=1

w2
i = 1, (30)

where wi is the ith component of the vector w. The inverse participation ratio
(IPR [43]) is defined as

IPR =

N∑
i=1

w4
i , (31)

and measures the heterogeneity of eigenvector components. In fact IPR is related to the
variance of w2, being Var(w2) = (1/N)

∑N
i=1 w

4
i − (1/N)2. Here we rescale this metric

so that its values fall between 0 and 1:

Ψ =
N × IPR− 1

N − 1
=
N
∑N
i=1 w

4
i − 1

N − 1
. (32)

When patches are arranged in a perfect grid, we do not expect any variance in the
wi (with the exception of the possible small influence of boundary effects). To measure
how patch occupancies changes for disordered systems, we first perturbed a regular grid
of patches in exactly the same way as described in Section 6. In Fig. S5 we show the
scaled inverse participation ratio Ψ of the normalized leading eigenvector w against the
metapopulation capacity λ for various values of the perturbation size η. We see that
increasing randomness leads to higher variation in all cases.

This simulation sheds light on the cause for the discrepancy between λ and ne
observed in Fig. S2 and S3. We have shown that ne approximates λ very well, except
when ne is very small. The relationship between the two quantities is of course not
expected to be perfect since the effective number of neighbors only provides a lower
bound for λ, as discussed in Section 5. The only case when the lower bound actually
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Fig. S5 The effect of a grid structure versus randomly distributed patches on the
variance in patch occupancies. The scaled inverse participation ratio Ψ of the
normalized leading eigenvector w, defined by Eq. (32), is plotted against the
metapopulation capacity λ. Notation and simulation setup are as in Fig. S4, explained
in detain in Section 6. The perturbation size η measures the deviation of the patch
distribution from a regular layout: η = 0 corresponds to a perfect grid, η = 1
corresponds to randomly distributed patches. Ψ increases with the perturbation size η
(increasing randomness increases Ψ), and decreases with the metapopulation capacity.
Note that, since our formula for Ψ depends on the approximation Eq. (11), i.e., the
λ ≈ δ limit, the metapopulation is still close to extinction even for large values of the
metapopulation capacity.

holds with strict equality is when w is completely uniform, i.e., is proportional to the
vector (1, 1, . . .). But this implies that Ψ = 0, corresponding to the lack of any variation
in patch occupancies. Any deviation from this situation leads to more variance and
therefore a worse approximation due to Eq. (14). Therefore, any discrepancy between λ
and ne is strictly due to this variance.

Instead of relating Ψ to the degree of randomness in the distribution of patches
across the landscape, one may also ask how it relates to the metapopulation capacity
itself. To answer this question, we generated 1000 matrices M for each combination of
the following parameters: N (which could take on the values 500, 1000, 2500, and 5000),
d (between 1 and 4), kernel (Exponential, Gaussian, and Rectangular), and dispersal
distance ξ (taking on 84 possible values between 0 and 0.2). In each case we determined
Ψ and λ for each M . The scaled inverse participation ratio Ψ was then calculated.
Fig. S6 shows the results. We can see that Ψ is inversely related to λ in all cases: a
larger metapopulation capacity leads to less variance in patch occupancies. Though this
result might seem self-evident, we have assumed λ ≈ δ, and therefore high values of the
metapopulation capacity do not in any way imply strong metapopulation
persistence—on the contrary, regardless of the magnitude of λ, the metapopulation is
very close to the extinction threshold.

We also performed a complementary analysis, where we looked at the average patch
occupancy probability p of the metapopulation, where the bar denotes the expected
value. Since in the λ ≈ δ limit Eq. (11) describes the equilibrium occupancy
probabilities pi, the average occupancy is given by

p =
1

N

N∑
i=1

pi =
λ− δ
λ

 N∑
j=1

w3
j

−1

1

N

N∑
i=1

wi. (33)

Denoting terms related to the leading eigenvector with F :
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Fig. S6 The scaled inverse participation ratio Ψ as a function of the metapopulation
capacity in the λ ≈ δ limit. Methods and notation as in Fig. S2. Ψ diminishes with an
increasing metapopulation capacity in all cases.
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p =
λ− δ
λ

F, (34)

where

F =

 N∑
j=1

w3
j

−1

1

N

N∑
i=1

wi. (35)

This quantity depends only on the leading eigenvector of M . It is similar to Ψ, but
while Ψ is a generic measure of the variance, F is more directly relevant to the λ ≈ δ
case in our model, because of the approximation Eq. (11). The minimum value F is
achieved for Fmin = 1/N , which happens when we have maximal variance, i.e., one
single component of the leading eigenvector w is equal to 1 and all the others are zero.
In contrast, the maximum possible value of F is one, taken on in the absence of any
variation, i.e., when wi = 1/

√
N for all i:

Fmax =

√
N3

N

1

N

N√
N

= 1. (36)

Using the same methodology as in the case of Ψ, we can plot F against the
metapopulation capacity λ. The results are seen in Fig. S7. In every case shown, F
increases with λ, and the curves saturate at F = 1, where there is no longer any
variation in the patch occupancies.

Fig. S6 and Fig. S7 together imply that the variance in patch importance is
diminished by having a very large metapopulation capacity, irrespective of the fact that,
since δ is close to λ, the patch occupancy probabilities are of course not going to be very
large. It is also seen however that this variance only tends to disappear for very large
values of the metapopulation capacity. This implies that, unless metapopulations are
very strongly persistent, variance in patch importance is a natural consequence of
metapopulation dynamics with randomly distributed patches.

Having established that there is variation in the importance of patches for
metapopulation persistence, we can also ask whether patches with similar importance
tend to form spatial clusters, i.e. whether patches of similar importance are close
together on the landscape. To answer this question, we measured the correlation
between closeness and importance using Moran’s index [44]. Independent of ne, this
index turns out to be positive and significant (p-value always less than 10−6), i.e. close
patches have similar importance. This positive correlation is expected, since in terms of
network theory, the importance of a node is measured by the eigenvector’s components
(the so-called eigenvector centrality). It directly follows from the definition of eigenvector
centrality (important nodes are nodes connected with important nodes) that strongly
connected patches have similar importance. But the patches that are going to be
strongly connected are the ones close in space, since the strength of connection depends
only on the distance between patches in our Euclidean Random Matrix framework. This
argument already implies a positive Moran’s index—which we indeed do find.

8 The effect of patch heterogeneity

So far we have assumed that all patches have the same value, i.e., in Eq. (4) the Ai are
all equal. In fact, we have assumed Ai = 1; however, for any constant patch value
Ai = a one can rescale the equilibrium equation Eq. (9) by dividing both sides by a2

and treating δ/a2 as a new effective δ. Here we introduce variable patch values.
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Fig. S7 A different measure of the variance in patch importance as a function of the
metapopulation capacity, in the λ ≈ δ limit. Here we use the quantity F , defined in
Eq. (35), on the vertical axis. This measure of the variance in patch importance is more
directly taylored to our particular model, as F is used in the approximation Eq. (11).
Otherwise, methods and notation are as in Fig. S6. Again, the conclusion that the
variance in patch importance always increases with the metapopulation capacity λ holds.
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To explore their effects on metapopulation structure and persistence, we randomized
the Ai by drawing them independently from a scaled beta distribution with mean 1 and
variance σ2 (again, without loss of generality).

We can use Eq. (7) with q = 2 to derive an improved approximation for the
metapopulation capacity when the patch values are variable:

λ ≥
∑N
i=1

∑N
j=1

(
M2
)
ij∑N

i=1

∑N
j=1Mij

, (37)

or, writing out the matrix multiplication in the numerator,

λ ≥
∑N
i=1

∑N
j=1

∑N
k=1MikMkj∑N

i=1

∑N
j=1Mij

. (38)

Substituting in Eq. (4) and using the notation fij = f (|xi − xj |/ξ) when i 6= j and 0
for i = j,

λ ≥
∑N
i=1

∑N
j=1

∑N
k=1AiAjA

2
kfikfkj∑N

i=1

∑N
j=1AiAjfij

, (39)

where the matrix f is a Euclidean Random Matrix.
The matrix f has zeros on the diagonal, and therefore the sum in the numerator

always yields zero whenever k = i or k = j. Since f is a function of independently
drawn random points in space, and the patch values are also independently drawn, the
numerator can be treated as an averaging over the patches via the index k. Let us
define the quantity

Lk =

N∑
i=1

N∑
j=1

AiAjfikfkj . (40)

We then have

λ ≥
∑N
k=1A

2
kLk∑N

i=1

∑N
j=1AiAjfij

, (41)

or

λ ≥ NA2L∑N
i=1

∑N
j=1AiAjfij

, (42)

where the bar denotes averaging over the patches. Due to independence, we have
A2L = A2L. The quantity L can be written

L =
1

N

N∑
k=1

N∑
i=1

N∑
j=1

AiAjfikfkj =
1

N

N∑
k=1

(
N∑
i=1

Aifik

) N∑
j=1

Ajfkj


=

1

N

N∑
k=1

(
A

N∑
i=1

fik

)A N∑
j=1

fkj

 =
(A)2

N

N∑
i=1

N∑
j=1

(
f2
)
ij
,

(43)

where we used the independence of A and f again. The denominator of Eq. (42) can be
written
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N∑
i=1

N∑
j=1

AiAjfij =

N∑
i=1

Ai

N∑
j=1

Ajfij = A

N∑
i=1

N∑
j=1

Ajfij

=(A)2
N∑
i=1

N∑
j=1

fij .

(44)

Substituting Eqs. (43) and (44), we obtain

λ ≥ A2

∑N
i=1

∑N
j=1

(
f2
)
ij∑N

i=1

∑N
j=1 fij

. (45)

We discussed in Section 2 that, while both Eq. (6) and Eq. (7) (with q = 2)
approximate λ, the latter is always greater than or equal to the former:∑N

i=1

∑N
j=1

(
f2
)
ij∑N

i=1

∑N
j=1 fij

≥
∑N
i=1

∑N
j=1 fij

N
. (46)

Therefore we may substitute this into Eq. (45) and the inequality will still hold with

λ ≥ A2

N

N∑
i=1

N∑
j=1

fij . (47)

But the above sum divided by N is simply the effective number of neighbors ne, as
discussed in Section 5. We therefore have

λ ≥ A2 ne. (48)

Since we are drawing the patch values independently from a distribution with mean
1 and variance σ2, and A2 = (A)2 + Var(A), we have A2 = 1 + σ2. We therefore obtain

λ ≥ (1 + σ2)ne. (49)

We tested how the original λ ≥ ne and the new λ ≥ (1 + σ2)ne approximations
perform as a function of the patch variability σ. The left panel of Fig. S8 shows the
former, the right panel the latter approximation. On the left panel, for small values of σ
we see exactly the same situation found in Fig. S2, but for large values of σ the effective
number of neighbors starts to severely underestimate the metapopulation capacity. On
the right panel however, we see that as long as (1 +σ2)ne is not very small, this quantity
approximates the metapopulation capacity very well even for large patch variability.

As done in Fig. S6, we measure the variance in patch importance as a function of the
metapopulation capacity (Fig. S9). Just as before, lower values of λ lead to a higher
variance. More importantly, patch variability clearly exacerbates this effect: for any
value of the metapopulation capacity, adding variation to the value of the patches
generates more variance in patch importance than expected for uniform constant patch
values.

Since for constant patch values σ = 0, the approximation λ ≥ (1 + σ2)ne is an
extension to our previous result λ ≥ ne, encompassing it as a special case.

The metapopulation capacity does not depend on the full distriution of patch values,
but only on its mean and variance. Here we show why we can neglect moments higher
than two. Eq. (7), in the case of q = 3, reads
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Fig. S8 The effect of nonconstant patch values on the approximation λ ≈ ne. On the
left panel we plot the metapopulation capacity (obtained by computing λ numerically)
against the effective number of neighbors ne, calculated via the integral in Eq. (17).
The patch values were drawn from a rescaled beta distribution with mean 1 and
standard deviation σ. The matrices M were generated with N = 2500, d = 2, a
Gaussian dispersal kernel, the dispersal distance ξ varying between 0 and 0.2, and σ
varying between 0 and 1. For every parameter combination, 1000 simulations were
performed. As seen on the plot, the greater the variability in patch value, the more ne
underestimates λ. The right panel shows the exact same information, except the
metapopulation capacity is plotted against ne(1 + σ2) instead of just ne (Section 8).
The approximation is significantly improved by including the term (1 + σ2).

λ ≥
∑N
i=1

∑N
j=1

∑N
k=1

∑N
l=1AifijA

2
jfjkA

2
kfklAl∑N

i=1

∑N
j=1

∑N
k=1AifijA

2
jfjkAk

. (50)

Using the fact that fii = 0, we can partition the sum in the numerator into different
contributions, corresponding to 1) the indices i, j, k and l being all different; 2) i = k or
j = l; and 3) i = l. The leading contribution in N will be the one corresponding to all
the indices being different and will be proportional to the square of the mean of A
squared. If we consider only this leading contribution, then using the fact that the
denominator is proportional to A2 (Eq. 43), we obtain again a linear dependence of λ on
A2. The terms we neglected in this approximation will be proportional to the third or
the fourth moments of the distribution of patch values. If those moments are finite it is
safe to neglect them in the limit of large N . Therefore we expect our approximation to
hold as long as the moments of the distribution of patch values are finite and to break
down if the distribution of patch values have non-finite moments (e.g., power-law tails).

9 Effects of nonmonotonic dispersal kernels

In previous sections we considered only monotonically decreasing dispersal kernels. In
that case, the closer two patches are, the higher the rate of dispersal will be between
them. In this section we consider nonmonotonic dispersal kernels. In this case dispersal
rate between two patches is maximal at some given finite distance.

We used the following function for modeling nonmonotonic dispersal kernels:

f

(
|xi − xj |

ξ

)
=

Γ(α+ β)

Γ(α)Γ(β)

(
|xi − xj |

ξ

)α−1(
1− |xi − xj |

ξ

)β−1

(51)
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Fig. S9 The effect of nonconstant patch values on the variance in patch importance.
We plot the scaled inverse participation ratio Ψ, defined in Eq. (32), against the
metapopulation capacity λ. Parameter combinations were chosen and simulations were
done exactly as in Fig. S8. Each curve corresponds to a different value of σ. The plot
shows that Ψ always increases with increasing variability.

for |xi − xj | ≤ ξ and 0 for |xi − xj | > ξ, where Γ is the gamma function. The
parameters α and β control the shape of the distribution and the location of the mode.
When |xi − xj | ≤ ξ, Eq. (51) reduces to a beta-distribution. The choice α = β = 1
corresponds to a rectangular kernel.

It turns out that all our previous results are robust to changing the kernel to
nonmonotonic ones. Fig. S10 shows the metapopulation capacity λ and the effective
number of neighbors ne for various nonmonotonic dispersal kernels. Our approximation
perfoms similarly as in the case of strictly decreasing dispersal kernels (see fig. S2).

Beta α=2, β=2 Beta α=4, β=4 Beta  α=4, β=8 Rectangular kernel

1

10

100

d
= 2

1 10 1001 10 1001 10 1001 10 100ne

λ

Number of patches 1000

Fig. S10 Approximating the metapopulation capacity λ using the effective number of
neighbors ne for nonmonotonic dispersal kernels. Different insets correspond to different
kernels as defined by Eq. (51). Otherwise, the figure has been obtained in the same way
as Fig. S2, with d = 2, N = 1000, and σ = 0.

9.1 The effect of randomly arranging patches

In Section 6 we showed that, in the case of monotonically decreasing dispersal kernels,
the metapopulation capacity of a random arrangement of patches is always larger than
for a grid arrangement. In this section we consider the case of nonmonotonically
decreasing dispersal kernels, where the results of Section 6 no longer hold. We consider
the parameterization of Eq. (51) with α = β, having kernels depend only on one
parameter α. By increasing the value of α we obtain dispersal kernels that are more and
more peaked around the nearest neighbor-patches on the grid.
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In the d = 1 case, the lower bound for the metapopulation capacity in a random
arrangement of patches can be obtained by integrating Eq. (51). When periodic
boundary conditions are considered, one obtains λR ≥ 2 (see Section 6). In the grid case
the sum shown in Section 6 is equal to

λG =
23−2α

B(α, α)
. (52)

Comparing the lower bound for the random arrangement and the metapopulation
capacity of a grid, we obtain that λG ≤ 2 if α < αc ≈ 3.382 . . . In this case the random
arrangement is guaranteed to have a larger metapopulation capacity. Note that if
α > αc we cannot say anything about which arrangement has a larger metapopulation
capacity, as 2 is a lower bound for λR.

Fig. S11 shows the effect of regular versus random distribution of patches (see
Section 6) for nonmonotonic dispersal kernels. Interestingly, the actual value of λR is
always larger than λG.

The take-home message of this result is that, even in the case of non-monotonically
decreasing dispersal kernels, given a region of space with a given number of patches, the
metapopulation capacity λ is always larger for randomly distributed patches than for a
regular grid. This has important consequences for conservation and landscape design:
regularly spaced habitats turn out to be less efficient than randomly distributed ones.
Random distributions lead to an increase in λ and therefore an increase in the overall
persistence likelihood of the metapopulation as a whole.

10 Approximating p i

10.1 Approximation 1: strongly persistent metapopulations

We want to approximate pi assuming λ� δ, where λ is the metapopulation capacity,
i.e., the leading eigenvalue of M .

When δ is sufficiently small, we may look for the solution to Eq. (9) in the form of a
power series in δ:

pi = p
(0)
i + δp

(1)
i + δ2p

(2)
i + . . . (53)

Substituting this expression into Eq. (9) yields

(
1− p(0)

i − δp
(1)
i − δ

2p
(2)
i − . . .

) N∑
j=1

Mij

(
p

(0)
j + δp

(1)
j + δ2p

(2)
j + . . .

)
= δ

(
p

(0)
i + δp

(1)
i + δ2p

(2)
i + . . .

)
.

(54)

We can proceed by increasing powers of δ. Collecting terms of 0th order:

(
1− p(0)

i

) N∑
j=1

Mijp
(0)
j = 0, (55)

which is satisfied either by p
(0)
i = 0 for all i (the solution describing an extinct

population), or by p
(0)
i = 1 for all i. Moving on to terms of first order, we get, from

Eq. (54),

δ
(

1− p(0)
i

) N∑
j=1

Mijp
(1)
j − δp

(1)
i

N∑
j=1

Mijp
(0)
j = δp

(0)
i . (56)
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Fig. S11 The effect of a grid structure versus randomly distributed patches on the
metapopulation capacity λ. The red line represents the effective number of neighbors,
while the blue line is the actual eigenvalue. The parameter η quantifies the randomness
of the patch arrangement, with η = 0 corresponding to the grid case and η = 1 to the
random arrangement. Despite the fact that ne decreases for some values of α as η
increases, the metapopulation capacity λR is always larger than λG.
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Using p
(0)
i = 1, this simplifies to

− δp(1)
i

N∑
j=1

Mij = δ. (57)

The first-order approximation is therefore given by

p
(1)
i = − 1∑N

j=1Mij

, (58)

so pi can be expressed from Eq. (53), to a first order approximation, as

pi = 1−

(
δ∑N

l=1Mil

)
. (59)

Now collecting terms of second order in Eq. (54):

− δ2p
(1)
i

N∑
j=1

Mijp
(1)
j − δ

2p
(2)
i

N∑
j=1

Mijp
(0)
j = δ2p

(1)
i . (60)

Substituting in the values for p
(0)
i and p

(1)
i and simplifying by δ2, we get

1∑N
l=1Mil

N∑
j=1

Mij
1∑N

k=1Mjk

− p(2)
i

N∑
l=1

Mil = − 1∑N
l=1Mil

, (61)

or

p
(2)
i =

1(∑N
l=1Mil

)2

1 +

N∑
j=1

Mij
1∑N

k=1Mjk

 . (62)

From Eq. (53), the equilibrium distribution pi can therefore be written, to second order
approximation, as

pi = 1−

(
δ∑N

l=1Mil

)
+

(
δ∑N

l=1Mil

)2
1 +

N∑
j=1

Mij
1∑N

k=1Mjk

 . (63)

In practice, this approximation only works as long as the fraction δ/
∑N
l=1Mil is

small for all (or most) i. In that case however, the first-order approximation is already

more than sufficient. Note that
∑N
l=1Mil is the row sum of row i in the matrix Mij . As

discussed in Section 2, this sum provides a lower bound for the leading eigenvalue, i.e.,
the metapopulation capacity λ. Therefore, this approximation works well whenever
λ� δ.

10.2 Approximation 2: metapopulations close to extinction

We now turn to our second approximation scheme, which assumes λ ≈ δ. Let λα be the
αth eigenvalue, and wα,i the ith component of the αth eigenvector of M :

N∑
j=1

Mijwα,j = λαwα,i. (64)
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We may assume without loss of generality that the metapopulation capacity λ
corresponds to λ1. We write the stationary solution pi as a linear combination of the
eigenvectors:

pi =

N∑
α=1

kαwα,i, (65)

where the kα are appropriate coefficients, to be determined. Substituting into Eq. (9),
we obtain

N∑
α=1

(λα − δ)kαwα,i −
N∑
α=1

N∑
β=1

kαkβλβwα,iwβ,i = 0. (66)

This equation is zero for all i, therefore multiplying it by wγ,i and summing over i yields
the equivalent equation

(λγ − δ)kγ =

N∑
α=1

N∑
β=1

kαkβλβ

N∑
i=1

wα,iwβ,iwγ,i (67)

that holds for all γ. On the left hand side we have used the fact that the eigenvectors
are orthogonal, since M is symmetric. On the right of hand side of Eq. (67) the
summation over i can be written in the following equivalent way:

N∑
i=1

wα,iwβ,iwγ,i = IαβIβγ

N∑
i=1

w3
γ,i + εαβγ , (68)

where Iαβ is the (α, β) entry of the identity matrix, and εαβγ is a factor chosen so as to
satisfy the equation above. If, in addition, we make the assumption that εαβγ is small,
it becomes possible to expand the solution with respect to this quantity:

kα = k(0)
α + (corrections depending on εαβγ) . (69)

This will be possible when the eigenvectors have small overlap (i.e., the nonzero

components are different for different eigenvectors). The k
(0)
α can be obtained by

substituting Eq. (68) with εαβγ = 0 into Eq. (67):

(λα − δ) k(0)
α = λα

(
k(0)
α

)2 N∑
i=1

w3
α,i. (70)

This equation has two solutions: k
(0)
α = 0 and

k(0)
α =

λα − δ
λα

(
N∑
i=1

w3
α,i

)−1

. (71)

This approximation is obtained under the assumption that the eigenvectors do not

overlap. Therefore it is consistent to assume that k
(0)
α = 0 if λα < δ and different from

zero otherwise:

k(0)
α =

λα − δ
λα

(
N∑
i=1

w3
α,i

)−1

Θ(λα − δ), (72)

where Θ is the Heaviside unit step function. By substituting this expression into
Eq. (65), we get an approximation for the pi when λ ≈ δ:
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pi =

N∑
α=1

λα − δ
λα

 N∑
j=1

w3
α,j

−1

Θ(λα − δ)

wα,i. (73)

If λ ≈ δ with λ just barely exceeding δ, then, since λ is the leading eigenvalue, we do
not expect any other eigenvalues to be greater than δ. Therefore, in this case, using the
Heaviside function, Eq. (73) reduces to

pi =
λ− δ
λ

 N∑
j=1

w3
j

−1

wi, (74)

where wi = w1,i is the ith component of the leading eigenvector. This formula also
appears in [20, Eq. 22].
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