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1 Three-state activation-bleaching model for single fluorophores

We consider switching between three states, the on-sheeft-state, and the bleached state.
The switching between the on and off-states is modelled thighPoisson distribution; i.e. in
the absence of photobleaching the number of transitioms fhe off-state to the on-stafe’™
satisfies:

m

P =" exp(—1), (1)
m!

wherer = kgt with ¢ the time andk,,, the switching rate, which is related to the lifetimes
of the on and off-states by/k., = 7., + 7oz The bleaching is governed by the geometrical
distribution, namely the probability for bleaching at theth switching cycle is:

Pl =p(1—b)™ . (2)

whereb = kg, /ky is the probability for bleaching during one cycle, with, the effective
bleaching rate. Intuitively, for small time scales the istats will be close to the activation
dominated Poisson-model, whereas for large times it wiltlose to the bleaching dominated
geometric distribution. For intermediate timethe probability form activation cycles is the
sum of two terms. The first is the product of the probabilfy}’ of havingm switching cycles
and the probability1 — b)™ that the emitter has not bleached in theswitching cycles. The
second term is the product of the probabil®y' of bleaching during the:-th switching cycle
and the probability of having at least switching cycles. In mathematical terms (fer> 1):

m o

P,=(1-b" ﬁexp( ORI

n=m

ﬂ

T ex (3)
n:
Form = 0 bleaching does not play a role, so the probability is theemivy the Poisson term
only:

Py =exp(-r). (4)
It may be verified that

S P -1, ©)
m=0

so that conservation of probability is satisfied. A rigoralgsivation of these expressions for
P,, is presented in the next section.

Interestingly, the probability distribution of the numbar activation cyclesn is equiva-
lent to the distribution of the minimum of two random variedhpeisson aNAMgeometric, Where
Mpoisson 1S P0OISSON distributed with expectation valuandmeometic follows a geometric dis-
tribution with expectation valug/b.

The moments of this probability distribution can be caltedafrom the moment generating



function:

+bexp (a) Z ! 1__( ((11__171)))6;{1;(&))) % exp (—7)
~ bexp(a) + (1 —exp(a))exp (r(1—b)exp(a) —1) ()
B 1—(1—-0b)exp(a) '
The moments follow from the derivatives of this functioruat 0:
B > _dG (a)
M (t) = mgz:l mPy, = — »
= - e ()], )
My (t) = im2Pm = %
m=1 a=0
— % [1 —exp (—rb)] + 2 (lb; ) [1 —exp (—rb) —rbexp (—rd)], (8)
giving a correlation parametéy as:
M, (t) — M, (t)
_2(1-0) rb
B b [ exp (rb) — 1] ' ©

If we define the asymptotic valu¥/,,, = lim,_,., M; (t) = 1/b then the results for the average
number of activations and for the correlation paramétenay be written as:

Mi(t) = Mu[l—exp(—hut)], (10)

Q) = 2(Mu—1) [1-@@&%}. (11)

For kit < 1 we find:
Mi(t) ~ kat, (12)
My (t) — My () ~ <1 _ MLOO) (hat)? (13)

which is consistent with Poisson statistics provided that< k.. Forky,t > 1 we find
constant values:

My (t) — M, (t) ~ 2M. (Mo —1), (15)

consistent with a geometrical distribution with bleachpprgbability 1/M., = ki /ksw per
activation cycle. These limiting cases fit with the a priogpectations.
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2 Derivation of mixed Poisson-geometric probability distri-
bution

This section presents a derivation of the mixed Poissomagéac probability distribution in
Eqg. 3.

The treatment is based on a generalization of the asymniRémdom Telegraph Signal
(RTS) model [1], which describes switching between twoestaHere a third state is introduced,
representing the bleached state, which can in principleebehed from both the on-state and
the off-state of the emitter. So, the starting point is the¢hstate model with state 0 (‘off-
state’), state 1 (‘on state’), and state 2 (bleached statl)faur transition rate,; (0 — 1),
k1o (1 = 0), ko2 (0 — 2), andky, (1 — 2). The total decay rate of state O is thiys= ko1 + ko2,
and the decay rate of state 1 is thys= ko + k12. The lifetimes of the on and off states are
thust,, = 1/k; andr,g = 1/ko, generallyr,g > 7,,. Suppose the system starts out in state O
at timet = 0. The probability that the emitter remains in state 0 and nisvactivated is:

9o (t) = exp (—kot), (16)
fort > 0. The probability that the system makes a single jump to dtatehis time interval is:
g1 (1) = /Ot dt' go (t') ko exp (—Fky (t — 1)), (17)
the probability that the system makes two jumps and returssate O is:
g2 (8) = /0 A g () o exp (ko (£ — 1) (18)
The probability that the emitter bleaches directly to sais
hy (t) = /Ot dt’ go (t') kog, (19)
and the probability it bleaches to state 2 after one tramsib state 1 is:
hy (t) = /Ot dt’ g1 (t') kqa. (20)

Clearly, these probabilities can be calculated by iteratidns is accomplished most easily by
application of a Laplace transform:

gn (8) = /000 dt g, (t) exp (—st) . (21)

If so desired, a transition to the Fourier domain can be mgdbédsubstitutiors — ¢ + iw and
taking the limite — 0 after the inverse (Fourier) transform. We find that#for 2m even and
n = 2m + 1 odd different relations hold:

R ko

Gom (8) = k0+592m—1 (), (22)
N koi .

m = m 5 23
9om+1 (3) k1+592 (5) (23)

n k R

hom (5) = = Gom (), (24)
. iy .
h2m+1 (S) = %QZm—f—l (S) . (25)



Starting fromgo (s) = 1/ (ko + s) this leads to the solutions:

. g
m - ) 26
b () = 7 (26)
. /Berl
92m+1 (S) = k Y (27)
10
5 ko2 8™
hom = — 28
am (8) = ) (28)
R kmﬁm—i-l
homii (5) = : 29
2 +1< ) klOS ( )
with:
/f01/€10

b= (ko +5) (k1 + 5) (30)

The Laplace transform of the probability that the molecsladtivatedn times during the time
intervalt now follows as:

Gm () = Gam1 () + Gam (8) + ham1 () + hay (5)
ki (ko2 +8) + (k12 +5) (ko + s)ﬁm
o k?lg (k?o + S) S
. (k‘o + S) (k’l + 8) — k’01k10 Bm
B k1o (ko + s) s
ki+ s

= 1-— mn 1
s (1= 887, (31)
and: I
R _ - iL _ _Fo2 TS . 2
Go (5) = go (5) + ho (s) —(/fo T+ 5)s (32)
It may be checked that the sum satisfies:
X 1
qm (3) = (33)
m=0 s
giving that:
D am () =0(1), (34)
m=0

implying that conservation of probability applies.
Only the subset of molecules that is activated at least osi@cessible to analysis. It
follows that we need the renormalized probability disttibo:

Gm (1)
B, (t) = —2 L 35
) 1 — o (o) (35)
form > 1 andF, (t) = 0. Hereg, (t) can be found via an inverse Laplace transform:
k k
w00 =32+ (152 ) exp (-hun), (36)
0 0

giving qo (00) = koa/ko and a normalization factor/ (1 — go (00)) = ko/ko1 leading to a
probability distribution (in the Laplace domain):

~ . ko(k’l—f-S)

B (s) = (1—p)p", (37)

kmk’los
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form > 1.
An important simplification can be made for timemuch larger than /k; = 7,,. In that
case we may use the approximation:

A kok1
n (S) = 1-— m 38
()= 4 s (1= B)f (38)

with:
koik1o

_ ’ 39
B kok’l + (k’o + kl) S ( )
1-3 koki — korkor + (ko + k1) s (40)

kok’l + (k’o + ]ﬁ) S

At this point it is convenient to introduce the two physigailevant rates/time scales, namely
the activation and bleaching rates, defined by:

Kok
A , 41
ko + Ky (41)
kokl - kOlklO kOlkIZ + klOkOQ + k02k12
ko = - . 42
o Fo + ko ko + ki (42)

The activation time constantis simply, = 1/ksw = Ton+70g. We also find thako k1o /kok1 =
1 — ky1/ksw. Now the probability distribution can be written as:

7~ ksw (ksw - kbl)m_l (kbl + S)
Fn(5) = 5 (kew +8)" ! ’

(43)

This expression may be rewritten in a form that is more amlertabnverse Laplace transform:

- o \ ™ ki Fni e \ ™ kot
P, — (1= _Msw o ey _Tsw
(S) ( ksw) (ksw + S)erl * ksw ( ksw) S (ksw + S)m+1

_ (1 b )m_l ke
B ksw (/{ZSW + S)m+1
@1( km)ml 1 & k.
- 1-— - — — 1, 44
ksw ksw S ; (kfsw + S)n+1 ( )
The inverse Laplace transform now gives:

L m—1 kswt m
P, () = <1—km> <Tm)emﬂ—hw)

k?bl k’bl m - (kswt)n
s (1 ksw) L= 2 e (hat)

n=0
o kbl " (kswt)m
= <1 — E) T exp (—kgwt) (45)
K Fot \ " o (Kawt)”
+ksw (1 - ksw) T;n nl €xXp (_k'swt) )

in agreement with the results of the previous section.
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3 Effect of labelling stoichiometry

Suppose there arE labelling sites withS; (i = 1,2... K) fluorescent emitters per site which
havel/;; activations { = 1,2...5;). The number of activations per site is then:

M; =" M. (46)

Suppose the statistics of the number of emitters per sitadependent of the site and has
moments(S) and (S5?). Suppose furthermore that the statistics of the number tfadions

of each emitter is independent of emitter and site and gigesto moments according to the
three-state model:

(M;;) = Myl —exp(—knt)], (47)
(M} — M) = 2Muy (Moo — 1) [1 — exp (—kuit) — kit exp (—kwit)] (48)

for all i andj and withM ., = kg, /kv. The@-parameter determined from the spatial correlation
analysis is given by:

(M2 = M)
“=Tan )
with:
(M;) = (S)(M), (50)
and:
(M;?) = (S(S—1))(M;)* + (S){My;?)
Combining all results gives:
k‘blt
Q=2(Mx—-1)|1- oxp (huyt) — 1 + nMoo [1 — exp (—kut)] , (51)
with: (52— (S)
s ©2

a number characterizing the statistics of the number oftenper site. The second term on the
r.h.s. is new compared to the previous analysis of the statiser emitter. Clearly, there are
now three parameters that determipeas a function oft, the effective bleaching rate,;, the
asymptotic value of the number of activations per emitter and the labelling stoichiometry
parametey:.. The expected total number of activations is:

S

(N) = 330 My = K(S) (M)

i=1 j=1

= K(S)Mu[1 - exp (—hut)] (53)

<

All that is lacking then to determine the number of labellgiigsK is a connection between
(S) andu. We consider now three examples in which there is a conmebgtween the mean
and the variance of the statistical distribution of the nemdif emitter per site.

The first example refers to having a monomer/dimer on eaelwsth probabilitiesP, =
1 — B andP, = B. It follows that then(S) = 1 + 38 and (S?) = 1 + 33 so thaty =
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24/ (1 + B). Measurement of. from @ thus gives a value fof = u/ (2 — ) and hence for
(Sy =2/(2—pu). So, the average degree of monomerization/dimerizatiorpogentially be
measured in this way, in addition to the total number of llhgkites.

The second example is for a Poisson distributed number dfeamsiper site. This is a model
for primary antibody labelling where multiple fluorophor@® attached to the antibody, under
the condition that there is no significant fluorescence duiegc The averages are over the
subset of sites with at least one emitter. This git&s = n/ (1 — exp(—n)) and (5% — §) =
n*/ (1 — exp(—n)) with n the Poisson rate, so that= 7. Possibly, the Poisson-rate can thus
be measured directly from the fit of the measuigds a function of to the model. In casgis
large compared to unity then we simply ha\®® = n = 7.

The third example is a model for secondary antibody labglhere multiple secondaries
can bind to a single primary, and where multiple emittersatached to each secondary, i.e.
now S = > " T, with n the number of secondaries and thethe number of emitters per
secondary. We will analyse the case whererttage Poisson distributed with rate and theT;
with rate». The probability distribution of'is given by:

P(S) = Y P(Sln)Pi(n), (54)

o

P(S|n) = Z...ZP2<T1)...P2(Tn)5<s—Zn>, (55)

T1=0 Tn=0

P (n) — N?L'(—W’ (56)
n:
py(r) = P2OP) (57)

We find that the probability of observing zero fluorophores is

n!

PO) = Y PO P ) =3 ORI o (g

n=0

— exp (—pur (1 — exp(—pn))) (58)

Restricting to the observed casgs> 0 implies we have to normalize the probability distribu-
tion by a factorl / (1 — P (0)) and sum only over values > 0. This leads to:

S = =g, (59)
(%) = T %) + (= )T, (60)

e (a2 ()
”:W_H@){W_l}' 61)

Here, the angular brackets indicate averaging over theighdl probability distributions for.
and for theT;. For the Poisson-distribution at hand this gives:

. 12
W) = 1 —exp (—p1 (1 —exp(—pu2)))’ (62)

po= p2(m+1). (63)



Generally prior knowledge on the distribution of seconelsper primary and the distribution of
fluorophores per secondary is needed to proceed. It apgedrhe final counting result is not
very sensitive to details of the secondary to primary labglstoichiometry, i.e. errors in the
value ofu; are largely compensated by opposite errors in the estimidtedgiving a relatively
robust estimate for the number of localizations per prinaritbody. This can be understood
semi-quantitatively as follows. In case there is littledalring the fitting ofM/, is dominated
to a large extent by the switching regirhgt < 1. Then it holds that:

(M) =~ (S) Mcknit, (64)
Q = (p+1) Mokt (65)
So, given the measured correlation paramétexs a function of time and bleach rdtg, the

productA = (u + 1) M is fixed for all values of.. It then follows that the estimate for the
number of localizations per primary antibody is:

(S)
M) ~ —— Akyt, 66
(M) 2 25 Ak (66)
so that the stoichiometry only affects the final countingneste via the ratio:

c= 9 ()"

EESTE ©D

It turns out that the functional dependence/adn i, hardly changes witly, for the range of
valuesl < p; < 5, with relative variations on the order of 10%. In fact, theoeledence of

¢ on s in the range of value$ < ps < 5 is also rather weak. It should be noted that the
current analysis neglects quenching, but in case that caafleé/ neglected, it does show that
the counting analysis is robust against errors in the simicétry calibration.

4 Estimation of correlation parameter at high labelling den-
Sity

In samples with high labelling densities or with tightly stared labelled molecules, the Q-
estimation may be prone to overestimation because it nastedrrelations due to the sample’s
spatial structure for correlations from repeated locéliraof the same labelling site. Here we
will analyse under which conditions this problem is expddteoccur.

The Q-estimation algorithm attempts to fit a model functiéfy) to the FRC numerator,
which describes the decay in spatial correlations due w@lilcations of the same labelling site.
H(q) depends on the unknown spread of localizations of a sinbkelllag site (i.e. effective
localization error) due to localization error, errors ie ttorrection for stage drift and the finite
size of the labels, and is parameterized in Eq. 6 as:

1 4 2 2 2
H (¢, 0, Ao) = x ( &) (68)

V14 812A02¢? TP\TTH 8m2Ao?¢?

whereo,, is the mean of the effective localization error aikd it's standard deviation.
The FRC'’s numeratar(q) can be expressed as:

v(q) o< (NS(q) + Q) H(q), (69)




where the ternf(q) relating to the sample’s spatial structure is equal to:
1 26(1q"| —q)
S0 = [ o] N0

2mq
with K the number of labelling sites am&j(@ the Fourier transform of the normalized density
of labelling.

The algorithm will have difficulties estimating,, andAc when the decay of (¢) H(¢) and
(QQH(q) cannot be distinguished very well. This would occur if thealeof S(q) is still larger
than( at the spatial frequenay = 1/270,, whereQ H (q) starts to decay appreciably. Thus,
we have the criterion:

b (q) , (70)

NS(1/2m0,,) < Q. (71)

If we take as an example structure a line of lenfitnd Gaussian cross-section with full
width at half maximumw, then we have [2]:

1 7T2q2w2
~ _ 72
S (q) al exp< 210g(2)), (72)
leading to the criterion for the linear density of labelle@s.
K 1 Q w?
R iy [ — ). 7
Pin = < o (2M P (8log(2)a,2n)) (73)

If the width of the filaments is on the same order as the widtiheflocalization error distribu-

tion and@ ~ M, it follows that there should be fewer than one site pgy, /e ~ 0.740,,. In a

more typical scenari@) ~ 1.5M and thus the criterion becomes less than oné) get,,.
Similarly, for a line with a rectangular cross-section andttvw we would have [2]:

S(g) ~ 1 (sin(mqw) 2 (74)
U= wqL TqW ’
and thus we get the criterion:
1 [/ Q sin (w/207,)\
Plin < o (2]\/[) ( w/20_m ) (75)

or if w equals the full width at half maximum of the localizationaerdistribution thatp;;,
should be less than one site ge30,,, (pessimistic case) or one p@B2o,, (typical case).

Thirdly, if we have a bell-shaped structure that can be desdiby a Gaussian with standard
deviationa, then the number of sites in the structure should satisfy:

K < %exp(aQ/afn). (76)
Finally, if we have a circular structure with a radiuand K sites, then
Ji(2 2
sta) = (275 ) @
Tqa
and therefore we obtain the criterion
Q [, Jia/on)\
K<—=|[2———= . 78
M a/om (78)

Fora ~ o, this givesK < 1.3 (pessimistic case) dk < 1.9 (typical case). Fou ~ 20, this
becomed( < 3 (pessimistic case) dk < 4.5 (typical case).
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5 Effect of false negative localizations

False negative localizations refer to events where a fllanapis activated during an acquisition
but this fluorescence does not lead to a successful lodalizay the reconstruction algorithm.
This may happen for example if nearby fluorophores are sanatiusly active or if the fluo-
rophore is very dim or the event is very short. The consequenéalse negative localizations
is that the number of localizations per fluorophore does antspond anymore to the number
of activation events. Below we will analyse the consequeasssming that the probabilities
for activation events to result in a successful localizafity,. are independent and the same for
all events.

Firstly, let us consider what happens to the expected nuofibecalizations per fluorophore
Mloc:

<Mloc> = <<Mloc|M>> = <MPloc> = Boc <M> . (79)

Here, M denotes the number attivations per fluorophore. Similarly, we find that:
<Mlzoc> = <<Ml%c|M>> = Ploc (1 - PIOC) <M> + Plro <M2> ) (80)

from which it follows that

<Ml%)c _ MlOC> _ Plzoc <M2 _ M> _
Q— 0 RLOh ProcQ. (81)

Another important consequence of false negative locatiaatis that a fraction?, of all
fluorophores is never localized. This fraction is given by:

b (1 - Ploc)

1—(1-=0)(1— Poe) (82)

Py=>) b(1=b)"" (1= Py)" =
m=1

Finally, it can be shown that the probability distributiar the number of localizations per
fluorophore is given by the same expression as in Eq. 3, ifd@ding substitutions are made:

r — BPyger (83)

b b (84)

b — =
1- (1 - b)<1 - Ploc) Ploc + b (1 - Ploc)

If b = 1/M is not too large, then effectively only/,, appears to be reduced by a factor
P,,.. However, becausg/ becomes smaller by the same amount, the accuracy of theagstim
for M does not deteriorate much. For exampleRif. = 80% and M., = 5 then the estimate
for M would be off by 5%.
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