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A Methods

A.1 Dictionary generation

To generate the dictionary, we compiled a list of commonly occurring 32-mers in a population-size

corpus of sequencing reads. For the corpus, we used 194 FASTQ files taken from the 1000 Genomes

Project [1], corresponding to paired-end reads from 97 human individuals (see Supplementary

Information: Datasets). Read lengths in the dataset ranged from 91-103bp with a total depth of

coverage of ∼700x.

To construct the dictionary of k-mers memory efficiently, we modified the Misra-Gries approx-

imate counting algorithm [2]:

Modified Misra-Gries:

1. Initialize a primary hash map A.

Initialize 65535 hash sets C1, . . . , C65535.

Initialize the counter D = 0.

2. update(i): if i ∈ A, remove i from CA[i], increment A[i] (unless A[i] = 65535), and insert i to

the new CA[i].

else if |A| < m, insert (i, 1) into A and insert i into C1.

else Remove an arbitrary element j from CD (while |CD| = 0, increment D until

nonempty). Remove j from A. Insert (i,D + 1) into A and i into CD+1.

3. query(i): if i ∈ A then output A[i]−D.

else output 0

Of note, in contrast to standard Misra-Gries, we use a collection of hash buckets instead of doubly

linked lists to minimize cache misses. As we do not care about extremely high counts, we further

arbitrarily limit the number of hash buckets to 65535. Memory usage is controlled by maintaining

the invariant that the total number of k-mers stored never exceeds the memory-usage parameter

m. As with classic Misra-Gries, the approximation error is bounded by the decrement counter D.

After partitioning the space of 32-mers into 256 subsets by the identity of the middle 4 bases,

we ran the modified Misra-Gries in multiple passes on each of the subsets. By controlling the

approximation ratio of the Misra-Gries algorithm, we guaranteed that all 32-mers in the dictionary

occurred at least 200 times in the corpus and that all 32-mers in the corpus that occurred at least

240 times were included in the dictionary. In total, the dictionary contained 2,497,777,248 unique

32-mers. It is available with Software.

A.2 Quality score compression

As input, our quality score compression algorithm Quartz requires the dictionary described above,

consisting of commonly-occurring k-mers extracted from a population-sized read dataset. The
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dictionary is designed in such a way that any given read dataset can be mostly covered from

these k-mers within a small Hamming distance, or number of mismatches. Using this dictionary,

Quartz compresses the quality scores in any given read dataset by identifying k-mers from each

read within a small Hamming distance from other k-mers in the dictionary. Any quality score value

corresponding to a position that is concordant with at least one supporting k-mer is set to a default

value, whereas the quality score value at any position that is divergent from all supporting k-mers

is kept. This coarse representation greatly reduces the storage requirement for the quality scores

of read datasets since the smoothed quality score values are substantially more compressible than

the original values.

Our implementation was written in C++11 and compiled with GCC 4.7.2 with all relevant

optimizations enabled. Because each read can be independently processed, Quartz is trivially

parallelized using OpenMP, achieving speedups nearly linear to the number of cores used, up to

the disk I/O bound.

A.3 Parameter selection

Efficiency concerns sufficiently dictate the parameters of k-mer length and Hamming distance that

we have hard-coded optimal choices into the software. For the experiments presented in the paper,

we selected the k-mer length parameter, k, to be 32bp. There are three main criteria we considered

when selecting the k-mer length within the Quartz quality score compression framework:

1. k-mers should be long enough to ensure that the number of all possible k-mers is much larger

than the number of unique k-mers in the genome, so as to ensure incidental collisions between

unrelated k-mers are rare.

2. Since within the Quartz framework, k-mer neighbors are defined to be within a Hamming

distance of 1, k-mers should also be short enough to allow the probability that a k-mer contains

more than one sequencing error to be low; this criterion is to ensure that k-mer sequences

within reads originating from the same genomic region are highly likely to be detected as

neighbors.

3. k-mer length should ideally be a multiple of four, since a 4bp length DNA sequence can be

represented by a single byte.

A 32bp long k-mer satisfies all three of these criteria; it is represented by a single 64-bit integer, with

a relatively low probability of containing more than one sequencing error with Illumina sequences, as

well as resulting in few k-mer collisions. Experimental results demonstrating that other parameter

values are inefficient can be found in Table S.4. A more rigorous analysis scheme by several of the

authors of this paper is also available [3].

For the experimental results presented, the default replacement value (Q) for smoothed quality

scores was selected as 50. In the datasets we studied, the average quality score excluding the special
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value of 2, which we did not modify, was at least 35. Recall that Quartz only replaces a quality

score within a 32-mer if all Hamming neighbors agree on a position. Thus, assuming that all 32-

mers within a read are variants of 32-mers in the dictionary, the method only incorrectly smooths

a quality score if there are two read errors: one for the quality score and one at one of the other

31 locations. Then, as a first order approximation, the error probability for a smoothed location is

31 × 10−3.5 × 10−3.5 < 10−5, justifying our choice of Q = 50. However, this is a trivially adjusted

parameter, and we have explored several replacement values in Fig. S.9.

A.4 Hamming neighbor search

As Hamming neighbors are defined as all k-mers in the dictionary that differ from a query k-mer

by no more than 1 base substitution, we need to be able to quickly search for all 3k + 1 potential

Hamming neighbors in the dictionary. The nave approaches of using a sorted list or hash tables

suffer from the shortcomings of being respectively either CPU or memory inefficient. Additionally,

both näıve approaches incur many cache misses.

We instead used an approach inspired by locality sensitive hashing. Recall that an (R, cR, P1, P2)-

sensitive LSH family F of hash functions h : M → S is defined if ∀p, q ∈ M , a uniformly random

h ∈ F satisfies two conditions:

1. if ||p− q|| ≤ R, then Prob(h(p) = h(q)) ≥ P1, and

2. if ||p− q|| ≥ cR, then Prob(h(p) = h(q)) ≤ P2.

Note that projecting k-mers onto random k
2 -length subsequences forms a (1, c, 1

2 , 2
c−1)-sensitive

LSH hash family under the Hamming metric. Further note that any such projection h comes with

an orthogonal projection h. Because the Hamming metric is discrete, all Hamming neighbors of

a k-mer must match under one of the two projections. Thus, by double hashing, all Hamming

neighbors can be found by looking in just two hash buckets, one for each hash function, giving

much better cache-efficiency. Additionally, as genomic sequences are not chosen in an adversarial

manner, instead of using random projections, projecting onto the front and back halves of the k-mer

suffices in practice.

A.5 Memory requirements

As the dictionary is static and read-only, both hash tables can be efficiently implemented by sorting

lexicographically first by the key (i.e. the projected half) and then by the rest, saving pointers to

the first dictionary entry in each “bucket”, and then discarding the projected half of each k-mer—as

all k-mers are only accessed through the bucket pointers, the hash key is implied. This scheme also

allows for binary search within each bucket, further speeding up lookups. For the default k = 32,

we use an array of length 232 of unsigned 32-bit integers for the pointers and an array of unsigned
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32-bit integers of length |D|, the dictionary size, for the remaining half of the k-mers not specified

by the pointers. Thus, total memory requirement for one such hash table is (232 + |D|) · 4 bytes,

and since two hash tables are needed, (232 + |D|) · 8 bytes. For |D| = 2, 497, 777, 248 as for the

human genome, Quartz requires ∼54 GiB of memory.

A.6 Experimental design

The existence of high quality trio-validated SNP calls makes NA12878 an ideal candidate for

testing genotyping accuracy. We used the SRR622461 1.filt.fastq, SRR622461 2.filt.fastq, and

SRR622461.filt.fastq data files from the 1000 Genomes Project [1] for the unmapped, raw reads

and the variant list CEUTrio.HiSeq.WGS.b37.bestPractices.phased.hg19.vcf from the Broad GATK

bundle as a gold standard for variant locations [4].

Quartz was used to generate smoothed FASTQ files with most quality scores reset to Q. To

measure differences in entropy, both the original and modified quality scores were compressed with

BZIP2, GZIP, 7z (PPMd), XZ (LZMA2), and FASTQZ [5]. The resulting file sizes were used

to compute a rough estimate of the number of bits of storage needed per quality score. We ran

BWA aln/sampe/samse (version 0.7.5a-r405) [6] and Bowtie 2 (version 2.1.0) [7] with all default

options to map the relevant FASTQ files. We used two state-of-the-art variant callers for estimating

genotyping accuracy: GATK UnifiedGenotyper [4] and SAMtools mpileup [8]. We ran the GATK

UnifiedGenotyper (version 2.4.7-g5e89f01) with default parameters. However, because Quartz resets

base qualities to high, it does not interact well with the Base Alignment Quality filter [9]; thus, we

ran SAMtools mpileup (version 0.1.18-dev r982:313) with all default options except for the Base

Alignment Quality filter (varFilter option “-2 0”).

To measure the relative downstream genotyping accuracy, we computed a rescaled receiver

operating characteristic (ROC) curve on variant locations using the ROCR package [10]. Recall

that variant callers do not simply give a list of variant calls. Rather, they give a list of variant calls

along with variant call confidences. In order to provide a final list, some variant call confidence

threshold must be chosen, at which point one can figure out the true and false positive ratio. The

ROC curve is precisely the parameterized curve that results from varying that confidence threshold,

and allows for comparing two methods without having to arbitrarily choose a single confidence

threshold. However, in considering variant callers as binary classifiers, the true negative rate of

correctly called non-SNPs easily dwarfs everything else as most of the genome is called as not a

SNP. As such, to compare two (or more) sets of variant call locations, we took the union of those call

positions as the domain. The ROC curves were then computed against a gold standard classification

of domain elements. Note that this rescaling implies that ROC curves are not comparable between

different plots.

All timing benchmarks were run on a Debian GNU/Linux 6.0.8 system with dual Intel Xeon

X5690 processors and 94 GiB RAM. However, to ensure comparability, we disabled parallelization,
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artificially limiting all programs to a single core unless specified otherwise.

B Datasets

B.1 Dictionary generation

The dictionary used in this paper was generated by finding commonly occurring 32-mers in paired-

end reads from recent 1000 Genomes Project FASTQ files from 97 individuals [11, 1]. We used

two FASTQ files associated with each sample corresponding to the two mate pairs of all paired

end reads for which both mate pairs passed filtering/quality control. Those FASTQ files were

downloaded from URLs of the form

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/[SAMPLE NAME]/sequence read/[FASTQ FILE] 1.filt.fastq.gz

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/[SAMPLE NAME]/sequence read/[FASTQ FILE] 2.filt.fastq.gz

where [SAMPLE NAME] and [FASTQ FILE] are given below.

SAMPLE NAME FASTQ FILE

NA19649 SRR189825

NA19657 SRR068163

NA19658 SRR189828

NA19663 SRR068160

NA19664 SRR068164

NA19669 SRR189827

NA19670 SRR189826

NA19720 SRR350122

NA19914 SRR350098

NA20362 ERR257982

NA20821 ERR257967

NA21125 ERR055396

NA21137 ERR055395

NA18966 ERR234335

NA18978 ERR234334

NA19351 ERR229817

NA19764 ERR229816

NA20357 ERR229818

NA20359 ERR229819

NA20503 ERR229821

NA20507 ERR229820

NA20513 ERR229822

NA20514 ERR229823

NA18528 ERR234331

NA18531 ERR234333

NA18533 SRR189816

NA18537 ERR034771

NA18572 ERR034774

NA18609 ERR034777

NA18611 ERR034778

NA18991 ERR052929

NA18488 SRR189829

NA18501 ERR234330

SAMPLE NAME FASTQ FILE

NA18870 ERR234332

NA18881 ERR257965

NA19092 SRR189830

NA19093 ERR229810

NA19137 ERR229811

NA19138 ERR229812

NA19141 SRR211276

NA19143 SRR211272

NA19175 ERR229813

NA19210 ERR229815

NA19222 ERR229814

NA20900 ERR257972

NA21104 SRR768143

NA21120 ERR126299

NA21122 ERR125594

NA21123 ERR125595

NA21127 ERR257973

NA18504 SRR350142

NA18912 SRR350153

NA19200 SRR352199

NA19160 SRR352222

NA19171 SRR359061

NA18968 SRR359062

NA19204 SRR359064

NA18975 SRR359070

NA18981 SRR359083

NA18971 SRR359095

NA19131 SRR359096

NA19152 SRR359097

NA19119 SRR359106

NA18976 SRR359110

NA18974 SRR360136

SAMPLE NAME FASTQ FILE

NA06994 SRR385751

NA11930 ERR233226

NA11932 ERR233225

NA11933 ERR233227

NA11992 SRR385759

NA11994 SRR385753

NA12003 SRR385756

NA12046 ERR239333

NA12154 SRR385769

NA12155 SRR385762

NA12234 ERR233302

NA12249 SRR211278

NA12282 ERR233301

NA12283 ERR239334

NA12286 ERR234321

NA12340 SRR075006

NA12716 ERR257986

NA12717 ERR257987

NA12748 ERR234323

NA12750 ERR257985

NA12751 ERR257988

NA12761 ERR257989

NA12827 ERR234322

NA12829 ERR234325

NA12830 ERR234324

NA12842 ERR234327

NA12843 ERR234326

NA12878 SRR622461

NA12889 ERR234328

NA12890 ERR234329

NA18969 SRR211274

NA18970 SRR211273

B.2 NA19240

In addition to the NA12878 datasets we used in the main body of the paper, to ensure that our

results are widely applicable, we also performed several analyses on NA19240, using

SRR794330 1.filt.fastq, SRR794330 2.filt.fastq, SRR794330.filt.fastq,

SRR794336 1.filt.fastq, SRR794336 2.filt.fastq, SRR794336.filt.fastq
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for the raw unaligned reads. As a gold standard list of variant locations, we used

NA19240 lcl SRR832874.wgs.COMPLETE GENOMICS.20130401.snps indels svs meis.high coverage.genotypes.vcf

from the Complete Genomics variant calls using CGAPipeline 2.2.0.26, generated on a high coverage

(∼ 80x) dataset using CGA Tools [12].

C Supplemental Results

Quality score recalibration decreases compressibility. Although there are some superficial

similarities to quality score recalibration methods, in that both they and Quartz use k-mer profiles

and improve downstream variant calling accuracy, we demonstrate here in Table S.1 the major

difference: Quartz is a compression algorithm, and decreases space requirements, whereas the

GATK [4] recalibration increases storage space required. We demonstrate this on the quality

scores for NA12878 after mapping by Bowtie 2 [7]. As a note, because the GATK recalibration is

performed post-mapping and sorting by read position, the compression ratios differ slightly from

those given in Table S.2 for unmapped reads. Although Quartz is performed pre-mapping, here

we give the compression results after mapping to ensure comparability to the GATK recalibration.

Finally, total time required for the listed steps is given, demonstrating that Quartz compression is

much faster than GATK recalibration.

Table S.1: Time requirements and effect on storage of Quartz compression and/or GATK recalibration on
NA12878, measured by CPU-time and BZ2 file size. Of note, recalibration significantly increases storage
size. Furthermore, recalibration is much slower than Quartz compression.

CPU-time Bits/Q

Original 0 1.4159
GATK recalibrated 22,686 1.9854
Quartz compressed 2,696 0.3601

Timing and compression benchmarks. In Table S.2 we present the compression ratios of off-

the-shelf compressors; Quartz smoothing reduces the amount of storage space needed by at least a

factor of three. Additionally, also shown in the table is the performance of FASTQZ [5] on quality

scores, a state-of-the-art FASTQ compressor that uses a clever lossless encoding of quality scores

before compression, over which Quartz also demonstrates improvement.

As stated in the paper, our implementation of Quartz costs a negligible amount of CPU time

compared to mapping and variant calling. In Table S.3 we give single-threaded timing benchmarks

for Quartz, mapping, and variant calling on NA12878 using the Bowtie 2 [7] + GATK [13, 4, 14]

and BWA [6] + SAMtools [8] pipelines presented in Figure 1 of the paper, both with and without

Quartz compression. Quartz is orders of magnitude faster than mapping and genotyping.
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Table S.2: Compression benchmarks (bits per quality score) on NA12878. After smoothing using Quartz,
the number of bits needed to store a quality value was cut by over two thirds for post-processing with lossless
compressors, including both off-the-shelf text compressors and FASTQZ, which is designed specifically for
genomic data.

Original Quartz-smoothed

GZIP 1.7025 0.5043
BZIP2 1.3842 0.3564
7zip (PPMd) 1.2620 0.3676
XZ (LZMA2) 1.4353 0.4010

FASTQZ 1.1434 0.3089

Also in Table S.3 are presented timing benchmarks for off-the-shelf (lossless) compressors on

just the quality scores, with and without Quartz compression. Of particular note is the fact that

smoothing the quality scores using Quartz nearly doubles the speed of off-the-shelf compressors.

NB: because the FASTQZ code does not have an option to only compress quality scores without

compressing sequence, we could not separate the two compression times and so have not included

FASTQZ in the timing table, as it would be an unfair comparison for FASTQZ, which takes longer

than off-the-shelf compressors, but has to compress sequences as well.

Table S.3: Timing benchmarks (in seconds) on NA12878 taken from the Bowtie 2 + GATK and BWA
+ SAMtools pipelines. Smoothing using Quartz is orders of magnitude faster than both mapping and
variant calling steps. Furthermore, Quartz smoothing also significantly increases the speed of off-the-shelf
compressors.

Original Quality Scores Quartz-smoothed

Quartz 0 2,696

Mapping
Bowtie 2 59,499 59,554
BWA 116,411 111,023

Variant calling
GATK 23,721 22,261
SAMtools 24,121 24,190

Off-the-shelf (lossless) compressors

GZIP 817 351
BZIP2 937 505
7zip (PPMd) 1,372 565
XZ (LZMA2) 12,600 6,551

Additionally, there are two hard-coded parameters for Quartz compression, including the choice

of k-mer length k = 32 and the restriction of Hamming neighbors to one substitution. We bench-

mark in Table S.4 the effects of adjusting k-mer length and Hamming distance. For k-mer length,

we benchmark only k = 16, as k = 64 requires infeasible memory requirements for most current

machines, and for Hamming distance, we explore only distance 2, as CPU time increases expo-

nentially with distance. As neither option performs well, the authors feel justified in providing an

efficient implementation with hard-coded k-mer length and Hamming distance parameters.
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Table S.4: Timing (in CPU-seconds) and compression (in bits per quality value of the BZ2 file) benchmarks
on NA12878 FASTQ files after adjusting k-mer length and Hamming distance. Both adjustments cause
significant drops in both compression and speed, and thus are not available as options in the published code.

Bits/Q CPU-seconds

Quartz, k-mer length = 32, Hamming distance = 1 0.3564 2,696
Quartz, k-mer length = 16, Hamming distance = 1 1.7514 16,208
Quartz, k-mer length = 32, Hamming distance = 2 1.2844 140,128
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Quartz improves downstream genotyping accuracy. Here we demonstrate that for four

different genotyping pipelines that we have tested, Quartz improves to varying degrees the down-

stream variant-calling accuracy over that of the uncompressed quality scores. Either with or with-

out Quartz quality score compression with a default quality set to 50, NA12878 FASTQ files were

aligned with either Bowtie 2 [7] or BWA [6], and variant positions were called with either SAMtools

mpileup [8] or the GATK UnifiedGenotyper [13, 4, 14].

Resulting scaled ROC curves with corresponding AUC values are given in Figures S.1, S.2,

S.3, and S.4. Note that we have reproduced the results from Figure 2 of this paper, collecting all

pipelines together here for easy comparison.
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NA12878 − Bowtie2 + GATK

Original Quartz

False positives in million highest quality variant calls 24,503 23,383

Figure S.1: Downstream variant calling before and after Quartz compression on the Bowtie 2 + GATK
UnifiedGenotyper pipeline for NA12878. Additionally, we give the number of false positives in the million
highest quality variant calls.
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Figure S.2: Downstream variant calling before and after Quartz compression on the BWA + SAMtools
pipeline for NA12878. Additionally, we give the number of false positives in the million highest quality
variant calls.
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Figure S.3: Downstream variant calling before and after Quartz compression on the Bowtie 2 + SAMtools
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Discarding all quality scores decreases variant-calling accuracy. We additionally ran a

control where we replaced all quality scores with 50, effectively discarding all of them. This

causes a severe drop in genotyping accuracy using the Bowtie 2 + GATK pipeline (Figure S.5),

demonstrating that retaining some of the quality scores is necessary.
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Figure S.5: Control. Discarding all quality scores results in much lower genotyping accuracy. Note that the
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Quartz out-performs existing lossy compression methods in terms of compression ratio,

speed, and genotyping accuracy. Here we show that while maintaining superior compression

levels and improving variant-calling accuracy, Quartz offers an order of magnitude improvement in

speed compared to other state-of-the-art lossy compression methods in the literature. Quality scores

in the FASTQ files were first compressed using one of Quartz, QualComp [15], or Janin et al [16],

aligned with Bowtie 2 [7], and then GATK UnifiedGenotyper [13, 4, 14] was used for genotyping.

Resulting scaled ROC curves, total single-threaded processing time for compression/decompression,

and resulting size of quality scores are given in Figures S.6 and S.7. As Quartz and Janin et al. only

alter quality scores in-place to improve compressibility, they were compressed using Bzip2, whereas

QualComp has its own compressed file format. Quartz was run with default quality 50. QualComp

was run with bits per read set to 60. The method of Janin et al. was run with parameters c=0,

s=2, r=39.
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   Original AUC = 0.8048
     Quartz AUC = 0.8157
   QualComp AUC = 0.7905
Janin et al AUC = 0.7832

NA12878 − Bowtie2 + GATK

Method Bits/Q Time (s) AUC

Uncompressed 8 N/A 0.8048
Quartz 0.3564 2,696 0.8157
QualComp 0.5940 33,316 0.8053
Janin et al. 0.5376 164,702 0.8019

Figure S.6: Quartz compared to QualComp and the method of Janin et al. on NA12878. Quartz is able to
simultaneously improve compression ratio, speed, and genotyping accuracy.
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   Original AUC = 0.7018
     Quartz AUC = 0.704
   QualComp AUC = 0.7006
Janin et al AUC = 0.6913

NA19240 − Bowtie2 + GATK

Method Bits/Q Time (s) AUC

Uncompressed 8 N/A 0.7018
Quartz 0.5300 2,361 0.7040
QualComp 0.6000 22,898 0.7006
Janin et al. 1.5743 136,207 0.6913

Figure S.7: Quartz compared to QualComp and the method of Janin et al. on NA19240. Quartz is again
able to simultaneously improve compression ratio, speed, and genotyping accuracy.
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The improvement in accuracy from Quartz is consistent across chromosomes. Al-

though the improvement in accuracy over the uncompressed is easily visible for NA12878, it is less

so for NA19240, likely because the gold standard variant calls being used are not as well char-

acterized. However, by demonstrating consistent improvements in variant calling accuracy for all

chromosomes, our assertion of increased accuracy is substantiated in Tables S.5 and S.6.

Table S.5: NA12878 ROC AUC values for uncompressed vs Quartz, broken down by chromsome, after using
the Bowtie 2 + GATK Unified Genotyper pipeline.

Chromosome Uncompressed AUC Quartz AUC Quartz Improvement

1 0.7893 0.8105 0.0212
2 0.7912 0.8140 0.0228
3 0.7878 0.8110 0.0232
4 0.7940 0.8171 0.0231
5 0.7922 0.8125 0.0203
6 0.7798 0.8036 0.0238
7 0.7829 0.8063 0.0235
8 0.7818 0.8017 0.0199
9 0.7760 0.7980 0.0220
10 0.7778 0.7993 0.0215
11 0.7720 0.7954 0.0234
12 0.7799 0.8006 0.0207
13 0.7923 0.8151 0.0228
14 0.7855 0.8059 0.0204
15 0.7841 0.8075 0.0234
16 0.7601 0.7889 0.0282
17 0.7738 0.7986 0.0248
18 0.7823 0.8064 0.0242
19 0.7407 0.7687 0.0280
20 0.7687 0.7930 0.0243
21 0.7367 0.7696 0.0329
22 0.7413 0.7703 0.0290
X 0.8118 0.8293 0.0176

Mean improvement (w/ standard error): 0.0235± 0.0007
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Table S.6: NA19240 ROC AUC values for uncompressed vs Quartz, broken down by chromsome, after using
the Bowtie 2 + GATK Unified Genotyper pipeline.

Chromosome Uncompressed AUC Quartz AUC Quartz Improvement

1 0.7255 0.7285 0.0030
2 0.7286 0.7323 0.0037
3 0.7227 0.7275 0.0048
4 0.7012 0.7062 0.0050
5 0.7209 0.7239 0.0030
6 0.7183 0.7221 0.0038
7 0.7112 0.7153 0.0041
8 0.7157 0.7208 0.0051
9 0.7302 0.7356 0.0054
10 0.6959 0.7018 0.0059
11 0.7148 0.7186 0.0038
12 0.7270 0.7311 0.0041
13 0.7088 0.7154 0.0066
14 0.7245 0.7294 0.0049
15 0.7362 0.7385 0.0023
16 0.7078 0.7082 0.0004
17 0.7216 0.7290 0.0074
18 0.7244 0.7306 0.0062
19 0.6965 0.7004 0.0039
20 0.7354 0.7391 0.0037
21 0.6588 0.6644 0.0056
22 0.7174 0.7218 0.0044
X 0.7470 0.7505 0.0035

Mean improvement (w/ standard error): 0.0044± 0.0003
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Quartz shows greater improvement in genotyping accuracy at lower coverage read

datasets. The reads for NA12878 shown in all figures within this paper except for Figure S.8

had a total depth-of-coverage of about 6. For Figure S.8, the reads were subsampled, preserving

mate pairs, and the effect on downstream variant calling was assessed. Although the ROC curves

and absolute AUCs are not comparable because of rescaling, we can compare relative differences in

AUC.
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Coverage Percent AUC increase

2.4 3.323
3.6 2.690
4.8 2.248
6.0 1.934

Figure S.8: ROC curves for subsampled lower-coverage versions of the NA12878 dataset. Relative improve-
ments in AUC given by Quartz using the Bowtie 2 + GATK UnifiedGenotyper pipeline are given in the
table.
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Varying the default replacement quality value can slightly affect the downstream vari-

ant calling accuracy. While all the results in this paper using a replacement quality value

Q = 50, this parameter is trivially adjusted and for appropriately high values, has no effect on

either compression or CPU-time. Indeed, as suggested in the Online Methods, the optimal choice

for this parameter can be related to the average quality value of the dataset at hand. In Figure

S.9, we explore the result on downstream variant calling accuracy from varying that value. While

the choice of Q = 40 was slightly worse, Q = 45 and Q = 50 were nearly indistinguishable. A

more careful examination of the slight differences reveals that Q = 50 results in slightly more false

positives, accounting for the marginal difference between the latter two in AUC.
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NA12878 − Bowtie2 + GATK − varying quality

Figure S.9: Downstream variant calling before and after Quartz compression on the Bowtie 2 + GATK
UnifiedGenotyper pipeline for NA12878, with varying replacement quality values.
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Quartz preserves indel calling accuracy. All of the other variant calling results in this paper

have been dominated by SNP-calling accuracy—GATK UnifiedGenotyper only gives SNP calls and

although Samtools mpileup gives other variant types, the calls made are predominantly SNPs.

Because Quartz is designed with Hamming distance 1 in mind, substitutions are indeed the most

appropriate variants for Quartz to handle. However, as Quartz ignores (and hence preserves) quality

scores for k-mers greater than distance 1 from the dictionary, Quartz should not at all affect the

accuracy of calling indels. In Figures S.11 and S.10 we show the preliminary results with and

without Quartz compression for indel calls made using Samtools mpileup. As expected, Quartz

does not decrease indel calling accuracy, and even appears to slightly improve the AUCs for these

two experiments, so Quartz at least preserves indel accuracy while achieving high compression.
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Figure S.10: Downstream indel calling before and after Quartz compression on the BWA + Samtools mpileup
pipeline for NA12878.
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Figure S.11: Downstream indel calling before and after Quartz compression on the Bowtie 2 + Samtools
mpileup pipeline for NA12878.
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Quartz can be effectively applied to the Escherichia coli genome. All of the other

results in this paper have been on the human genome, which is naturally of particular interest.

However, while new k-mer dictionaries need to be generated for each species, Quartz can be fruitfully

applied to compressing quality scores from other species, as demonstrated here in preliminary results

with the K-12 MG1655 and DH10B strains of E. coli. For this experiment, we took paired-end

sequencing reads of E. coli K-12 strain MG1655 using Illumina Genome Analyzer II from the

European Nucleotide Archive [17] Study: ERP000092 and of E. coli K-12 strain DH10B using

Illumina MiSeq, downloaded from the Orione database [18, 19]. The reference used was U00096.fna

from the NIH Genbank for MG1655, and a truth set for DH10B as compared to MG1655 was

generated by sampling one million 1000-mer sequences from the DH10B reference CP000948.fna

and running Bowtie 2 and GATK Unified Genotyper on it. The dictionary was generated from

the corpus of reads consisting of just the MG1655 and DH10B reads described above, such that all

32-mers with frequency at least 101 were included and only 32-mers with frequency at least 100

were included. Note that the depth-of-coverage for the corpus was ∼850x.

As Quartz performs best on low-coverage datasets, we subsampled the DH10B reads down

to ∼9.5x depth-of-coverage for the analysis. In Figure S.12, we give SNP-calling accuracies for

the uncompressed, Quartz-compressed, Qualcomp-compressed, and Janin et al-compressed quality

scores, after attempting to match compression ratios. Note that this was possible for Qualcomp,

which has an explicit bits/read parameter, but not for the method of Janin et al, so we chose a

parameter set allowing the method of Janin et al additional bits to use.

As a caveat, the authors add that at higher depth-of-coverage, the improvement of Quartz

over the uncompressed quality scores is reduced or sometimes even lost, in marked contrast to

the human results, which always display improvement. This anomaly is likely due to the use of a

low-quality dictionary; whereas the human corpus consisted of 97 different individuals, this corpus

contains only 2 strains of E. coli. As less variation is encoded in the k-mer landscape of this corpus,

Quartz thus has less information with which to improve variant calling accuracy. However, these

preliminary results do suggest that Quartz is applicable to non-human genomes, though with the

caveat that results will only be as good as the dictionary used.
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   Original AUC = 0.9617
     Quartz AUC = 0.9672
   QualComp AUC = 0.9404
Janin et al AUC = 0.8952

E. coli − Bowtie2 + GATK

Method Bits/Q Time (s) AUC

Original / BZIP2 8 / 3.039 0 / 7 0.9617
Quartz 0.2587 7 0.9672
QualComp 0.2585 153 0.9404
Janin et al. 0.6477 383 0.8952

Figure S.12: Quartz compared to QualComp and the method of Janin et al. on a subsampling of reads from
E. coli strain K12-DH10B to 9.5x depth-of-coverage. The method of Janin et al was run with parameters c=0,
s=2, r=39, QualComp was run with bits per read set to 39.3, and Quartz was run with default replacement
value Q50. For reference, performance after lossless compression by BZIP2 is also included with the results
on the original scores.
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