Supplementary Material

Direct Visualization of the Hydration Layer on Alumina Nanoparticles with the Fluid Cell STEM in situ

*Emre Firlar† , Simge Çinar‡ *, Sanjay Kashyap†* , Mufit Akinc †‡§ and Tanya Prozorov†§*

† Division of Materials Science and Engineering, US DOE Ames Laboratory, Ames IA, 50011, USA ‡ Department of Materials Science and Engineering, Iowa State University, Ames IA, 50011, USA

* These authors contributed equally to the project

§ Address correspondence to

Phone: +1-515-294-0738. Fax: +1-515-294-5444. E-mail: makinc@iastate.edu Phone: +1-515-294-3376. Fax: +1-515-294-8727. E-mail: tprozoro@ameslab.gov

XPS analysis was used to monitor the surface evolution of alumina powders exposed to different conditions, as shown in **Figure S1**. Using the best-fit peak analysis, several spectral signatures present in the XPS peaks could be, tentatively, assigned to various aluminum oxides and hydroxides. As-received powder exhibits surface deposit attributed to the absorbed atmospheric gases, associated with the lower-energy carbon peak. Examination of O 1s spectra shows that exposed to atmosphere powder exhibits some degree of hydroxylation, as evidenced by the interplay of the oxidic and hydroxidic peaks reported by Lefèrve and coauthors 37 . Drying the hydrated powder at 40 $^{\circ}$ C overnight reduces the amount of the absorbed gas, decreases the hydroxidic component, and leads to the overall homogenization of the surface. Ethanol-modified powder exhibits a single-peak oxygen spectrum, providing further evidence of the effective removal of surface deposit observed by the BF TEM.

Figure S1 XPS spectra acquired on alumina powder exposed to different conditions: (A) C*1s* peaks, (B) O*1s* peaks, (C) Al*2p* peaks.

Table S1 Peak fitting analysis of the EELS spectra presented in **Figure 5.**

	Peak Index	Center Max (eV) Max Height		FWHM (eV)
1 (as-received alumina)	1	532.54	0.03	4.19
	$\overline{2}$	537.57	0.37	3.88
	3	541.52	0.96	6.08
	4	548.98	0.24	6.86
	5	559.82	0.33	13.97

Using the peak fitting analyses, the EEL spectra obtained for O K-edge were analyzed and tried to be related to the O K-edges of reference γ -Al₂O₃²⁹ (4), reference α - Al(OH)₃³⁰ (5) and reference AlO(OH) 31 (6).

Using the fluid cell STEM imaging schematically shown in **Figure SI 2,** it was possible to visualize alumina nanoparticle suspensions in liquid, their fully hydrated state *in situ*. It is worth noting, that such an experiment cannot be carried out using any conventional microscopy technique. In the current work, alumina nanoparticle suspension was sandwiched between the $Si₃N₄$ windows and imaged with a focused scanning STEM probe in the thin liquid layer.

bright field detector / spectrometer

Figure S2 In situ fluid cell STEM schematics. Alumina nanoparticle suspensions are sandwiched between the two electron-transparent $Si₃N₄$ windows and imaged with a focused scanning STEM probe in the thin liquid layer.