APPENDIX A: Online Supplementary Material

Table AI. Random-effects logistic regression of alcohol dependence on GABRA2 Genotype (SNP rs279871), gender, and socio-demographic controls, COGA (n=2,281)

	Model I	Model II	Model III
	b (SE)	b (SE)	b (SE)
High risk genotype	0.28 (0.11)**	* 0.27 (0.12)*	_
Female		-1.56 (0.11)***	-1.35 (0.13)***
Age (10 years)		-0.07 (0.04)	-0.07 (0.04)
Education (years)		-0.13 (0.03)***	-0.13 (0.03)***
Currently married		-0.34 (0.13)**	-0.36 (0.13)**
Log of HH income (\$10K)		-0.13 (0.05)**	-0.13 (0.05)**
High risk genotype*Female			-0.06 (0.17)
High risk genotype*Male			$0.61 (0.17)^{***}$
Constant	-0.84 (0.08)	2.30 (0.40)	2.20 (0.40)
Intra-class correlation	0.18	0.22	0.22
Wald X^2	6.80^{**}	242.00***	247.18***

Notes: b=beta coefficient; SE=standard error; Age units are tens of years to facilitate interpretation; * p<.01; *** p<.01; *** p<.001

Table AII. Random-effects logistic regression of alcohol dependence on the interaction of GABRA2 genotype (SNP rs279871), gender, and daily uplifts, COGA (n=2,281)

	Model I	Model II	Model III
	b (SE)	b (SE)	b (SE)
High risk genotype	0.25 (0.12)*		
Female	-1.62 (0.12)***	-1.62 (0.12)***	-1.62 (0.12)***
Age (10 years)	-0.03 (0.04)	-0.03 (0.04)	-0.03 (0.04)
Education (years)	-0.13 (0.03)***	-0.13 (0.03)***	
Currently married	-0.39 (0.13)**	-0.39 (0.13)**	-0.39 (0.13)**
Log of HH income (\$10K)	$-0.10(0.05)^*$	$-0.10(0.05)^*$	
Daily hassles	0.90 (0.14)***	$0.90 (0.14)^{***}$	$0.90 (0.14)^{***}$
Daily uplifts	-0.16 (0.12)		
Uplifts*High risk genotype		-0.34 (0.21)	
Uplifts*Low risk genotype		-0.08 (0.15)	
High risk genotype*Female			-0.21 (0.41)
High risk genotype*Male			1.19 (0.39)***
Uplifts*Female*High risk genotype			0.02 (0.31)
Uplifts*Male*High risk genotype			-0.67 (0.30)*
Uplifts*Female*Low risk genotype			-0.11 (0.22)
Uplifts*Male*Low risk genotype			-0.06 (0.19)
Constant	1.77 (0.42)	1.69 (0.43)	1.58 (0.45)
Intra-class correlation	0.23	0.23	0.23
Wald X^2	263.18***	263.87***	275.08***

Notes: b=beta coefficient; SE=standard error; Age units are tens of years to facilitate interpretation; *p<.05; **p<.01; ***p<.001