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Appendix A. Identifiability of natural direct and indirect effects under mediator comparability (2.3) 

 

Here we show identifiability of the natural direct and indirect effects (1.1) assuming consistency, 

randomization of X (2.1a), and mediator comparability (2.3), where the latter can be written as 

( ){ } ( ){ }, | ( ) , , , | ( ) , ,E Y x m M x m X x L l E Y x m M x m X x L l′ ′ ′ ′= = = = = = = .  (A1) 

We start by deriving an estimable expression for the conditional expected potential outcome, 

E{Y(x´, M(x))| L=l}. Noting that M(x) is a random variable, we have, for all x, x´, l in their 

respective support sets, 

 ( )|{ ) | }( , ( ) ( ( , ) | ( ) , ) ( )M x L l
m

E Y x M x L l E Y x m M x m L l dF m==′ ′= = =∫
  

   

   ( )|( ( , ) | ( ) , , ) ( )M x L l
m

E Y x m M x m X x L l dF m== ′ = = =∫   by (2.1a) 
 

   ( )|( ( , ) | ( ) , , ) ( )M x L l
m

E Y x m M x m X x L l dF m== ′ ′ ′= = =∫   by (A1) 
 

   ( )|( | , , ) ( )M x L l
m

E Y M m X x L l dF m== ′= = =∫     by consistency 

   ( )| ,( | , , ) ( )M x X x L l
m

E Y M m X x L l dF m= == ′= = =∫
 

 by (2.1a)  
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   | ,( | , , ) ( )M X x L l
m

E Y M m X x L l dF m= == ′= = =∫  .  by consistency 
 

The last expression involves only association model parameters, and thus is identifiable given an 

appropriate association model (such as (2.4a,b)). The unconditional expected potential outcome 

E{Y(x´,M(x))} can then be obtained by integration or summation over L. Identifiability of the 

natural direct and indirect effects (1.1) follows from identifiability of E{Y(x´,M(x))} for all x, x´. 

 

 

Appendix B. Demonstration of identifiability of mediation effects under regression/copula 

model: Continuous Y 

 

For continuous Y, we assume the regression relationship (similar to (3.1))  

( ){ } ( ){ } [ ]( , )

( )
,́  | ( ) , ,́ | { ( ) | }Y x m

x x
M x

E Y x m M x m L l E Y x m L l m E M x L l
σ

ρ
σ

′
′= = = = + − =   (B1) 

for each x´, x, m where x xρ ′  denotes the correlation between Y(x´,m) and M(x), 

2
( ) ( ( ) | )M x V M x Lσ ≡  and 

2
( , ) ( ( , ) | )Y x m V Y x m Lσ ′ ′≡ ; see Section 3 for other notation. We leave X 

out of the conditioning set in (B1) as this may be dropped due to the assumption of randomized X 

(2.1a). We assume that 
2

( , )Y x mσ ′  is constant over m and write 
2 2

( , )xY Y x mσ σ
′ ′≡ . For continuous 

(particularly, normally distributed) Y and M we will assume that the variances are homogeneous 

over L. The above regression relationship may be assumed even if M is not continuous (or 

normally distributed); in this case, we may wish to allow V(M(x)|L) to vary with L (thus, by 

individual i, as discussed below) and use the notation, 
2

( )M x iσ .  
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 The difficulty with using (B1) is that the marginal expectation term, E{Y(x´,m) | L=l} (equal 

to E{Y(x´,m) | X=x´, L=l} under randomization ox X), is not directly estimable; rather we can 

estimate E{Y(x´,m)| M(x´)=m, X=x´, L=l} which takes the form of our association model under 

the consistency assumption. Note that Wang et al. used formula (B1) directly by essentially 

assuming, at least in special cases, that E{Y(x´,m) | X=x´, L=l} = E{Y(x´,m)| M(x´)=m, X=x´, 

L=l}, thus allowing the former term to be estimated. In the present approach we avoid any such 

assumption (which is part of the sequential ignorability assumption). Rather than use (B1) 

directly we derive an alternative formula by applying (B1) twice (for the cases of (x´, x) = (0,1) 

and  (x´, x) = (0,0)), providing, after some algebraic manipulation, 

( ){ } ( ){ } 0

0

(1) (0)

{ ( (0) | )}{ ( (1) | )}0,  | (1) , 0, | (0) , Y
M M

m E M L lm E M L lE Y m M m L l E Y m M m L l
ρρ

σ
σ σ

 − =− =
= = = = = + − 

  
. 

            (B2) 

 The quantity E{Y(0, M(1))|L=l}is obtained by integrating the expression in (B2) (over m) 

with respect to the (conditional) probability function of M(1) conditional on L= l, denoted as 

f{M(1) | L=l}. Thus, we have 

 ( ){ } ( ){ }0, (1) | 0, | (1) , ( (1) | }E Y M L l E Y m M m L l f M m L l dm= = = = = =∫

( ){ } 0

0

(0)

{ (1) (0) | }
0, | (0) , { (1) | } Y

M

E M M L l
E Y m M m L l f M m L l dm

ρ
σ

σ

 − = = = = = = −      
∫ . (B3) 

We then obtain the natural direct effect, ( ){ } ( ){ }(1) 1, (1) 0, (1)D E Y M E Y M≡ − , as 

  
1(1) (1 | )

R ii
R

D D L l
N ∈Π= =∑        (B4) 

where ΠR is the reference group of size NR and, from (B3), 

 ( ){ } ( ){ }(1 | ) 1, (1) | 0, (1) |i i iD L l E Y M L l E Y M L l= ≡ = − = . 
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Identifiability of D(1) (which follows from identifiability of D(1|L=li) for each i) is obtained by 

noting that, 

( ){ } ( ){ }1, (1) | 0, (1) |i iE Y M L l E Y M L l= − =  

( ){ }1, | (1) , ( (1) | )i iE Y m M m L l f M m L l dm= = = = =∫        

( ){ } 00, | (0) , ( (1) | } { ( (1) (0) | )}i i iE Y m M m L l f M m L l dm E M M L lη− = = = = + − =∫  

( ){ }1, | (1) , 1, ( (1) | 1, )i iE Y m M m X L l f M m X L l dm= = = = = = =∫  

 ( ){ }0, | (0) , 0, { (1) | 1, }E Y m M m X L l f M m X L l dm − = = = = = = ∫

 0[ { (1) | 1, } { (0) | 0, }]i iE M X L l E M X L lη+ = = − = =  

{ }| , 1, ( | 1, )i iE Y M m X L l f M m X L l dm= = = = = = =∫  

{ } 0| , 0, { | 1, } [ { | 1, } { | 0, }]i iE Y M m X L l f M m X L l dm E M X L l E M X L lη − = = = = = = + = = − = = ∫
 

{ } { }| 1, | 1| , 1, | , 0,
i iM X L l i M X L l iE E Y M X L l E E Y M X L l= = = == = = − = =  

  0{ ( | 1, ) ( | 0, )}i iE M X L l E M X L lη+ = = − = =  

where ( )00 0 (0)Y Mη ρ σ σ= , the second equality follows from randomization of X , and the third 

equality follows from consistency; the last equality merely provides a shorthand notation from 

the definition of (conditional) expectation. 

 By a similar derivation, the natural indirect effect, ( ){ } ( ){ }(0) 0, (1) 0, (0)I E Y M E Y M≡ − , is 

expressed as, 

  
1(0) (0 | )

R ii
R

I I L l
N ∈Π= =∑        (B5) 
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where 

 ( ){ } ( ){ }(0 | ) 0, (1) | 0, (0) |i i iI L l E Y M L l E Y M L l= ≡ = − =  

{ } { }| 1, | 0,| , 0, | , 0,
i iM X L l i M X L l iE E Y M X L l E E Y M X L l= = = == = = − = =  

   0{ ( | 1, ) ( | 0, )}i iE M X L l E M X L lη− = = − = = . 

From the above, we can see that under randomization of X and specified association models for Y 

and M (as in (2.4a,b)), D(1) and I(0) are identifiable once η0 is given. Thus, a sensitivity analysis 

in this linear case may be obtained by varying η0. Alternatively, and perhaps more usefully, we 

can estimate 0

2
Yσ  and 

2
(0)Mσ  under homogeneous variance assumptions, and use ρ0 as the 

sensitivity parameter. Specifically, one approach would be to assume, for example, that

0 0

2 2 2
| (0) 0/ (1 )Y Y Mσ σ ρ= − , where 0

2
| (0) { (0, ) | (0), }Y M V Y m M L lσ ≡ = , assumed to be homogenous 

over m, is estimable. 

 The simple expressions for D(1) and I(0) provide in Section 3.1 are obtained in the case 

where Y and M follow a linear additive regression models, that is,  

 0 1 2 3( | , , )E Y X L M X M Lβ β β β= + + + , 0 1 2( | , )E M X L X Lγ γ γ= + + .  (B6) 

In this case we have 

 | 1, 0 1 2 3( | , 1, ) ( | 1, )
iM X L l i i iE E Y M X L l E M X L l lβ β β β= = = + + += = = =  

and 

 | 1 0 2 3( | , 0, ) { | 1, }
iM X L l i i iE E Y M X L l E M X L l lβ β β= = = + += = = =  

so that, under randomization of X (2.1a), we have 

0 1 2 3 0 2 3

0

(1 | ) { | 1, } [ { | 1, } ]
{ ( | 1, ) ( | 0, )}

i i i

i i

D L l E M X L l l E M X L l l
E M X L l E M X L l

β β β β β β β

η
+ + + += = = = + − = =

+ = = − = =  

      1 0 1 (1)Dβ η γ= + = .         (B7) 
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Similarly,  

0 2 3 0 2 3

0

(0 | ) { | 1, } [ { | 0, } ]
{ ( | 1, ) ( | 0, )}

i i i i i

i i

I L l E M X L l l E M X L l l
E M X L l E M X L l

β β β β β β

η
+ + + += = = = − = =

− = = − = =  

      ( )2 0 1 (0)Iβ η γ= − = .        (B8) 

 Note that when M is discrete, or when one might otherwise wish to use a generalized linear 

model for M with a non-identity link, we may use the following more general expressions, 

allowing expected values and variances of M to depend on L (and X if desired):    

  01 0 1 (0)(1) (1/ ) ( / )
RY R i M iiD Nβ σ ρ γ σ∈Π= + ∑  

  { }02 1 0 1 (0)(0) (1/ ) ( / )
R RR i Y i M ii iI N β γ σ ρ γ σ∈Π ∈Π= −∑ ∑   

where 1 ( | 1, ) ( | 0, )i i iE M X L l E M X L lγ ≡ = = − = = . The latter expression may be estimated 

based on the assumed model for M. 

 

 

Appendix C. Demonstration of identifiability of mediation effects under regression/copula 

model: Discrete Y 

 

To begin, we suppose that the observed M is continuous, in which case we use M*(x) = M(x) and 

define ( )[ { ( )}] / M xsxm m E M x σ≡ −  for each x. We assume the regression relationship (3.1) and 

thus (3.2) for observed M, that is, ( ){ }* ,́  | ( ) x x sxE Y x m M x m mρ ′= = . From our assumption of 

bivariate normality of Y*(x´,m) and M(x) (with correlation ρx´x and standard normal marginal 

distribution of Y*(x´,m)), it follows that Y*(x´,m) | {M(x) = m, X=x, L=l} ~ N(ρx´x msx, 1-ρx´x
2). We 

let p0ji ≡ P{Y(0,m) = j | M(0)=m, X=0, L=li} though later drop the individual indicator, i, as well 
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as the conditioning on X, from the notation. Our goal is to identify and estimate the probabilities, 

pj ≡ P{Y(0,m) = j | M(1)= m, X=0, L=l}, j=1,…,J, which are needed to estimate E{Y(0,M(1))}. 

We denote cumulative probabilities as P0j ≡ P{Y(0,m) ≤ j | M (0) = m, X=0, L=l} and Pj ≡ 

P{Y(0,m) ≤ j | M (1) = m, X=0, L=l}. 

 First, we connect the latent variable Y* to the observed Y through the following 

correspondence: 

 * * *
0, 1 0(0, ) (0, )j jY m j Y Y m Y−= ⇔ < ≤  

for j = 1,…,J, where 
1
2* 2 1

0 0 0 0 0(1 ) ( )j j sY P mρ ρ−= − Φ + , *
0, 1Y − ≡ −∞  and *

0JY = ∞ .  It is easy to check, 

by transforming Y*(0,m)| {M(0)=m, X=0, L=l} ~ N(ρ0 ms0, 1-ρ0
2) to a standard normal variate, 

that 1
2

*
0 0 0* *

0 02
0

{ (0, ) | (0) , 0, }
(1 )

j s
j j

Y m
P Y m Y M m X L l P

ρ

ρ

 − ≤ = = = == Φ = 
−  

.  

 Then, since Y*(0,m)|M(1)=m ~ N(ρ ms1, 1-ρ2), we have 

               { }(0, ) | (1) , 0,jP P Y m j M m X L l≡ ≤ = = =  

 { }* *
0(0, ) (1) , 0,jP Y m Y M m X L l= ≤ = = =  

 1 1
2 2

**
0 11

2 2

(0, )
(1) , 0,

(1 ) (1 )
j ss Y mY m m

P M m X L l
ρρ

ρ ρ

 −− = ≤ = = = 
− −  

 

 1
2

*
0 1

2(1 )
j sY mρ

ρ

 − = Φ 
−  

 

 

1
2

1
2

2 1
0 0 0 0 1

2

(1 ) ( )

(1 )
j s sP m mρ ρ ρ

ρ

− − Φ + − = Φ 
−  

.     (C1)  
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 From (C1) we see that ρ = ρ0 = 0 yields P0j = Pj for each j. Under randomization of X (2.1a) 

this result in turn implies mediator comparability (2.3) for x´=0 and thus identifiability of the 

natural direct and indirect effects, D(1) and I(0). 

 Given the Pj’s for each individual from (C1), written as Pji, we can write the expected value 

for an individual (i) as, 

1,1{ (0, ) | (1) , 0, { (0, ) | (1) ,} } ( )J
i i ji j ijE Y m M m X L l E Y m M m L l j P P −== = = = = = = −∑     (C2) 

where the first equality follows from our assumption of randomization of X (2.1a). Note that 

under the copula model leading to (C1), with an accompanying association model (such as 

(2.4a,b)), the Pj’s are estimable for each individual (that is, each value of li) for a given value for 

m (along with ρ and ρ0). To estimate the marginal expected value for an individual, i.e., 

E{Y(0,M(1)) | Li=li}, we take the expectation of (C2) with respect to m (that is, the distribution of 

M(1)). As (C2) is nonlinear in m this would need to be done by integration. Alternatively, we can 

use a Monte Carlo approach (as outlined in Section 3) by computing the average of (C2) 

plugging in independent replicates of m generated from its assumed distribution, namely, normal, 

with mean and variance obtained from model (2.4b), for each individual (or ms1 generated from a 

standard normal distribution). Finally, to obtain the population estimate of E{Y(0,M(1))} we take 

the average of the individual estimates in the selected reference group. 

 For discrete M, the above algorithm may still be used if one is willing to assume that the 

regression relationship (3.1) holds with the observed M. Note that in this case (C2) can be used 

as before and E{Y(0,M(1))} obtained by summing over the discrete distribution for M(1) (based 

on its model) for each person, and over the empirical distribution for L, giving, for example, 

  { }1,1 1 1{ (0, (1))} ( | 1, ) ( )RN K J
i ji j ii k jE Y M P M k X L l j P P −= = == = = = −∑ ∑ ∑  

substituting k for m in the formula for Pji. 
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 Otherwise, to use a latent variable (M*) for a discrete M (with values k = 0,…,K) the above 

algorithm needs modification. In this case, since Y*(x´,m) | {M*(x)= m*, X=x, L=l} ~ N(ρx´x msx
*, 

1-ρx´x
2), we have, for appropriately chosen individual- (and k-) specific cutpoints, Y0kj

*, for j = 

0,…, J-1, 

{ }0 (0, ) | (0) , 0,kjP P Y k j M k X L l≡ ≤ = = =  

{ }* * * * * *
0 0, 1 0 0,(0, ) (0) , 0,kj k kP Y k Y m M m m X L l−= ≤ ≤ = < = =  

 
* **

00 0

* **
00 0

* * * * *
0 0 0(0) | 0,

*
0(0) | 0,

{ (0, ) | (0) , 0, } ( )

( )
ik

ik

kj M m X L lm

M m X L lm

P Y k Y M m X L l dF m

dF m
= = =∈Ω

= = =∈Ω

≤ = = =
=
∫

∫
 

 

* ** 1
00 0 2

* **
00 0

* *
0 0 0 *

0(0) | 0,2
0

*
0(0) | 0,

( )
(1 )

( )

ik

ik

kj s
M m X L lm

M m X L lm

Y m
dF m

dF m

ρ

ρ = = =∈Ω

= = =∈Ω

 − Φ 
−  =

∫

∫
     (C3) 

where  * *
0 0, 1 0( , ]k k km m−Ω = , * 1

0 { ( (0) | 0, )}km P M k X L l−= Φ ≤ = = for k=0,…,K-1, *
0, 1m − = −∞ , and 

*
0Km = ∞ . The cutpoints, *

0kjY  (j= 0,…J-1), for each k are obtained so that (C3) holds, noting that 

the P0kj and *
0km  are estimable. This may be solved numerically, reasonable starting values being 

1
2* 2 1 *

0 0 0 0 0(1 ) ( )kj kj kAY P mρ ρ−= − Φ + , for j= 0,…J-1, where * 1 * *
0 0 0, 1[{ ( ) ( )} / 2]kA k km m m−

−= Φ Φ +Φ , 

*
0 , 1kY − ≡ −∞  and *

0kJY = ∞ . 

 Then, we have 

{ (0, ) | (1) , 0, }kjP P Y k j M k X L l≡ ≤ = = =  

{ }* * * * * *
0 1, 1 1,(0, ) (1) , 0,kj k kP Y k Y m M m m X L l−= ≤ ≤ = < = =  

* **
1

* **
1

* * * * *
0 (1) | 0,

*
(1) | 0,

{ (0, ) | (1) , 0, } ( )

( )
k

k

kj M m X L lm

M m X L lm

P Y k Y M m X L l dF m

dF m
= = =∈Ω

= = =∈Ω

≤ = = =
=
∫

∫
   (C4) 
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where * *
1 1, 1 1,( , ]k k km m−Ω =  and * 1

1, { ( (1) | 0, )}km P M k X L l−= Φ ≤ = = , the latter being estimable under 

randomization of X (2.1a) and consistency. Note that the denominator in (C4), which we denote 

as PMk, is equal to P{M(1)=k | X=0, L=l}= P{M =k | X=1, L=l} (under randomization of X and 

consistency), the latter term being estimable from model (2.4b). Since we assume Y*(0,m)| 

{M*(1)=m*, X=0, L=l} ~ N(ρ ms1
*, 1-ρ2), a similar approach to above (leading to (C1)) yields 

 { }* * * *
0(0, ) (1) , 0,kjP Y k Y M m X L l≤ = = =  

 1
2

* *
0 1 *

2(1 )
kj s

kj
Y m

P
ρ

ρ

 − = Φ ≡ 
−  

        (C5) 

keeping in mind that *
kjP is a function of m*. Substituting the expression (C5) for the 

corresponding probability in (C4) gives an estimable expression for Pkj for given ρ0, ρ for each 

individual, namely, 

 * **
1

* *
(1) | 0,

1 ( )
ik

kj kj M m X L lm
Mk

P P dF m
P = = =∈Ω

= ∫ .        (C6) 

 To compute (C6), we would need to either integrate over the specified (conditional) 

distribution of M*(1) or use a Monte Carlo approach. In a Monte Carlo approach to computing 

(C4), we draw, for each individual, R independent replicates of M*(1), with the rth value denoted 

by mir
*, from N(0, 1). We obtain an estimate of Pkj for individual i by computing (with hats 

indicating model-based estimates, and the indices i and r added for individual and replicate, 

respectively), 

  
*

11

*

ˆˆ

1ˆ ˆ
ir kk

kji kjir
m

P P
N ∈ΩΩ

= ∑  

where 
1

ˆ
k

NΩ is the number of mir
* that fall into the interval 1

ˆ
kΩ . Next, we use an expression 

analogous to (C2), to get , 1,1
ˆ{ (0, ) | (1) , ˆ ˆ} ( )J

i i kji k j ijE Y k M k L l j P P −== = = −∑ .  
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 We then compute 

    1
ˆ{ (0, (1)) | ˆ ˆ} { (0, ) | (1) , } { (1) | }K

i i i ikE Y M L l E Y k M k L l P M k L l== = = = = =∑  

          { }, 1,1 1
ˆ ˆ ˆ( )K J
kji k j i Mkik j j P P P−= == −∑ ∑ . 

Finally, we average over the li for the selected reference group (ΠR) to get 

  { }1,1 1
ˆ{ (0, (1)) ˆ ˆ ˆ} ( )

R

K J
jki j ki Mkii k jE Y M j P P P−∈Π = == −∑ ∑ ∑  

from which estimates of D(1) and I(0) are readily obtained. 

 

 

Appendix D. Demonstration of identifiability of mediation effects under the hybrid model (3.5) 

 

As noted in Appendix A, identifiability of the natural direct and indirect effects follows from 

identifiability of the conditional expected potential outcome, E{Y(x´, M(x))| L=l}. Assuming the 

hybrid model (3.5) along with previous assumptions (but dropping the mediator comparability 

assumption (2.3)) we have 

 ( )|{ ) | }( , ( ) ( ( , ) | ( ) , ) ( )M x L l
m

E Y x M x L l E Y x m M x m L l dF m==′ ′= = =∫
  

 
 ( )| ,( ( , ) | ( ) , , ) ( )M x X x L l

m
E Y x m M x m X x L l dF m= == ′ = = =∫    by (2.1a) 

  | ,( ( , ) | ( ) , , ) ( )M X x L l
m

E Y x m M x m X x L l dF m= == ′ = = =∫   by consistency 

  ( )( ){ }1
2 0 1 2 3 | , 1 ( )M X x L l

m
h x x m l dF mβ β φ φ β β−

= == ′+ + − + +∫   by (3.5) 
 

Note that the β’s in the last expression are estimable from the association model that is a special 

case of the hybrid model with x = x´. The last term (the probability function for M given X and L) 
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is estimable from the model for M. We thus see that φ, the sensitivity parameter, is the only non-

estimable parameter in the last expression. Upon specification of a value for φ we thus obtain an 

estimable expression for, that is, identifiability of E{Y(x´, M(x))| L=l}, consequently E{Y(x´, 

M(x)} by summing over the empirical distribution of L, and thus the natural direct and indirect 

effects (1.1).   

 As an addition note, it is easy to see that the mediator comparability assumption (added to the 

previous assumptions, including randomization of X) implies that φ = 0 in the hybrid model. 

First, it can be seen, by applying the link function, h2, to both sides of the hybrid model (3.5) and 

plugging in appropriate values for x´ and x, that 

  ( ){ } ( ){ }1 2 20, | (1) , 1, 0, | (0) , 0,h E Y m M m X L l h E Y m M m X L lβ φ    = = = = − = = =     

so that 

      ( ){ } ( ){ }( )2 2 10, | (1) , 1, 0, | (1) , 0, /h E Y m M m X L l h E Y m M m X L lφ β   = = = = − = = =    . 

From this expression, we see that mediator comparability (2.3), written (with x´ = 0) as 

 ( ){ } ( ){ }0, | (1) , 1, 0, | (0) , 0,E Y m M m X L l E Y m M m X L l= = = = = = = , 

implies that φ = 0.  

 The hybrid model thus provides a general structure that essentially replaces (and generalizes) 

the mediator comparability (or the second sequential ignorability) assumption. When φ = 0 

(equivalent to mediator comparability) the hybrid model essentially reduces to the corresponding 

(estimable) association model. To see this, note that φ = 0, plugged into the hybrid model, 

implies that  

 E{Y(x´,m) | M(x) = m, X = x, L=l} = h2
-1{β0 + β1x´ + β2 m + β3 l}. 

As the right hand expression does not depend on x, we have  

 E{Y(x´,m) | M(x) = m, X = x, L=l} = E{Y(x´,m) | M(x´) = m, X = x´, L=l} 
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  = E{Y | M = m, X = x´, L=l} 

the last equality following from consistency. Thus, when φ=0 in the general context of the hybrid 

model, the expected potential outcome underlying the natural direct and indirect effects can be 

equated to an estimable regression function. 

 

 
Appendix E. Guidelines for Elicitation of Sensitivity Parameters 

 

In this appendix, we describe a procedure for the specification, or elicitation, of the sensitivity 

parameters for both the copula model and hybrid model approaches. We start with the later, in 

part because the nature of the parameters may be less familiar to most users, and because the 

results may be used for the copula model specification. 

 

I. Hybrid Model Approach 

 

It may be difficult to specify the hybrid model sensitivity parameter, φ , directly through its 

interpretation as the proportion of the direct effect parameter β1 due to selection bias. (Recall, 

specifically, that β1 is a controlled direct effect, that is, the estimable effect, on the scale of the 

link function, of exposure (X) on the final outcome (Y) conditional on the observed mediator and 

included baseline covariates.) In particular, the magnitude, or even the direction, of the selection 

bias (also referred to as ‘collider-stratification bias’), and its connection to confounding, may not 

be intuitive to many researchers. Consequently, in this appendix, we present a simple step-by 

step approach that allows elicitation of φ using more basic, intuitive, elements involving effects 

of unobserved confounders.  
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 Our suggested approach, providing an approximation to the parameter in the original scale, 

involves the use of a linear scale for the elicitation of φ. Note that, as we assume exchangeability 

of levels of the exposure variable X, the main concern (and source of violation of sequential 

ignorability) is unobserved M-Y confounders. Specifically, we consider the linear regression of Y 

on X , M, and L and denote the coefficient of X in this model as βY⋅X |M. In general βY⋅X |M will not 

be the same as the true direct effect of X on Y , denoted as βY⋅X |M,U, which would be estimable if 

the unmeasured M-Y confounders (denoted by the vector U) were included in the above model. 

We will refer to this discrepancy as the ‘bias’, B*; that is, we let B* ≡ βY⋅X |M  - βY⋅X |M,U. Similarly, 

we let βM⋅X denote the coefficient of X in the linear regression of M on X and L, and let βM⋅X | U 

denote the direct effect of X on M (i.e., the coefficient of X), when U is also included (along with 

L) in the model. 

 Of course, in general (unless the generalized linear model for Y involves an identity link 

function), the direct effect, βY⋅X |M,U, from the linear model is not the same as the corresponding 

parameter (i.e., β1) in the generalized linear model of interest. However, for the elicitation of the 

sensitivity parameter, we suppose that the ‘relative bias’, (βY⋅X |M  - βY⋅X |M,U) / βY⋅X |M , from the 

linear model, provides a reasonable approximation of the corresponding quantity (namely, φ) for 

the assumed generalized linear model. We may estimate βY⋅X |M using the ordinary least squares 

estimator, bY⋅X |M . However, | ,Y X M Uβ ⋅ , and thus the bias (or relative bias), even on the linear 

scale, is not estimable. The present goal is to provide a user-friendly approach to elicit plausible 

values for the bias (and thus φ) based on expert subject-matter knowledge.  The proposed steps 

are as follows: 

 

1. Compute bY⋅X |M, bM⋅X, the ordinary least squares estimates of βY⋅X |M, βM⋅X, respectively.  
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2. List possible candidate (unobserved, M-Y) confounders. Label these (ideally, in order of 

‘strongest’ to ‘weakest’) as U1,..,UK.  

3. For the first candidate confounder, U1, specify (estimated or guessed) values for bY⋅U1 |M, X and 

bM⋅U1| X, the coefficient of U1 in the extended regression model for Y and M, respectively. 

Note, as shown in Figure E1 below, that these coefficients are analogous to the estimated 

regression coefficients for X (obtained in Step 1), but now assuming that X is already in the 

model. From an examination of the paths in Figure E1, we write the contribution to the 

estimate of the bias due to the confounder U1 as,  

   B1 = - bM⋅X  bY⋅U1 | M, X  bM ⋅U1 | X.  

Note that, as expected for selection bias, a confounder whose effects are in the same direction 

as those of the exposure would induce a negative bias. Note also that the corresponding bias 

component for the indirect effect would then be -B1.  

 For subsequent confounders, coefficients are specified in sequence assuming that the 

exposure and previous confounders are included in the model. Thus, for the kth confounder 

we specify the analogous quantities, bY⋅Uk |M,X,U1,..,Uk-1 and bM ⋅Uk |X,U1,…,Uk-1, and the additional 

bias due to this confounder is 

    Bk = - bM⋅X  bY⋅Uk | M, X  bM⋅Uk | X  

dropping the conditioning on previous U’s in the notation for brevity. 

4. Compute the total bias as 

  B = Σk Bk = - bM⋅X Σk bY⋅Uk | M, X  bM⋅Uk | X 

and obtain the specified sensitivity parameter value as φ = B / bY⋅X | M , representing the 

(selection) bias as a proportion of the estimable (controlled) direct effect. 
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The above approach may be refined, to obtain a more accurate specification of the bias, by 

specifying σ2
Uk|M,X ≡ V(Uk |M, X) and σ2

M|Uk,X ≡ V(M |Uk, X) and using bc
M⋅Uk | X  ≡  bM⋅Uk | X  

(σ2
Uk|M,X / σ2

M|Uk,X) in place of bM⋅Uk | X throughout (for k=1,…,K), where the proper conditioning 

on previous U’s (not in the notation) is done for k>1. Note that bc
M⋅Uk | X  is equal to bUk⋅M| X (the 

coefficient of M in the regression of Uk on M and X) which is the appropriate term for 

determining the path effect, but may be less intuitive (and causally meaningful), and thus more 

difficult to specify directly, than bM⋅Uk | X. 

 We note that the above approach accommodates different types of unobserved confounders 

(for example, binary, ordinal, or continuous), as well as M and Y. In practice, we may wish to 

consider multiple specifications (or scenarios) and thus obtain multiple values, or a range, for φ. 

 An alternative to specifying parameter values for multiple confounders is to consider a single 

composite confounder. Using a composite confounder would allow one to follow the elicitation 

procedure described above for the case of a single confounder. This approach has the advantages 

of simplicity and of allowing one to avoid having to specify the effects of confounders 

conditional on proceeding confounders. On the other hand, some users may have difficulty in 

conceiving of and specifying the effect of a composite variable. Of course, both approaches may 

be tried and compared to arrive at a satisfactory specification.  

 To provide a numerical example, we detail the elicitation of the sensitivity parameter value 

for the dental data analysis (as given in Section 4), conducted with the assistance of our dental 

colleague, Dr. Suchitra Nelson. 

1. From the fit of the linear model of DMFTD (Y) regressed on MomEd (X), OHI (M) and 

baseline covariates (L) we obtained the estimate, bY⋅X | M = 0.12, and from the regression of 

OHI on MomEd and L we obtained bM⋅X = 0.29. See the corresponding causal diagram in 
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Figure E1 keeping in mind that the filled in value for the direct effect of X on Y (bY⋅X | M = 

0.12) may be a biased estimate. 

2. Potential M-Y confounders (from ‘strongest’ to ‘weakest’) are financial means (1 for low, 0 

for high), stress (1 for high, 0 for low), and social support (1 for low, 0 for high).  

3. From prior substantive knowledge, we specify the regression coefficients for the three 

potential confounders as follows: 

  k  confounder bY⋅Uk | M, X   bM⋅Uk | X 

  1 financial    0.2     0.3 

  2 stress     0.1     0.1 

  3 social supp    0.1     0.1 

 Note that these specified values replace the question marks in Figure E1. 

4. We compute the bias as B = -0.29{(0.2)(0.3) + (0.1)(0.1) + (0.1)(0.1)} ≈ -0.023, resulting in a 

specified sensitivity parameter value of φ = B / bY⋅X | M  = -0.023/ 0.12 ≈ -0.2. 

 

    

  Figure E1 – DAG and Regression Estimates for Dental Data 

 

To use the refinement mentioned above, we specify, for example, (σ2
U1|M,X / σ2

M|U1,X) = 0.92 and 

thus bc
M⋅U1 | X  ≡  bM⋅U1 | X  (0.92) = 0.3 (0.92) = 0.28. This specification was obtained from 

simulated data mimicking the dental data and using a binary unobserved confounder (U) with 

P(U=1) = 0.5. Similar corrections may be used for the other unobserved confounders. Because 
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this correction is not substantial (particularly relative to the uncertainty in the specification of the 

regression coefficients) in the present case, we do not use it in the specifications for this 

example. 

 As an alternatively to the above specification, we may wish to consider a more pessimistic 

scenario using coefficient values (bY⋅Uk | M, X  and bM⋅Uk | X) for ‘financial means’ of 0.3 and 0.4, 

and for ‘stress’ of 0.2 and 0.15. This scenario would yield B= - 0.29{(0.3)(0.4) + (0.2)(0.15) + 

(0.1)(0.1)} = -0.046 and  φ  = -0.046 / 0.12 ≈ -0.4. For additional conservatism, we suppose a 

2.5-fold-increase in φ from our more pessimistic scenario, resulting in a value of around φ = -1. 

Thus, we consider a plausible range for φ to be -1 to 0 (including as an upper bound the most 

optimistic scenario of no M-Y confounding).  

 This approach supposes that the relative bias from the linear model transports reasonably 

well to a generalized linear model with a non-identity link function. In many applications it will 

be not essential that this approximation be very accurate, as only a rough idea of plausible values 

for the sensitivity parameter is needed. However, some simulation results provided in 

Supplementary Material Appendix F suggest that this approximation may be quite good. 

 An alternative approach that would be more accurate in terms of the connection between the 

specified parameter values and the actual φ, would be to use the link function scale (e.g., logit for 

logistic regression) for the regression coefficients to be specified/elicited. The elicitation would 

follow the above approach except on the alternative scale. 

 The above approach may resemble previous sensitivity analysis approaches in its 

consideration of unobserved confounders. However, there are some important distinctions and 

advantages of the hybrid model approach in conjunction with the above method for sensitivity 

parameter elicitation, namely, 1) it can accumulate the impact of multiple hypothesized (M-Y) 

confounders, and 2) it allows a choice of scales for the specification of confounder effects.  
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II. Copula Model Approach 

 

The sensitivity parameters for copula model are particular instances of the correlation  

ρx´,x ≡ corr{Y*(x´,m), M*(x)}. For estimation of D(1) and I(0), as shown in Appendices B and C, 

the particular sensitivity parameters are ρ ≡ ρ01  ≡ corr{Y*(0,m), M*(1))} and  ρ0 ≡ ρ00 ≡ 

corr{Y*(0,m), M*(0)}, or for the additive linear Y model, ρ0 alone.  

 To help provide intuition for the specification of values for ρ and ρ0 we note that these 

correlations (conditional on baseline covariates, L) represent an effect of M-Y confounding (or 

selection bias). For example, corr{Y*(0,m), M*(0)} is a correlation of Y*(0,m) with M*(0) which is 

not due to the causal effect of M since Y*(0,m) is the (potential) outcome due to setting M = m 

(and X = 0); note that the levels of M*(0) correspond to subgroups (or cohorts) of the population. 

When unobserved confounders are positively related to M and Y (as is the case for low financial 

status, which is positivity related both to OHI and DMFTD), then corr{Y*(0,m), M*(0)} will be 

positive. If there are interactions between such confounders and X, then the correlations ρx´,x may 

vary according to x´ and x (though the correlations may be heterogeneous for other reasons as 

indicated below). 

 Although such correlations (which are, of course, bounded by -1 and 1) can be specified 

directly, the quantitative specification may be assisted by considering, in a similar manner as for 

the hybrid model, the connection between the copula model correlations and the effects of 

potential confounders. One relatively simple approach is along the lines of an approach 

presented, in the linear model context, by Imai et al., (2010b). 
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 In this approach we suppose the following set of linear structural models (where, despite the 

common notation used for convenience, there is no relationship between the regression 

parameters involved here and those given previously): 

  * *
0 1 2 3( , ) ( , )YY x m x m l x mβ β β β ε= + + +′ ′ ′+  

  * *
0 1 2( ) ( )MM x x l xγ γ γ ε= + + + . 

The conditional correlation, ρx´x , of Y*(x´,m) and M*(x) under these models is the same as 

corr{εY*(x´,m), εM*(x)}. Extending Imai et al. (2010b), we suppose the decompositions,  

  *
'( , )Y Yx Yx m Uε λ ε′ = +    and 

*( )M Mx Yx Uε λ ε= +  

where λYx´, λMx are fixed unknown coefficients, U is random (representing an unobserved 

confounder) and εY, εM, and U are independent. 

 Let RY(x´)
2, RM(x)

2 be the coefficient of determination (for U) in the regression of εY*(x´,m) and  

εM*(x), respectively. Note that we assume that RY(x´)
2 does not depend on the mediator value, m; 

thus the latter is not included in the notation. A given R2 has an appealing interpretation as the 

proportion of variance (of Y* or M*) explained by the confounder. Thus, a relatively easy way to 

elicit a value for ρx´x (for given x´ and x of interest) may be to specify the relevant R2’s (namely, 

RY(x´)
2 and RM(x)

2) and use the following relationship (Imai et al., 2010b), 

   ρx´x = sgn(λYx´ ⋅ λMx)RY(x´) ⋅ RM(x).      (E1) 

 We illustrate this approach by carrying out the elicitation of the copula model correlations for 

our dental data example. First we consider possible M-Y confounders. This was done above in 

our elicitation based on the hybrid model where we indicated that the strongest unobserved 

confounder was thought to be ‘financial means’. As the present approach involves a single 

confounder, we can consider financial means alone (conceived as either binary or continuous) or 

imagine a summary measure or latent variable encapsulating all the candidate confounders. 



21 
 

 For the estimands D(1) and I(0), we need to elicit values for ρ00 and ρ01. Our specifications 

(for a ‘pessimistic’ scenario as well as a plausible range) of the R2s for ‘financial means’ (with 

each given outcome) are given in the following table: 

  Outcome Outcome Description   R2 (pessimis)   R2 range 

    Y(0,m) DMFT for high MomEd       0.5    (0.1, 0.7) 

    Y(1,m) DMFT for low MomEd       0.55   (0.1, 0.75) 

    M(0)  OHI for high MomEd        0.5    (0.1, 0.7) 

    M(1)  OHI for low MomEd                   0.6    (0.1, 0.8)   

The R2 for Y(1,m) is not actually needed for the present estimands (rather, would be needed for 

the alternative estimands, D(0) and I(1)), but is included for reference. 

 We note that the signs of the regression coefficients λY0, λM0, and λM1 are all expected to be 

positive for financial means (defined such that a higher score is worse - ‘less’ financial means). 

Also note that although the Y* and M* represent underlying, generally unobserved, continuous 

variables, considering the observed outcomes may provide a reasonable approximation. In the 

case of the present example, M (OHI) is roughly continuous anyway (and the analysis uses M* = 

M) and Y (DMFTD) is a dichotomization of an underlying count variable (which may itself be 

considered, and is perhaps not far from continuous). 

 We then have, using the ‘pessimistic’ values in the above table, ρ00  =  sgn(λY0 ⋅ λM0) RY(0) ⋅ 

RM(0) = {(0.5)(0.5)}1/2 = 0.5 and ρ01  =  sgn(λY0 ⋅ λM1) RY(0) ⋅ RM(1) = {(0.5)(0.6)}1/2 ≈ 0.55.  

The plausible ranges for the two sensitivity parameters are, for ρ0, [0.1, 0.7], and for ρ, [0.1, 

0.75]. We see that our elicitation provides a larger value for the correlation of Y(0,m) with M(1) 

than with M(0), even though the former pair involves different exposure statuses. Our explication 

of the correlations above show how this occurs. The key in this case is that it was felt that the 

confounder (financial means) may have a stronger relationship with the oral hygiene index (OHI) 
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if MomEd is low (X=1) than with OHI if MomEd is high (X=0), as high mother education may 

dampen the impact of situational factors, such as financial means (as well as the other potential 

confounders) on OHI.  

 Finally, we note a relationship between sensitivity parameters from the copula and hybrid 

models. Supposing a linear model for each approach, we equate the ‘selection bias’ terms (of 

D(1), say) obtained for the two approaches in the linear case: 

  0
0 1 1

(0)

Y

M

σ
ρ γ β φ

σ

 
− =  

 
.      (E2) 

Note that the left hand side (equal to -η0 ⋅ γ) is the ‘bias’ from the copula model (as easily 

obtained from the expression for D(1) given in Section 3.1, also (B7) above). From (E2), and 

using 0 0

2 2 2
| (0) 0/ (1 )Y Y Mσ σ ρ= −  as suggested in Appendix B, we can solve for ρ0 to obtain, 

  

1
2 2

01
0 2

1 0
sgn

1
A

A
β

ρ φ
γ

    = −      −    
     (E3) 

where  
0

(0)1
0

1 | (0)

M

Y M
A

σβ
φ

γ σ

  
 = −     

.       

We note that under previous assumptions (including randomization of X), the parameters on the 

right hand side of (E3), apart from φ, are estimable. Thus a value for ρ0 may be obtained, once 

estimates are substituted for the other parameters, from an elicited value for φ. A similar 

derivation can be used to provide a possibly different value for ρ1 ≡ ρ11  ≡ corr{Y*(1,m), M*(1)} 

yielding, 

  

1
2 2

1 1
1 2

1 1
sgn

1
A

A
β

ρ φ
γ

    = −      −     
      (E4) 
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where  
1

(1)1
1

1 | (1)

M

Y M
A

σβ
φ

γ σ

  
 = −     

 

Note that similar expressions are not available for ρ01 and ρ10 as these parameters are not 

involved in the linear case.  

 The above expressions could be used to elicit values for ρ0 and ρ1 from φ (or using the 

inverse relationship, φ from ρ0 or ρ1). However, a more useful purpose may be to allow a 

calibration between the two methods. For example, if an elicited value of φ corresponds (using 

(E3) and (E4), respectively) to a larger (or smaller) value for ρ0 and/or ρ1 than that considered as 

reasonably ‘plausible’, then one may wish to reconsider the specified confounders and/or 

confounders effects leading to the elicitation of φ. Similarly, we may wish to inspect the value 

for φ calculated as a function (using (E3) or (E4)) of elicited values for ρ0 and/or ρ1.   

 We illustrate this approach to ‘calibration’ using the dental data. As in the discussion for the 

hybrid model, we use linear models for DMFTD and OHI to get estimates for the parameters 

involved in (E3) and (E4). In the present data, it seems reasonable to assume homogeneity of 

variances for the two exposure groups so that ρ0 = ρ1. (Of course, we may examine this 

assumption itself by comparing the present specifications with those using the above approach 

for the copula model.) Then, using the plausible (‘pessimistic’) value from the hybrid model of φ 

= -0.4, and plugging in estimates ( 1̂ 0.12β = , 1̂ 0.12γ = , (0)| (0)ˆ 0.48Y Mσ = , (0)ˆ 0.78Mσ = ) gives ρ0 

= ρ1 ≈ 0.28.  This correlation is considerably lower than those (0.5 and 0.55, respectively) 

obtained from the copula model (‘pessimistic’) specifications, suggesting that the latter are more 

pessimistic than that specified from the corresponding hybrid model. 

 

 

Appendix F. Simulation Study Results on Linear Approximation in Elicitation    
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In this appendix we present the results of a simulation study intended to give an idea of the 

accuracy of the linear approximation used in the hybrid model sensitivity parameter elicitation. 

In this small (single replicate) study, we generated simulated data under the hybrid model for a 

dichotomous outcome, Y, using a logit link and parameter values mimicking our dental data; in 

addition, a linear (identity-link) regression model was assumed for mediator, M. Specifically, for 

each scenario considered, we generated a data set consisting of X, M , and two versions of Y: 1)  

a potential outcome (YC ≡ Y(x,m), choosing x=0 and m =1 for simplicity and relevance to the 

mediation estimator) from the hybrid model, to allow estimation of the causal (unbiased) direct 

effect of X; and 2) a variable Y generated from a logistic regression association model 

(corresponding to the hybrid model with x =x´), as would be observed in practice.  

 The parameters values used, mimicking the dental data, were: β0 = -1, β1 = 0.5, β2 = 0.7, γ0 = 

1, γ1 = 0.3, σM
 = 0.7 (using the notation of Model (4.1)). The exposure, X , was generated as 

Bernoulli with P(X=1) = 0.5. Different scenarios were obtained using varying sample sizes (200, 

2000, and 20,000) and varying values for φ (namely, -1, -0.4, and 0.4). 

 Estimation based on the simulated data proceeded by fitting, in turn, the (assumed correctly 

specified logistic regression) association model and the hybrid model (fixing m=1) to the data 

with the observable outcome, Y, and the potential outcome, YC, respectively, as the final 

outcome. The estimate of φ was then obtained as the ratio of the estimated coefficients of X from 

the hybrid and association models. To study the approximation in question, we fit the same data 

to linear (identity link) versions of the above association and hybrid models, and the estimate of 

φ was obtained as the same ratio as indicated above. We note that the above procedure was 

chosen in lieu of an approach involving an assumed unobserved confounder (U in our notation in 
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Appendix E) as it is not straightforward to construct a model consistent with the nonlinear hybrid 

model that directly involves an unobserved confounder.  

 

Table F1. Simulation estimates of φ under logistic and linear hybrid models 
for varying true φ and sample size (n) 

      n       200        2,000      20,000 

 true φ   logit   lin     logit   lin   logit   lin 

 -1.0  -0.75 -0.69   -0.88 -0.85  -1.17 -1.15 

 -0.4  -0.93 -0.90   -0.40 -0.41  -0.41    -0.42  

  0.4   0.16  0.16    0.61  0.63   0.41  0.43  

 

 Table F1 provides the estimates of φ for both the (correct) logistic (“logit”) and linear (“lin”) 

versions of the hybrid model. The results show that the estimates of φ based on the linear 

approximation are quite close to those from the logistic regression model in each scenario. 

Though the present study was not intended to evaluate properties of estimators of φ, it should be 

noted that the results also show that the estimates, even based on the correct logistic regression 

model, appear to be rather biased in some cases, particularly, for the relatively small sample size 

of n=200. This suggests that one should be cautious in using estimates from small sample studies 

for the needed parameters in the above elicitation. As also seen in Table F1, the estimators tend 

to improve as the sample size increases, indicating the consistency of the logistic regression 

model estimates.  

 In summary, our simulation study results suggest that estimates of φ from an assumed linear 

version of the hybrid model may provide good approximations to those from the logistic 

regression hybrid model. The results of this study thus supports the use of linear model 

approximations (as outlined in Appendix E) in the elicitation of values of φ. The reasonableness 
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of the linear approximation is further suggested by the fact that the resulting errors are likely to 

be small relative to the uncertainty involved in the specification of unobserved confounder 

effects. Of course, the approximations will depend on the true parameter values (e.g., coefficients 

of X and M) and may be worse or better in other situations relative to the present example; 

however, we expect the previous comments to pertain fairly generally. 

 We expect that the linear approximation may be reasonable for other hybrid models as well. 

For example, we would expect linear approximations of φ in a hybrid model involving a log link 

function for a Poisson-distributed count outcome to be at least as good as those shown above for 

the logistic regression model, as the linear approximation is likely to be better for a count than a 

dichotomous outcome. 

 

 

Appendix G. Additional Data Examples 

 

Here we provide additional examples of the application of the proposed sensitivity analysis 

methods to the dental data. In these examples, we use the original DMFT (decay, missing, and 

filled teeth) count rather than dichotomized version. As a first example, we assume a linear 

(identity link) model, and normal distributions, for both DMFT and OHI. In the second example, 

we assume DMFT to be distributed as negative binomial and to follow a log-linear model. For 

both models, we control for the same set of covariates as before. Thus the mediator (M = OHI) 

model is the same as before (namely, (4.1b)), while the alternative (linear and log-linear) Y 

models may be written as, 

0 1 2 3 YY X M Lβ β β β ε= + + + + ,      (G1) 

0 1 2 3{log ( | , , )}E Y X L M X M Lβ β β β= + + + ,    (G2)  
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respectively, where Yε | X, M, L ~ N(0,σY
2), σY

2 is an unknown variance parameter, and the βs are 

unknown parameters (and unrelated for different models, though the same symbols are used for 

convenience). 

 The plots for the linear Y model are given in Figure G1 (for the copula and hybrid model 

approaches) and Figure G2 for the Imai et al. (2010b), approach. The overall ranges for the 

estimates of D(1) and I(0) across sensitivity parameter values are similar between the Imai et al. 

and copula approaches. At this point, we comment on theoretical differences between the two 

approaches. The Imai et al. approach provides estimated natural indirect effects (assuming I(0) = 

I(1)) as a function of a sensitivity parameter, which we denote as ρ*, as follows (in the present 

notation and after some manipulation):  

  

1
22

*
1 2 *2

1
(0)

1
Y YM

M
I σ ρ

γ β ρ
σ ρ

  − = −    −   
 

 

where ρYM is the estimable correlation between the error for the M model and the error for a 

(linear) Y model with M removed as a covariate. This expression for I(0) has the same form as 

the formula (B8) from the copula model after the substitution, 

  

1
22

*
0 *2

1
1

YMρ
ρ ρ

ρ

 −
=   − 

. 
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Figure G1. Sensitivity analysis for dental data using a linear Y model. Maximum likelihood 

estimates of direct (top) and indirect (bottom) effects versus sensitivity parameters from 

copula model (left) and hybrid model (right). Solid line = estimates, Dotted lines = 95% 

confidence interval bounds.  
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Figure G2. Sensitivity analysis for dental data using the Imai et al. (2010b) approach (linear 

Y and M models). The plot on the left (right) is for the natural direct (and indirect) effect, 

respectively. The solid line corresponds to the estimates, while the shaded area provides 95% 

confidence interval bounds. (Plots are obtained from the Mediation R package, Tingley et al.)  

 

 

 From the above results, we note the following differences between the Imai et al. and the 

copula method approach:  

a) The two approaches have difference sensitivity parameters (ρ versus ρ*), resulting from 

different models. (Note that the Imai et al. approach involves a model for Y leaving M out as 

a covariate.) 

b) In general, a range of [-1,1] for one of these parameters implies a different range (possibly 

including values outside of [-1,1]) for the other. Thus, the two implied models are not 

generally compatible.  
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c) The sensitivity parameters have different interpretations as indicated by their definitions. 

Imai et al.:  ρ* = corr{M(Xi), εY(Xi,M(Xi))} where εY(Xi,M(Xi)) = Y(Xi,M(Xi)) – β0 – β1Xi – 

β2M(Xi) – β3Li; copula model: ρ0 = corr{Y(0,m),M(0)}. Thus, ρ* is the correlation between, 

for example, M(0) and the potential outcome of the residual of Y given X=0 and the observed 

value M(0), while ρ0 represents the correlation between the potential mediator (M(0)) and the 

potential outcome (equivalently, the residual) of Y at X=0 and a fixed value (m) for M. 

 

 Next we illustrate the two new sensitivity analysis approaches (again using the dental data 

with the DMFT count as the final outcome, Y) assuming Y is distributed as negative binomial and 

following a log-linear model. For the copula model, we chose to reduce the parameterization by 

specifying ρ from ρ0 using the relationship, log{ρ/(1-ρ)} = log{ρ0/(1-ρ0)} + log c, equivalently, ρ 

= c ρ0 / {1 + (c-1) ρ0}. We used c = 1.2 which yields similar values as those elicited for the 

copula model in Appendix E. The plots of the estimates (for D(1) and I(0)) versus the respective 

sensitivity parameters for the copula and hybrid model approaches are shown in Figure G3. 

While there are differences, particularly in the confidence bands, the overall patterns for the 

mediation effect estimates are similar for the different models for DMFT. 
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Figure G3. Sensitivity analysis for dental data using a loglinear Y model. Maximum 

likelihood estimates of direct (top) and indirect (bottom) effects versus sensitivity parameters 

from copula model (left) and hybrid model (right). Solid line = estimates, Dotted lines = 95% 

confidence interval bounds.  
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Tingley D, Yamamoto T, Hirose K, Keele L, Imai K. mediation: R Package for Causal 

Mediation Analysis. Journal of Statistical Software, Forthcoming.  


