Title:

Rapid degradation of methylene blue in a novel heterogeneous Fe₃O₄@rGO@TiO₂-catalyzed photo-Fenton system

Author names

Xiaoling Yang, Wei Chen, Jianfei Huang, Ying Zhou, Yihua Zhu,* and Chunzhong Li

Affiliations

East China University of Science and Technology, Key Laboratory for Ultrafine

Materials of Ministry of Education, School of Materials Science and

Engineering, Shanghai 200237, China

* Authors to whom correspondence should be addressed

yhzhu@ecust.edu.cn

Fig. S1 (a-c) HRTEM and selected area electron diffraction (SAED) patterns of Fe_3O_4 , $Fe_3O_4@GO$ and $Fe_3O_4@rGO@TiO_2$; (d) SAED image of the selected area in Fig. S1c.

The SAED image of Fe₃O₄ particles shown as an inset of Fig. S1a illustrates that Fe₃O₄ is a polycrystallinity. The calculated lattice spacings from the diffraction patterns, with the values of 0.246 and 0.143 nm, match perfectly with that of (311) and (440) planes of Fe₃O₄ (JCPDS file No. 19-0629). The SAED pattern of Fe₃O₄@GO (Figure. S1b) shows only diffraction rings without any diffraction dots, which may be attributed to the existence of the amorphous GO ^[1,2]. Moreover, the HRTEM and SAED graph of Fe₃O₄@rGO@TiO₂ composites illustrated in Fig. S1c

revealed that TiO_2 nanospheres were successfully deposited on the surface of the GO-wrapped Fe₃O₄ particles. Another electron diffraction image of the selected area in Figure. S1c with distinct diffraction rings was depicted in Figure. S1d. The lattice spacing calculated from the diffraction rings agrees well with that of (101) planes of TiO₂ (JCPDS file No. 21-1272), indicating that anatase TiO₂ was grown in Fe₃O₄@rGO@TiO₂ successfully and TiO₂ existed in the composites is also a polycrystallinity.

Fig. S2 Raman spectra of GO, Fe₃O₄@GO, Fe₃O₄@rGO@TiO₂.

Fig. S2 shows the Raman spectrogram of GO, $Fe_3O_4@GO$ and $Fe_3O_4@rGO@TiO_2$. As can be seen in the above graph, GO shows an obvious Raman shift at 1360 and 1602 cm⁻¹ corresponding to the D- and G- bands, respectively ^[3]. The Raman signals located at 218, 285, 376, 501 and 709 cm⁻¹, corresponding to the vibration modes of Fe-O bonds of Fe₃O₄ nanoparticles could be observed in

Fe₃O₄@GO^[4]. The reason that the D- and G- bands of GO centered at 1358 cm⁻¹ in Fe₃O₄@GO may be due to overlap of two peaks, one of Fe₃O₄ at 1300 cm^{-1 [5]} and a GO D band peak at 1360 cm⁻¹. Some new peaks occurred at 152, 359, 508, 694 cm⁻¹ when TiO₂ nanoparticles were decorated on the surface of the GO-wrapped Fe₃O₄, all of which are characteristic peaks of anatase TiO₂^[6]. Besides, the intensity ratio of D- and G- bands of GO (I_D/I_G) changed after depositing TiO₂ nanoparticles on the surface of the GO-encapsulated Fe₃O₄ nanospheres through the hydrothermal reaction, indicating that the structure defects increased after GO was transformed into rGO partially. The raman spectrum of Fe₃O₄@rGO@TiO₂ is actually a simple combination of that of Fe₃O₄, rGO and TiO₂. This illustrates that the combination of the three components is just a physical force.

Fig. S3 Effect of dose of H_2O_2 on the degradation of MB without any catalysts at room temperature and neutral pH.

As can be seen in the Fig. S3, different dose of H_2O_2 just have slight effect on the degradation of MB and the degradation tendency is similar to the consequence shown in Fig 4b. These results further confirm that the as-prepared catalysts do have a great effect on the degradation of MB, and the degradation efficiency can increase as the amount of H_2O_2 increasing until an optimal point, and a slight decreasing will occur when the amount of H_2O_2 is beyond the optimum which can be attributed to the side reaction between H_2O_2 and OH.

Fig. S4 UV-visible spectra of P25 and Fe₃O₄@rGO@TiO₂

It can be observed from Fig. S4 that $Fe_3O_4@rGO@TiO_2$ has a more intensive absorption of visible light compared with P25 due to coexistence of rGO and Fe_3O_4 . Besides, a red shift in the absorption edge is clearly presented, illustrating that the band gap of TiO₂ has been narrowed and the electrons in the valance band can be excited to the conduction band under the visible illumination. [1] Xie, G. Q. *et al.* A facile chemical method to produce superparamagnetic graphene oxide-Fe₃O₄ hybrid composite and its application in the removal of dyes from aqueous solution. *J. Mater. Chem.* **22**, 1033-1039 (2012).

[2] Wang, G. X. *et al.* Facile synthesis and characterization of graphene nanosheets. *J. Phys. Chem. C* 112, 8192-8195 (2008).

[3] Sher Shah, M. S. A., Park, A. R., Zhang, K., Park, J. H., Yoo, P. J. Green synthesis of biphasic TiO₂-reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity. *ACS Appl. Mater. Interfaces* **4**, 3893-3901 (2012).

[4] Hu, X. B. *et al.* Adsorption and heterogeneous Fenton degradation of 17α -methyltestosterone on nano Fe₃O₄/MWCNTs in aqueous solution. *Appl. Catal., B* **107,** 274-283 (2011).

[5] Wang, J. Z. *et al.* Graphene - encapsulated Fe₃O₄ nanoparticles with 3D laminated structure as superior anode in lithium ion batteries. *Chem. Eur. J.* **17**, 661-667 (2011).

[6] Jang, B. J. *et al.* In situ growth of TiO_2 in interlayers of expanded graphite for the fabrication of TiO_2 -graphene with enhanced photocatalytic activity. *Chem. Eur. J.* **17**, 8379-8387 (2011).