Online Supplemental Material

Supplemental Methods: Intakes of Antioxidants and Magnesium

Dietary Intakes from Food Comsumption.

Dietary β -carotene, vitamin C, vitamin E, and magnesium intakes were estimated on a 24-hour dietary recall (24-h DR) interview. DR interview includes a list of all foods and beverages consumed by the respondent except plain drinking water during the 24-hour period prior to the interview, amounts of the reported foods, and detailed food descriptions (1-3). Individuals with unreliable or incomplete DR records were excluded as recommended by the National Center for Health Statistics (4). In NHANES 2001, dietary intake data were collected using the NHANES computer-assisted dietary interview system (CADI), an automated data collection form using Power BuilderTM, and several databases (i.e., quick List food list, brand name food list, and food amount unit list) are linked to this system (2). From NHANES 2002 to 2004, data were collected using the US Department of Agriculture (USDA) Automated Multiple Pass method (AMPM) (http://www.ars.usda.gov/ba/bhnrc/fsrg), a fully computerized recall method that uses a 5-step interview (quick list, forgotten foods , time and occasion, detail cycle, and final probe) (2, 3, 5).

NHANES food consumption data were then converted to USDA standard reference code, and food intakes data were linked to their matched nutrient composition database. Coding process for food intakes was conducted by the University of Texas Food Intake Analysis System (FIAS, version 3.99) with the USDA 1994-98 Survey Nutrient Database in the NHANES 2001 [2] and by USDA's Food and Nutrient Database for Dietary Studies, 2.0 (FNDDS 2.0) in the NHANS 2002 to 2004 (2, 3). Daily individual intakes from selected food item were determined by multiplying the content of each nutrient by its daily consumption. Data on participants' daily dietary intakes were estimated as the sum of those from all food sources and available in the NHANES 2001-2004. Each dietary intake reported was adjusted for total energy intake, using the residual method (6).

Nutrient Intakes from Food Consumption and Supplement Use.

Participants were interviewed about their supplement use in NHANES 2001-2004. β carotene, vitamin C, vitamin E, and magnesium intakes from the supplement sources were estimated using the supplement counts file and supplement use file on dietary supplements questionnaire data and supplement product information file (7, 8) and supplement ingredient information file available on dietary supplement database (9). Ingredients corresponding to each nutrient were selected from the supplement ingredient information and converted to elemental nutrients unit. Next, nutrient composition of supplements was obtained from the supplement product information. Individual nutrient intakes from the supplements were calculated using the supplements counts and use and supplement product information, and participants' daily intakes were computed as the sum of all supplement sources intakes. Estimated total nutrient intake was sum of food- and supplement-sources intakes (10).

	Included Participants ²	Excluded	
Characteristic	(N=2592)	(N=1016)	P-value
Speech frequency PTA $(dB)^3$	$12.7 (\pm 0.35)^4$	16.2 (± 0.53)	< 0.001
High frequency PTA $(dB)^5$	18.8 (± 0.59)	23.1 (± 0.84)	< 0.001
Age (y)	42.1 (± 0.33)	41.3 (± 0.46)	0.210
Body Mass Index (kg/m^2)	28.0 (± 0.14)	$28.5 (\pm 0.39)^6$	0.195
Noise exposures			
Occupational noise ⁷ (O*NET score)	3.1 (± 0.02)	$3.1 (\pm 0.03)^8$	0.256
Recreational noise (Exposed %)	27.5^{9}	31.8^{10}	0.056
Firearm noise (Exposed %)	7.8	8.5^{11}	0.646
Sex (Male %)	47.8	49.5	0.384
Race ethnicity (%)			< 0.001
Non-Hispanic White	73.0	66.4	
Non-Hispanic Black	11.2	10.4	
Mexican American	6.8	9.5	
Other	9.0	13.6	
Ototoxic medication (Current use %)	14.3	14.2^{10}	0.935
Cumulative cigarette pack-years (%)			0.440
Never	54.4	53.8 ¹²	
<20	33.2	31.2	
≥ 20	12.4	15.0	
Current hypertension (%)	23.5	25.2^{13}	0.355
Current diabetes mellitus (%)	4.5	6.3 ¹¹	0.049

Supplemental Table 1. General characteristics of study participants and non-participants $(n=3608^{1})$

Continuous variables: survey t-test

Categorical variables: 2*2 table or 2*C table : survey X square (Rao-Scott Chi-Square Test)

¹Subjects (N=3608) are eligible for the audiometric data

² Participants (N=2592) are the individuals having all interest variables in this study: hearing thresholds, nutrient intake, age, BMI, sex, race/ethnicity, ototoxic medication, cumulative cigarette pack-years,

hypertension, diabetes, occupation, recreation and firearm noise. ³ PTA at speech frequencies (Pure tone means at 0.5, 1, 2, 4 KHz)

⁴ Four-year weighted mean (\pm SE) (all such values)

⁵ PTA at high frequencies (Pure tone means at 3, 4, 6 kHz) Non-Participants (N=951⁶, 790⁸, 1013¹⁰, 1015¹¹, 698¹², 843¹³, and 1016 for the others) are the individuals having the variable to be compared

⁷ Occupation noise (1 < O*NET noise scale< 5)

⁹ Weighted percentages (all such values)

1 (0)	Q 1		Q 2		Q 3		Q 4	p-Trend
A. Speech frequence	cies (n=2543)							
β -Carotene ²	0 (Ref)	-8.68	(-16.48, -0.16)	-12.94	(-19.78, -5.53)	-14.27	(-20.99, -6.98)	< 0.001
Vitamin C ³	0 (Ref)	-6.70	(-13.71, 0.89)	-7.19	(-15.85, 2.37)	-6.32	(-13.64, 1.62)	0.165
Vitamin E ⁴	0 (Ref)	5.51	(-3.02, 14.80)	8.90	(-2.81, 22.01)	3.66	(-5.07, 13.19)	0.399
Magnesium ⁵	0 (Ref)	-9.63	(-17.02, -1.59)	-9.89	(-19.07, 0.34)	-8.15	(-18.37, 3.34)	0.208
AC1 ⁶	0 (Ref)	-12.89	(-19.87, -5.30)	-14.88	(-21.80, -7.35)	-12.64	(-19.25, -5.48)	0.002
$AC2^7$	0 (Ref)	-7.30	(-16.71, 3.18)	-6.72	(-13.73, 0.86)	-7.00	(-15.88, 2.80)	0.166
B. High frequencie	s (n=2535)							
β -Carotene ²	0 (Ref)	-2.66	(-11.26, 6.77)	-9.70	(-16.23, -2.66)	-14.41	(-20.77, -7.53)	< 0.001
Vitamin C ³	0 (Ref)	-4.25	(-12.44, 4.71)	-3.34	(-12.34, 6.59)	-7.38	(-14.28, 0.08)	0.096
Vitamin E ⁴	0 (Ref)	6.06	(-2.61, 15.49)	7.52	(-4.51, 21.06)	2.97	(-6.19, 13.04)	0.533
Magnesium ⁵	0 (Ref)	-8.12	(-16.72, 1.37)	-11.46	(-20.59, -1.27)	-10.15	(-18.26, -1.24)	0.036
AC1 ⁶	0 (Ref)	-6.00	(-13.58, 2.24)	-11.23	(-19.32, -2.33)	-13.64	(-19.19, -7.71)	< 0.001
$AC2^7$	0 (Ref)	-8.82	(-16.49, -0.45)	-3.72	(-11.59, 4.85)	-10.55	(-18.06, -2.36)	0.043

Supplemental Table 2. Multivariate-adjusted¹ percent change (95% CIs) of hearing thresholds (dB) by dietary (food) intake quartiles (O)

Q, quartile (~25th%; ~median; ~75th%; ~100th%). Q1 is the reference. ¹Adjusted for age, age², sex, race/ethnicity, BMI, ototoxic medication, pack-years of cigarette smoke, hypertension, diabetes, and occupation, recreation and firearm noise

occupation, recreation and firearm noise ${}^{2}\beta$ -Carotene Quartiles cut-off points: 375.6, 770, 2024 µg/day 3 Vitamin C Quartiles cut-off points: 33.65, 65.6, 136 mg/day 4 Vitamin E Quartiles cut-off points: 0.238, 2.865, 6.3 mg/day 5 Magnesium Quartiles cut-off points: 221.55, 270.8, 329.4mg/day 6 Antioxidant composite 1: β -carotene + Vitamin C (0<nutritional score<200); quartiles cut-off points: 63.75, 101.9, 138.15

⁷ Antioxidant composite 2: β -carotene + Vitamin C + Vitamin E (0< nutritional score<300); quartiles cut-off points: 106.30, 152.55, 193.5

Supplemental Table 3. Multivariate-adjusted¹ percent change (95% CIs) of hearing thresholds (dB) at differently defined frequencies by total nutrient intake quartiles (Q).

	Q 1		Q 2		Q 3		Q 4	p-Trend
A. Speech frequencies	at 0.5, 1, 2 kHz ((n=2472)						
β -Carotene ²	0 (Ref)	-7.63	(-15.50, 0.97)	-9.97	(-17.14, -2.19)	-14.23	(-20.32, -7.67)	< 0.001
Vitamin C ³	0 (Ref)	-7.26	(-15.55, 1.84)	-11.04	(-17.36, -4.24)	-11.28	(-18.81, -3.06)	0.007
Vitamin E ⁴	0 (Ref)	5.17	(-6.07, 17.75)	0.91	(-8.08, 10.79)	-6.37	(-14.00, 1.94)	0.057
Magnesium ⁵	0 (Ref)	-10.10	(-18.26, -1.12)	-9.45	-(17.39, -0.76)	-13.43	(-20.81, -5.36)	0.007
AC1 ⁶	0 (Ref)	-6.37	(-12.78, 0.52)	-14.50	(-21.36, -7.05)	-13.90	(-19.83, -7.54)	< 0.001
$AC2^7$	0 (Ref)	-5.24	(-13.94, 4.34)	-12.90	(-20.43, -4.66)	-12.52	(-18.78, -5.79)	<0.001
B. High frequencies at	t 3, 4, 6, 8 kHz (n=	=2239)						
β -Carotene ²	0 (Ref)	-5.53	(-14.00, 3.78)	-12.63	(-20.02, -4.56)	-16.48	(-22.78, -9.66)	<0.001
Vitamin C ³	0 (Ref)	-3.17	(-12.39, 7.01)	-4.15	(-9.96, 2.03)	-10.01	(-17.42, -1.94)	0.010
Vitamin E ⁴	0 (Ref)	10.31	(-2.46, 24.75)	7.25	(-1.33, 16.58)	-4.52	(-14.17, 6.23)	0.330
Magnesium ⁵	0 (Ref)	-15.11	(-24.63, -4.39)	-10.50	(-16.38, -4.21)	-14.56	(-22.44, -5.89)	0.007
AC1 ⁶	0 (Ref)	-6.33	(-14.68, 2.83)	-9.77	(-17.62, -1.17)	-14.35	(-19.60, -8.76)	< 0.001
AC2 ⁷	0 (Ref)	-5.82	(-13.90, 3.03)	-8.93	(-16.30, -0.91)	-13.48	(-20.10, -6.32)	0.002

Q, quartile ($\sim 25^{\text{th}}\%$; $\sim \text{median}$; $\sim 75^{\text{th}}\%$; $\sim 100^{\text{th}}\%$). Q1 is the reference.

Speech frequencies (speech-PTA at 0.5, 1, 2 kHz)

High frequencies (high-PTA at 3, 4, 6, 8 kHz)

¹Adjusted for age, age², sex, race/ethnicity, BMI, ototoxic medication, pack-years of cigarette smoke, hypertension, diabetes, and occupation, recreation and firearm noise

²β-Carotene Quartiles cut-off points: 375.63, 771, 2034 μg/day ³Vitamin C Quartiles cut-off points: 44.623, 107, 213.5mg/day

⁴ Vitamin E Quartiles cut-off points: 0.944, 6.444, 22.2 mg/day ⁵ Magnesium Quartiles cut-off points: 233.49, 294.75, 374.45mg/day

⁶Antioxidant composite 1: β -carotene + Vitamin C (0<nutritional score<200); quartiles cut-off points: 66.3, 101, 137.2

⁷Antioxidant composite 2: β -carotene + Vitamin C + Vitamin E (0< nutritional score<300); ; guartile cut-off points: 101.2, 150.6, 200.3

Supplemental Table 4. Percent change (95% CIs) of hearing thresholds (dB) by contribution of different variables (n=2535) A. Combined effect of β-carotene and Magnesium

A. Combined effect of β -carotene and Magnesium			
Variables	No.	Regr	ession model ¹
β-carotene and Mg intake			
Low β -carotene, Low Mg	805	0	(Reference)
Low β -carotene, High Mg	464	-7.87	(-14.94, -0.21)
High β -carotene, Low Mg	503	-9.32	(-16.74, -1.23)
High β -carotene, High Mg	763	-14.21	(-20.26, -7.71)
O*NET Noise at longest job (unit score change)		19.74	(12.69, 27.23)
Age (unit year change)		3.38	(1.56, 5.22)
Age ² (unit year change)		0.00	(-0.01,0.02)
Body mass index (unit kg/m^2 change)		0.77	(0.26, 1.27)
Sex			
Male	1186	0	(Reference)
Female	1349	-25.92	(-30.75, -20.76)
Race ethnicity			
Non-Hispanic White	1284	0	(Reference)
Non-Hispanic Black	549	-15.35	(-22.18, -7.91)
Mexican American	510	1.87	(-7.57, 12.27)
Other	192	3.51	(-6.93, 15.13)
Ototoxic medication			
No	2163	0	(Reference)
Yes	372	0.59	(-9.57, 11.89)
Cumulative cigarette packyears			
Never	1431	0	(Reference)
<20	812	12.46	(5.08, 20.36)
>20	292	17.85	(7.50, 29.21)
Current diagnosis of hypertension			
No	1830	0	(Reference)
Yes	705	4.79	(-0.72, 10.61)
Current diagnosis of diabetes mellitus			
No	2376	0	(Reference)
Yes	159	10.65	(-3.27, 26.56)
Noise Exposure at firearm			
No	2367	0	(Reference)
Yes	168	21.16	(9.70, 33.83)
Noise Exposure at recreation			
No	1910	0	(Reference)
Yes	625	5.43	(-2.84, 14.40)

Supplemental Table 4 (Continued) A. Combined effect of vitamin C and Magnesium

Variables	No.	Regression model ¹		
Vitamin C and Mg intake				
Low Vitamin C, Low Mg	692	0	(Reference)	
Low Vitamin C, High Mg	228	2.13	(-8.49, 13.97)	
High Vitamin C, Low Mg	616	-1.33	(-9.37, 7.42)	
High Vitamin C, High Mg	999	-10.72	(-16.57, -4.45)	
O*NET Noise at longest job (unit score change)		20.50	(13.33, 28.11)	
Age (unit year change)		3.36	(1.57, 5.18)	
Age ² (unit year change)		0.00	(-0.01,0.02)	
Body mass index <i>(unit kg/m² change)</i>		0.75	(0.24, 1.26)	
Sex				
Male	1186	0	(Reference)	
Female	1349	-25.74	(-30.72, -20.39	
Race ethnicity				
Non-Hispanic White	1284	0	(Reference)	
Non-Hispanic Black	549	-15.46	(-22.38, -7.93)	
Mexican American	510	0.96	(-8.53, 11.43)	
Other	192	2.75	(-7.43, 14.04)	
Ototoxic medication				
No	2163	0	(Reference)	
Yes	372	0.38	(-9.75, 11.66)	
Cumulative cigarette packyears				
Never	1431	0	(Reference)	
<20	812	12.20	(4.62, 20.33)	
≥20	292	18.04	(7.21, 29.95)	
Current diagnosis of hypertension				
No	1830	0	(Reference)	
Yes	705	5.25	(-0.43, 11.25)	
Current diagnosis of diabetes mellitus				
No	2376	0	(Reference)	
Yes	159	11.00	(-2.51, 26.37)	
Noise Exposure at firearm				
No	2367	0	(Reference)	
Yes	168	20.91	(9.33, 33.72)	
Noise Exposure at recreation				
No	1910	0	(Reference)	
Vas	625	5 71	(-2 55 14 66)	

Supplemental References

- 1. Lane JS, Magno CP, Lane KT, Chan T, Hoyt DB, Greenfield S. Nutrition impacts the prevalence of peripheral arterial disease in the United States. *J Vasc Surg.* 2008;48:897-904.
- 2. NHANES 2001-2002 Data Documentation, Codebook, and Frequencies: Dietary Interview (Total Nutrients Intakes). Hyattsville, MD: National Center for Health Statistics, The Centers for Disease Control and Prevention;2010.
- **3.** NHANES 2003-2004 Data Documentation, Codebook, and Frequencies: Dietary Interview (Total Nutrients, First Day). Hyattsville, MD: National Center for Health Statistics, The Centers for Disease Control and Prevention;2007.
- **4.** Botman SL, Moore TF, Moriarity CL, Parsons VL. *Design and estimation for the National Health Interview Survey, 1995-2004.* Hyattsville, MD: National Center for Health Statistics, Centers for Disease Control and Prevention;2000.
- **5.** Blanton CA, Moshfegh AJ, Baer DJ, Kretsch MJ. The USDA automated multiple-pass method accurately estimates group total energy and nutrient intake. *J Nutr*. 2006;136:2594-2599.
- **6.** Willett W. Issues in Analysis and Presentation of Dietary Data. Nutritional Epidemiology. 1998;1:321-347.
- 7. *NHANES 2001-2002 Data Documentation, Codebook, and Frequencies: Dietary Supplements Questionnaire Data (DSQDOC_B).* Hyattsville, MD: National Center for Health Statistics, The Centers for Disease Control and Prevention;2007.
- 8. *NHANES 2003 2004Data Documentation, Codebook, and Frequencies: Dietary Supplements Questionnaire Data (DSQDOC_C).* Hyattsville, MD: National Center for Health Statistics, The Centers for Disease Control and Prevention;2007.
- **9.** *1999 2010 Data Documentation, Codebook, and Frequencies : Dietary Supplement Database (DSDDOC).* Hyattsville, MD: National Center for Health Statistics, The Centers for Disease Control and Prevention;2012.
- **10.** NHANES Dietary Web Tutorial. 2010; http://www.cdc.gov/nchs/tutorials/Dietary/index.htm. Accessed March 9, 2013.