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Supporting Information (SI) S1 Text:
A Multiscale Model Evaluates Screening for Neoplasia in Barrett’s
Esophagus

Mathematical Methods

For each module of the MSCE-EAC screening model described in Methods, we elaborate further
on mathematical details in the following sections.

MSCE-EAC cell module: hazard function derivation

We summarize the mathematical development for the multistage clonal expansion for EAC
(MSCE-EAC) cellular model (see Fig. 2 in Main Text) and first introduce the notation for the
following random variables of the multi-type branching process

BE(t) = Bernoulli random variable for BE conversion by time t

X(t) = number of BE stem cells in a tissue at time t

P

⇤(t) = number of pre-initiated cells at time t

P (t) = number of premalignant (initiated) cells at time t

M(t) = number of malignant (preclinical) cells (prior to detection) at time t

C(t) = number of cancer cells (after detection) at time t

D(t) = Bernoulli random variable for clinical detection by time t

Let us consider the probability generating function (pgf)  for the entire process starting at
⌧ = 0, ie. when an individual is born
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where, explicitly, i, n = {0, 1} and BE(t), D(t) are the following indicator functions correspond-
ing to BE conversion and EAC clinical detection, respectively

BE(t) =

(
0 if no BE has not developed by time t

1 if BE conversion has taken place by time t

D(t) =

(
0 if no cancer detected clinically by time t

1 if a malignant cell is detected by time t. ie C(⌧) > 0 for some ⌧  t

The Chapman-Kolmogorov equations governing the transition probabilities for this multistage
process include contributions from the initial Armitage-Doll type transition to BE, the two
Poisson transitions to initiation, and the two birth-death-migration processes, all of which have
been derived previously [1–3]. We begin with the forward Kolmogorov di↵erential equation for
the entire process  (yBE , y1, y2, y3, z; ⌧ = 0, t), given by
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where we have suppressed the dependence on (yBE , y1, y2, y3, z; t) in  for convenience. This
high-dimensional PDE poses numerical issues but we shall show a more amenable method for
solving the generating function using the Kolmogorov backward equations.
Backward Kolmogorov equations and the MSCE-EAC hazard, hMSCE

Beginning with an active BE segment (BE), a single pre-initiated (P⇤), premalignant (P ),
or malignant (M) cell at time ⌧ only, we define the following generating functions �BE ,�P⇤ , �P ,
or �M , respectively,
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The generating functions satisfy the following Kolmogorov backward equations
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To connect the cellular level description to the population level, we first solve for the overall
survival function (for EAC cancer detection), starting at time 0, which in our notation is

SMSCE (t) = 1� PMSCE (t) = Pr[D(t) = 0|BE(0) = 0, P ⇤(0) = 0, P (0) = 0,M(0) = 0, D(0) = 0]

=  (1, 1, 1, 1, 0; 0, t)

where PMSCE (t) is the probability of a cancer detection at time t,

PMSCE (t) = Pr[D(t) = 1|BE(0) = 0, P ⇤(0) = 0, P (0) = 0,M(0) = 0, D(0) = 0]

We will here denote �M (1, 0; ⌧, t) ⌘ �M (⌧, t), �P (1, 1, 0; ⌧, t) ⌘ �P (⌧, t), �P⇤ (1, 1, 1, 0; ⌧, t) ⌘
�

P⇤ (⌧, t), �BE (1, 1, 1, 1, 0; ⌧, t) ⌘ �BE (⌧, t), and  (1, 1, 1, 1, 0; ⌧, t) ⌘  (⌧, t). A dot designates a
first derivative with respect to t. The hazard function, i.e., the rate at which cancer is detected
in individuals who have not been diagnosed before, is given by

hMSCE (t) = � ṠMSCE (t)

SMSCE (t)
= � ̇(0, t)

 (0, t)
= � d

dt

ln[ (0, t)] (11)

For fixed t, this boundary value system of coupled PDEs can be converted into an initial value
problem (IVP) with the change of variables u = t�⌧ , where u is the “running” time. This redef-
inition and equations hereafter follow the method used by Crump et al. [4]. Define the following
variables for the new IVP: Y1(u, t) = �M (⌧, t), Y2(u, t) = �̇M (⌧, t), Y3(u, t) = �P (⌧, t), Y4(u, t) =
�̇P (⌧, t), Y5(u, t) = �P⇤ (⌧, t), Y6(u, t) = �̇P⇤ (⌧, t), Y7(u, t) = �BE (⌧, t), Y8(u, t) = �̇BE (⌧, t), Y9(u, t) =
 (⌧, t), Y10(u, t) =  ̇(⌧, t) with corresponding initial conditions Y1(0, t) = Y3(0, t) = Y5(0, t) =
Y7(0, t) = Y9(0, t) = 1, Y4(0, t) = Y6(0, t) = Y8(0, t) = Y10(0, t) = 0, and Y2(0, t) = �⇢. Then the
equations to solve for our IVP are the following
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2
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=µ0X(Y8(u,t)Y5(u,t)�Y8(u,t)+Y7(u,t)Y6(u,t)) (19)
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du

=⌫(u)(Y7(u,t)�Y9(u,t)) (20)

dY10(u,t)

du

=⌫(u)(Y10(u,t)�Y8(u,t)) (21)
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These 10 coupled ODEs can be solved numerically to obtain

hMSCE (t) = �Y10(t, t)/Y9(t, t) and SMSCE (t) = Y9(t, t). (22)

Non-spatial parameter estimation with birth cohort trends

Here we describe the methods and values used for the non-spatial parameter estimates used
in [5]. The fitted non-spatial parameters from Kong et al. are provided in Table 1 and used for
the Results in the Main Text. We modeled gastroesophageal reflux disease (GERD) symptom
prevalence at age t, psGERD(t), based on data from Ruigomez, et al. [6] for incidence (by 2-
year age intervals) of GERD symptoms (that occur weekly or more frequently) among children
(n=1700), and another study by Ruigomez, et al. [7] on incidence of weekly GERD symptoms
among adults (n=1996) with data provided in 10 year intervals. We used maximum likelihood
methods to fit parameters for a GERD prevalence model separately for males and females, using
a transition rate to GERD prevalence based on the GERD incidence data and estimating a
back-transition rate (representing recovery from GERD) to fit an assumed 20% target rate for
age-adjusted GERD prevalence between ages 40-85 [8]. We then found that we could achieve
excellent fits to these data by using simplified, gender-specific models with three parameters
representing a (slower) transition rate among children, a transition age, and an adult rate for
acquiring weekly GERD symptoms. BE prevalence, FBE (t), can be estimated, via parameter
⌫0, and fixing a value for relative risk RR = 5 (based on results from meta-analyses for BE
segments greater than 3 cm in length [9]), using the model for GERD prevalence as described
in the Main Text with the following BE conversion rate

⌫(t) = ⌫0 ((1� psGERD(t)) +RR · psGERD(t)) (23)

) FBE (t) = Pr[TBE  t] = 1� e

�
R t
0 ⌫(s) ds (24)

See S1-S2 Figures for values psGERD(t) and FBE (t) used for males and females, respectively.
In Kong et al., we employed an Age-Cohort (AC) model, which models the birth cohort e↵ect

as a sigmoid function on both premalignant and malignant proliferation and cell division rates
gP ,↵P , gM ,↵M . Assumptions must be made for values of the background cell division rates,
↵M,0 and ↵P,0 . The model estimates values for gP,0 , g1 , g2 , g3 (reference year), where tb = birth
cohort year, with the following functional forms

gP = gP,0

✓
g1 +

2

1 + e

(�g2 (tb�g3 ))

◆
, gM = gM,0

✓
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2

1 + e

(�g2 (tb�g3 ))

◆
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✓
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2

1 + e

(�g2 (tb�g3 ))

◆
, ↵M = ↵M,0

✓
g1 +

2

1 + e

(�g2 (tb�g3 ))

◆

gP = ↵P � �P � µ2 , gM = ↵M � �M � ⇢

We assumed that all other biological parameters, except for the BE conversion rate ⌫(t) that
depends on age, are constant.

All cellular kinetic model parameters were estimated using a maximum likelihood method
to obtain best fits of the hazard function given in Eq. (22) to SEER incidence data [5, 10]. We
obtained the 95% confidence intervals for these estimates using a Markov-Chain Monte Carlo
(MCMC) method, in which all runs were started with the non-spatial parameters set at (or
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near) their respective maximum likelihood estimates (MLEs) and appeared to converge rapidly
after a short 1000 cycle burn-in period. However, not all of the MSCE-EAC model non-spatial
parameters are identifiable from incidence data - some parameters must be fixed initially in
order to achieve parameter identifiability (see Heidenreich et al. [11]). For example, the hazard
function yields estimates for the product of the rates for the first two rate-limiting events, µ0 and
µ1 and the average number of non-neoplastic BE stem cells X. Thus we set µ0 = µ1 and fix X

when reporting and utilizing estimates. We also assumed ↵P,0 = 10 per cell/year, and ↵M,0 = 150
per cell/year to attain identifiability of the premalignant and malignant growth parameters. The
maximum likelihood values were estimated using the Davidon-Fletcher-Powell gradient search
method, available in the R software Bhat package, written by Dr. Georg Luebeck.

We compared multiple models by fixing gM,0 and detection rate ⇢ to di↵erent values in order
to achieve reasonable mean sojourn times and tumor doubling times that are in line with clinical
data. From this previous analysis [5], we estimated the EAC clinical detection rate ⇢ = 10�9

per cell/year, malignant cell proliferation rate gM,0 = 0.75 per cell/year, and the number of stem
cells in an average 5 cm BE segment X = 106 to accompany the estimates provided in Table 1.

MSCE-EAC tissue module: hybrid simulation algorithm

The following steps describe the MSCE-EAC tissue module simulation for a single individual’s
MSCE-EAC multi-type branching process realization from birth until time of screening ts

Step 1: Simulate BE onset time
For each individual, generate an age of BE onset, TBE using the inverse cumulative distribution
technique with Eq. (24). Because the incidence rate of BE in the general population is very
small, most random realizations of this onset time will be longer than the human lifespan. The
simulation continues only for those individuals who have a TBE onset time within the age range
of interest (possibly before a set screening age ts).
Step 2: Generate BE segment length
Generate the size of a patient’s BE segment (measured clinically as the length from gastroe-
sophageal (GE) junction to the top of the longest “tongue” of metaplastic tissue) as a random
deviate from a length distribution based on clinical studies [12–17]. This length will be trans-
lated into a number of BE stem cells, X, which depends on a spatial model parameter � for the
density of stem cells per mm2. The MSCE-EAC model assumes that BE stem cells are under
tight homeostatic control with zero net growth of the non-dysplastic BE stem cell population.
Mutations and clonal populations occurring during the simulation grow within this fixed BE
segment.
Step 3: Generate pre-initiated stem cells P ⇤

Any of the BE stem cells, total of X, may undergo a Poisson rate-limiting mutation with rate
µ0 during an asymmetric division to produce a BE daughter stem cell and a pre-initiated P

⇤

cell. A P

⇤ cell may arise through inactivation of a single tumor suppressor allele. To model this
process up until time of screening ts, generate a number N

P⇤ of P ⇤ pre-initiation events from
a Poisson distribution with mean µ0 ·X · (ts � TBE ), each of which occur at a uniform time ⌧

between TBE and ts, and save in vector ~⌧1 .
Step 4: Generate initiated stem cells P and premalignant clones
Similarly, each P

⇤ cell may undergo a second Poisson rate-limiting mutation with rate µ1 during
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an asymmetric division to produce one P

⇤ daughter stem cell and one initiated P cell. A P

cell may be a cell with a tumor suppressor gene that has both alleles inactivated, which will
allow it to undergo clonal expansion as an independent birth-death-mutation process. Again,
for each P

⇤ cell born at time ⌧1i , i = 1, .., N
P⇤ , generate the number NP of initiated P progenitor

cells from a Poisson distribution with mean µ1 · (ts � ⌧1i), each of which occurs at a uniformly
distributed time between ⌧1i and ts, and save in vector ~⌧2 .

For each P cell initiation, begin a simulation of the ensuing birth-death-mutation (b-d-m)
process to follow the number and times of symmetric divisions, death or di↵erentiation, and
malignant transformations that occur in each premalignant clone.
Step 5: Generate preclinical cancer cells M , malignant clones, and clinical EAC detection
During simulation of premalignant clones, malignant transformations may occur within a par-
ticular clone, modeled as asymmetric divisions of a P cell with rate µ2. For each malignant
progenitor M cell born at time ⌧3 , begin an independent birth-death-detection process that is
represented by an analytical solution to the corresponding Kolmogorov equation for the gener-
ating function as derived in Eq. (3.5) of Jeon et al. [18]. Thus, the hybrid simulation makes use
of previous theoretical results for an analytical distribution to avoid further simulation. We are
first interested in knowing whether a malignant clone born at time ⌧3 leads to a clinical EAC
by time ts. To generate this potential outcome, we use the 1-stage survival function SM ,

SM (u) ⌘ Pr[D(ts) = 0|M(⌧3) = 1] (25)

where u = ts � ⌧3 , D(ts) is the random variable for clinical detection by time ts, and M(⌧3)
is the random number of malignant (preclinical) cells at time ⌧3 in a malignant clone. Letting
p = 1�SM (ts� ⌧3) represent the probability of cancer detection of a particular malignant clone
born at time ⌧3 , draw a Bernoulli random variable with probability p to decide if this clone will
be detected as a clinical EAC by time ts. Draw Bernoulli deviates from detection probability p

for each malignant clone generated in a patient, and repeat for every patient in the simulated
population to obtain the EAC detection prevalence by time ts.

For patients in whom a malignant clone born at time ⌧3 does not result in clinical EAC by
time ts, use an analytical distribution to generate the size of the malignant clone present at time
ts, conditional on no EAC detection. Jeon et al. [18] derived this conditional size distribution
for a birth-death-detection process, which is a shifted geometric distribution, described in more
detail forthcoming.

This step completes the MSCE-EAC hybrid simulation of an individual from birth until
time (age) ts which can be repeated to generate (synthetic) data for a sample population. In
summary, for those individuals who are found to have BE by time of screening, each patient
has a specific X number of BE stem cells, P ⇤ number of pre-initiated cells, a number of non-
extinct P clones with respective sizes, a number of non-extinct M clones with respective sizes
and information about the parental P clones from which the M clones originated, and lastly
whether the patient is a prevalent, clinical EAC case by time ts. We tested the full MSCE-
EAC simulation accuracy through comparison of the number of EAC cases simulated with those
predicted by the analytical MSCE-EAC cumulative hazard function.
Implementation of SSA and ⌧-leap method for P clones

As mentioned in Step 3 of the MSCE-EAC algorithm above, initiated premalignant clones
undergo independent birth-death-mutation (b-d-m) processes that we simulate to track cell
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count and times of malignant transformations. The stochastic simulation algorithm (SSA) is a
mathematically exact method to follow each event that occurs during a realization of the con-
tinuous time Markov chain beginning with a single cell. Considering an individual premalignant
clone of size Xt at time t, we define the intensity function vector r(Xt) = (�PXt, µ2Xt,↵PXt)
for death/di↵erentiation, malignant transformation, and birth of new P stem cell, where, over a
short period of time s, we expect rj(Xt)s+o(s) events of type j to occur. Due to the Markovian
property of the process, we wait an exponential length of time until the next event occurs with
intensity r0(Xt) =

P3
j=1 rj(Xt) = Xt(�P + µ2 +↵P ). Once an exponential time to next event is

chosen, we jump to the neighboring state Xt+vj with probability rj(Xt)/r0(Xt), where vj is the
j

th component of the state change vector v = (�1, 0, 1) for the b-d-m process. Fortunately, in
the case of the P clone process with constant rates, the probabilities rj(Xt)/r0(Xt) are constant
with respect to the current state Xt so we may generate a number K of events of the three

types with probabilities
⇣

�P
�P +µ2+↵P

,

µ2
�P +µ2+↵P

,

↵P
�P +µ2+↵P

⌘
and cumulatively sum each Xt + v

j

step for the K chosen events to create a state vector N. Then we generate the K exponential
waiting times of the process at once from an exponential with mean �t = N (�P + µ2 + ↵P ) and
cumulatively sum these to arrive at a new later time t2 > t.

The SSA works very well when cell count of the P clone is small and the event intensities
r(Xt) are fluctuating quickly. In particular, our simulation benefits to use the SSA for the
beginning of a P clone’s growth from a single cell, when the probability of extinction is high (�P

is only slightly smaller than ↵P ) and most clones are eliminated after a small number K of initial
events. However, the SSA can become excruciatingly slow when a P clone becomes very large,
i.e. contains a large number of stem cells. Therefore, rather than simulating every event choice
and time, we can employ an accelerated but approximate procedure called the ⌧ -leap method,
first introduced by Gillespie and others [19–21]. The goal of this procedure is to advance the
cell count by a preselected time increment ⌧ in contrast to the exponential time increments
generated in the SSA. To control the loss of accuracy with this approximation, the choice of
leap-size ⌧ must satisfy the historically referenced “leap condition” which is large enough that
many events occur in that time, but nevertheless small enough that the intensity function value
r is likely to change only “infinitesimally” as a consequence of those events. To the extent
that this condition is satisfied, the mathematical rationale in replacing Markovian kinetics with
Poisson kinetics [22] states that the number of times each independent event j will occur in the
set time length ⌧ can be approximated by a Poisson random variable with mean !(t, t + ⌧) on
the interval (t, t+ ⌧). For the ordinary ⌧ -leap scheme, we assign !(t, t+ ⌧) = rj(Xt)⌧ . Thus, we
set the intensity of event j equal to the constant rj = rj(Xt) and we update the cell count vector
Xt+⌧ = Xt +

P3
j=1 njvj , where nj are independent Poisson variates with means rj⌧ . Beyond

ordinary ⌧ -leaping, advancements have been made in improving accuracy when anticipating
changes in the various components of the intensity vector by expanding rj(Xt+⌧ ) in a Taylor
series around time t with base value rj(Xt) to derive linear and quadratic approximations [23].
Selection of ⌧ increments

As mentioned previously, we first set a number K (e.g., K = 1000) SSA steps to perform
very quickly at the initiation of the P clone (first initiated cell asymmetrically divides from
pre-initiated cell) in order to exactly simulate the small clones and capture the early extinction
stochastic event correctly. Then, if a P clone is still growing, we switch to a ⌧ -leaping algorithm
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to speed up the simulation of the larger clones without loss of much accuracy. In search of a
balance between computational e�ciency and accuracy for our hybrid SSA/⌧ -leap algorithm,
we would like to take advantage of the leap condition by employing ⌧ -leaping when the P clones
are large, which will take a very large number of reaction events to change the intensity function
“significantly”, and the exact SSA when ⌧ is required to be small so that only a few reactions
would be leaped over regardless. Recent work by Sehl et al. [23, 24] and others derived and
applied methods to anticipate the largest ⌧ such that the leap condition will be satisfied and
accuracy will not be undesirably diminished. This will require us to introduce a small positive
constant ✏, which must be chosen empirically, to denote the acceptable relative change in the
intensity function vector r. Adhering to the results of Cao et al. [25], we then chose our increment
to be the largest ⌧ such that

����
d

dt

rj(Xt)

���� ⌧  ✏rj(Xt) ) ⌧  ✏

↵P � �P

(26)

holds for all j. Further, Cao et al. [20] explore the problem of negative population sizes which may
occur with some probability within the ⌧ -leaping method. In the setup described, this happens
extremely rarely since ⌧ -leaping usually only begins for clones with a substantial number of cells
that has a low probability of extinction because they are entering the exponential mean growth
phase (described in more detail in the following section). Thus, we can reject this choice of ⌧
that produced a negative size and reduce ⌧ , by 1/2 for example, until no negative populations
are produced since this is a rare event and will not impede our computational runtime [20].

To obtain better accuracy without compromising speed in simulation time, a recent step
anticipation leap (SAL) method has been developed that generalizes the ordinary ⌧ -leaping
method by projecting linear and quadratic changes in reaction propensities [23]. However, due
to the nature of the birth-death-mutation processes modeled for premalignant P clones in the
MSCE-EAC hybrid simulation, the leap condition for all these methods produces a restraint
on ⌧ that does not depend on the current size of the clone, as seen in Eq. (26). The linear
and quadratic extrapolations of the propensity functions do not yield major improvements in
accuracy when ⌧ does not depend on the clone size at time t. Therefore, we employ the ordi-
nary ⌧ -leaping scheme in which we set time length ⌧ = ✏

↵P ��P
, choose ✏ empirically to obtain

desirable accuracy with our choose of cellular kinetic parameters, and approximate the number
of times each independent event j (either birth, death/di↵erentiation, or mutation) will occur
by a Poisson random variable with mean !(t, t + ⌧) = rj(Xt)⌧ on the interval (t, t + ⌧). We
may apply the result of the following section that an independent b-d-m process produces a
shifted geometric size distribution for non-extinct clones, given by Eq. (34) but with P clone
parameters, and enjoys mean exponential growth with rate ↵P � �P . See Q-Q plot comparison
in S3 Figure of both SSA and ⌧ -leap algorithms against the true theoretical shifted geometric
distribution for the b-d-m process. In practice with the estimated parameters given in Table 1,
the hybrid SSA/⌧ -leap algorithm utilizes small values of ⌧ < .004 years, which allows even more
accuracy yet still benefits from far less computational time than if we were to use solely SSA
type steps.
Malignant size distribution

Expanding on Step 5 of the MSCE-EAC algorithm above, when a malignant progenitor
M cell is born at time ⌧3 , an independent birth-death-detection process begins and we have
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the analytical solution to the corresponding Kolmogorov equation for the generating function
�M (y3, z; ⌧, t) (from Eq. (2)) as derived in Eq. (3.5) of Jeon et al. [18]. Thus, we can make use of
previous theoretical results here allowing us to avoid further simulation. We are first interested
in knowing whether this malignant clone born at time ⌧3 leads to a clinical EAC by time ts. To
generate this potential outcome, we use the 1-stage survival function, where u = ts � ⌧3

SM (u) ⌘ Pr[D(ts) = 0|M(⌧3) = 1] = �M (1, 0; ⌧3 , ts) = 1+
1

↵M

pM qM e

�pM u � qMpM e

�qM u

qM e

�pM u � pM e

�qM u (27)

with

pM =
1

2
(�(↵M � �M � ⇢)�

q
(↵M � �M � ⇢)2 + 4↵M⇢) (28)

qM =
1

2
(�(↵M � �M � ⇢) +

q
(↵M � �M � ⇢)2 + 4↵M⇢) (29)

Letting p = 1�SM (ts�⌧3) be the probability of cancer detection of a particular malignant clone
born at time ⌧3 , we first draw a Bernoulli random variable with probability p to decide if this
clone will be detected as a clinical EAC by time ts. The algorithm draws Bernoulli deviates from
this 1-stage survival for each malignant clone in a BE patient and provides an EAC detection
prevalence by time ts.

For a patient in whom a malignant clone born at time ⌧3 does not result in clinical EAC by
time ts, we would now like to use an analytical distribution to generate the size of the malignant
clone present at time ts, conditional that it did not undergo EAC detection. Jeon et al. [18]
derived this conditional size distribution for a birth-death-detection process, which turns out in
fact to be a shifted geometric distribution. Following Eqs.(3.9-3.16) in that paper, we have the
size distribution of a malignant clone, given that no clinical cancer develops by time ts

P0 ⌘ Pr[M(⌧3 , ts) = 0|D(⌧3 , ts) = 0,M(⌧3 , ⌧3) = 1] (30)

=
⇣M (↵M + pM )(↵M + qM )(qM e

�pM u � pM e

�qM u)

qM (↵M + pM )e�pM u � pM (↵M + qM )e�qM u (31)

and for n � 1,

Pn ⌘ Pr[M(⌧3 , ts) = n|D(⌧3 , ts) = 0,M(⌧3 , ⌧3) = 1] (32)

=
1

n!

@

n�M (y3 , 0; ⌧3 , ts)

@y

n
3

����
y3=0

1

�M (1, 0; ⌧3 , ts)
(33)

= (1� P0)(1� ↵M ⇣M )(↵M ⇣M )n�1 (34)

where

⇣M =
e

�pM u � e

�qM u

(qM + ↵M )e�pM u � (pM + ↵M )e�qM u

Thus, conditional on a malignant clone remaining undetected by time ts, we again construct
an inverse cumulative function and begin with a uniform random deviate u 2 [0, 1]. If P0 � u,
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this particular malignant clone in question goes extinct before time ts. If u > P0, we derive the
inverse cumulative function as follows

Pr[M(u) > n] =
1X

k=n+1

Pr ⇤[M(u) = k] =
1X

k=n+1

(1� P0)(1� ↵M ⇣M )(↵M ⇣M )k�1

= (1� P0)(1� ↵M ⇣M )(↵M ⇣M )n
1X

k=n+1

(↵M ⇣M )k�(n+1)

)Pr[M(u)  n] = 1� (1� P0)(↵M ⇣M )n

Thus, we may generate a size n from this distribution,

n =

ln

✓
1� u

1� P

⇤
0

◆

ln(↵M ⇣M )
with u > P

⇤
0

Example simulation details

For the Results presented in the Main Text, we simulated an index endoscopy for all males
and females age ts = 60 in the year 1990 (indicative of index screens from prospective studies
that estimate the BE to EAC progression rate). With BE prevalence FBE given in Eq. (24), the
Results focus on output regarding the subpopulation of individuals found with BE, for whom
the MSCE-EAC screening model obtains screening results (see Methods).

We generated a BE segment length for each patient from a beta distribution with shape
parameters 16/11 and 4, restricted to the range of 1-16 cm for both males and females. BE
segments of the simulated patients have an average length of 4.9 cm. Short segment BE (less
than 3 cm) comprises 22% of the density and long segment BE (greater than 3 cm) comprises
78%. This BE distribution recreates the proportions of long and short segments recorded for the
study patient population in [12]. S4-S7 Figures depict the number distributions and long-tailed,
Luria-Delbruck type size distributions for the non-extinct premalignant and malignant clones,
respectively, present at time ts = 60 for the cohorts of males and females separately. Based on
100K simulation, the mean number of premalignant clones per BE patient, without symptomatic
cancer, in this cohort is 6.6, while only about 1% of these dysplastic clones harbor a non-extinct
malignancy.

MSCE-EAC screening module: EAC incidence projections

Here we derive all components of the general cumulative hazard ⇤MSCE (t), given by

⇤MSCE (t) = � ln(SMSCE (t)) = � ln

✓
1�

Z t

0
fMSCE (s) ds

◆
(35)

For the initial scenario of screening all individuals at time ts, we derived the MSCE-EAC cumu-
lative hazard function that includes contributions from the subpopulation of those individuals
found to have BE at time ts that, immediately following HGD diagnosis, may receive treatment
at time ts; and the subpopulation without BE. For any time t > ts and BE cumulative density
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function FBE given in Eq. (24), we compute the MSCE-EAC density function fMSCE (s) for the
general population explicitly as follows

fMSCE (s) = fMSCE (s|TBE  ts) · Pr[TBE  ts] + fMSCE (s|TBE > ts) · Pr[TBE > ts] (36)

The convolution formula for the unscreened population contributing to the MSCE-EAC density
is given by

fMSCE (t|TBE > ts) =
1

Pr[TBE > ts]

Z t

ts

fBE (u)f4/MS
(t� u) du (37)

= e

R ts
0 ⌫(s) ds ·

Z t

ts

⌫(u)e�
R u
0 ⌫(s) ds · f

4/MS
(t� u) du (38)

where f

4/MS
(t � u) = �Y8(t � u, t � u) (see Eq. (19)) is the numerical solution for the 4-stage

multistage model after BE onset.
For the screened BE population, we follow the method of Jeon et al. [18] and consider

the 4 possible types of cells present in a patient at screening time t

�
s (where the minus su-

perscript denotes cell populations present prior to any intervention) X = number of BE stem
cells in BE segment, P ⇤(t�s ) = number of pre-initiated P

⇤ cells, P (t�s ) = number of initiated,
dysplastic P cells (all clones combined), M(t�s ) = number of malignant, preclinical cells (all
clones combined). The MSCE-EAC hybrid simulation records these random variables for each
BE patient at the instance of screening t

�
s , before any intervention occurs. After simulating

n independent and identically distributed (by gender) individuals and performing the Seattle
biopsy screening protocol in silico as described in Methods, the simulation obtains the vector
Ai = {Xi, P

⇤
i (t

�
s ), Pi(t�s ),Mi(t�s )} for each patient with BE, i = 1, .., n.

As described in the Main Text, we explore the simulated intervention of RFA of dysplasia
patients by introducing the following ablation proportion vector, ! = {!X ,!P⇤ ,!P ,!M }, to
deplete the existing cell types and leave a specified fraction (based on desired e↵ectiveness of
RFA treatment) in the esophagus given by !. We adjust each dysplastic patient’s cell count
vector Ai through component-wise multiplication by !. Thus, the post-RFA numbers of cells
in each stage of the MSCE process, in simulated patient i, immediately after screening and
treatment (denoted by time t

+
s ) are given by an adjusted cell type vector Âi as follows

Âi ⌘ ! �Ai = {!X ·Xi,!P⇤ · P ⇤
i (t

�
s ),!P · Pi(t

�
s ),!M ·Mi(t

�
s )} (39)

= {Xi(t
+
s ), P

⇤
i (t

+
s ), Pi(t

+
s ),Mi(t

+
s )} (40)

⌘ {X̂i, P̂
⇤
i , P̂i, M̂i} (41)

BE patients with a negative screen for dysplasia sustain the same (before and after) Ai ⌘ Âi

vector as was computed at time t

�
s since no RFA treatment is performed on these patients.

Due to Markovian renewal of the branching process, we may then compute the survival and
hazard functions, as in [18], for each screened individual i = 1, .., n for some time t > ts with
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contributions from each cell type post screen

SMSCE (t� ts|Âi) = S4(t� ts)
X̂i
S3(t� ts)

P̂ ⇤
i
S2(t� ts)

P̂i
S1(t� ts)

M̂i (42)

hMSCE (t� ts|Âi) = X̂ih4(t� ts) + P̂

⇤
i h3(t� ts) + P̂ih2(t� ts) + M̂ih1(t� ts) (43)

) fMSCE (t|TBE  ts) ⇡
1

n

nX

j=1

h(t� ts|Âj) · S(t� ts|Âj) (44)

These survival and hazard functions for the 4-stage model after BE onset may be easily computed
incorporating the Kolmogorov backward equations. The 8 ODEs from Eqs.(12-19) can be solved
numerically to obtain the survival and hazard functions we require

h4(t� ts) = �Y8(t� ts)

Y7(t� ts)
and S4(t) = Y7(t� ts),

h3(t� ts) = �Y6(t� ts)

Y5(t� ts)
and S3(t) = Y5(t� ts),

h2(t� ts) = �Y4(t� ts)

Y3(t� ts)
and S2(t) = Y3(t� ts),

h1(t� ts) = �Y2(t� ts)

Y1(t� ts)
and S1(t) = Y1(t� ts).

We have now derived all necessary components of ⇤MSCE (t) of Eq. (35) after a single screen of
all individuals at time ts. See the Results section for an illustrative figure.

Open source code

The method outlined in this section is implemented by the comprehensive MSCE-EAC screening
model consisting of three modules: cell, tissue, and screening. All necessary tools to employ
this method, including examples of user inputs used in the upcoming Results, are available in
documented R code at https://github.com/yosoykit/MSCE_EAC_Screening_Model.
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