The analytical derivation of the characteristic resistance, R_1

At the inlet of the root vessel of a truncated arterial crown, the impedance with the Womersley velocity profile is

$$
Z(0,\omega) = \frac{\lambda}{i\omega C} \frac{i\omega CZ(L,\omega)\cosh(\lambda L) + \lambda\sinh(\lambda L)}{i\omega C\sinh(\lambda L) + i\omega C\sinh(\lambda L)Z(L,\omega)},
$$
\n(1)

where $Z(L,\omega)$ is a known impedance at the outlet of the root vessel and $\lambda = \sqrt{\frac{-\rho C \omega^2}{A_0(1-F_J)}}$ is the wave number as shown in the main text. According to the relation between the trigonometric functions and the hyperbolic functions, equation (1) can be rewritten as

$$
Z(0,\omega) = \frac{\lambda}{\omega C} \frac{\omega C}{1 + \frac{\omega C}{\lambda} Z(L,\omega) - \tan(i\lambda L)} = \frac{\lambda}{\omega C} \tan(\phi - i\lambda L),
$$
\n(2)

where ϕ is defined by $\tan \phi = \frac{\omega CZ(L,\omega)}{\lambda}$ $\frac{\partial \phi}{\partial \lambda}$. Let $a = \text{Re}(\phi - i\lambda L)$, $b = \text{Im}(\phi - i\lambda L)$, then we have

$$
Z(0,\omega) = \frac{\lambda}{\omega C} \tan (a+ib) = \frac{\lambda}{\omega C} \frac{\tan a + i \tanh b}{1 - i \tan a \tanh b}.
$$
 (3)

When the frequency ω is large, the Womersley number, $W = r_0 \sqrt{\omega \rho / \mu}$, is also large, therefore, we have the following approximation:

$$
F_J(W) \sim \frac{2}{Wi^{0.5}} \left(1 + \frac{1}{2W} \right), \quad \lambda \sim \sqrt{\frac{\rho C}{A_0}} \left(-i\omega + \sqrt{\frac{\omega \gamma}{\rho}} \frac{1+i}{4} \right),\tag{4}
$$

where $\gamma = \frac{8\pi\mu}{A_0}$. Then we have Im $(i\lambda L) \to \infty$ and $|b| \to \infty$ as $\omega \to \infty$. Thus, tanh $b \to \frac{|b|}{b}$ and $\frac{\tan(a)+i\tanh(b)}{1-i\tan(a)\tanh(b)} \rightarrow i$ as $\omega \rightarrow \infty$. Finally, we can obtain

$$
R_1 = \lim_{\omega \to \infty} Z(0, \omega) = \sqrt{\frac{\rho}{A_0 C}}.
$$
\n(5)

With the expression of the pulse wave speed, $c = \sqrt{\frac{2Eh}{2\pi}}$ $\frac{2E}{3\rho r_0(x)}$, and the area compliance, $C = \frac{3A_0r_0}{2Eh}$, in the main text, we can also arrive at

$$
R_1 = \frac{\rho c}{A_0}.\tag{6}
$$