
Bayesian Statistics (supplementary information)  

Bayesian statistics differ from frequentist methods in that the unknown model parameters are given 

prior distributions before any data are observed. These distributions represent our complete prior 

knowledge of each parameter. Once data are observed, we update our prior beliefs by calculating the 

posterior distribution. Through this process, we are able to learn about the model parameters by 

combining our prior beliefs with the information contained in the data. When the prior distributions of 

the model parameters are very vague, containing little prior information, the results from the Bayesian 

analysis will closely match those of the corresponding frequentist analysis since a majority of the 

resulting information will be due to the observed data. A Bayesian analysis is preferred in this setting 

due to the efficient computational methods available to fit the proposed non-standard statistical change 

point model and the ability to properly characterize the uncertainty in the parameter estimates through 

the use of vague priors. To conduct inference on the unknown model parameters, the posterior 

distribution is summarized through use the posterior mean and 95% credible interval, providing a point 

estimate and measure of uncertainty for each parameter.  

 

Bayesian Change Point Model 1 (CPM1): 

The proposed model for the RNFL thickness for person i from a given sector is given as  

       
                                                      

                    

The RNFL thickness for person i is given as    and the sensitivity loss for person i is given as   . The 

slope is given as   , the intercept term is given as  , and the person specific variability is given as    

where the    have independent and identically distributed normal distributions such that           . 

We assume that for     , the RNFL thickness is constant. This represents normal total deviation 

values and as a result there should be no change in the RNFL thickness. The RNFL then decreases 

with deteriorating retinal sensitivity loss through the equation     
       . Finally, after a certain 



value of retinal sensitivity loss, the RNFL thickness no longer decreases and becomes constant, 

reaching the end of the thinning process. This point of retinal sensitivity loss is given by   in the 

proposed model, also known as the change point in the regression model. The thickness when RNFL 

stops thinning is then given by     
       . Through the introduction of   we are able to statistically 

estimate this change point. This model is repeated separately for each included sector and the global 

average.  

To complete the change point model specification, we assign prior distributions to the 

unknown model parameters.    and   are given independent normal distributions centered at zero with 

a large variance (                  ). This results in a rather uninformative prior distribution, 

essentially allowing the data alone to determine the value of these parameters. The variance parameter, 

    is given a vague inverse gamma prior distribution resulting in conjugacy in the model 

(                           ). This prior is also relatively uninformative and places the emphasis 

on the data. Finally, the change point,  , is given a uniform prior over the possible range of values. 

This range of values includes zero and the smallest observed value of total deviation 

(                ). We assume that the RNFL thickness becomes flat at some value between those 

points. Using a uniform prior distribution allows each value in the range to be equally likely values for 

  before the data are observed. This model is fit separately for each sector of interest and globally.  

 

Bayesian Change Point Model 2 (CPM2): 

The proposed model for the RNFL thickness for person i from a given sector is given as  

                                                where each of the terms have been 

previously defined.  The same prior distributions are also used in this analysis.  This model allows for two lines 

with different slopes to be connected at the change point location for   .  When    is smaller than the change 



point, the line is flat (zero slope), indicating no additional thinning of the RNFL thickness.  For values of    

larger than the change point, the slope (  ) is estimated by the data. 

 

Markov chain Monte Carlo Details: 

In order to fit the model, we rely on Markov chain Monte Carlo (MCMC) techniques.  These MCMC 

sampling methods allow us to draw sample from the full posterior of interest for our model 

parameters.  This full posterior distribution is given as 
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where   represents the full vector RNFL thicknesses from all patients.  The full conditional 

distributions of       and    have known forms that allow for the use of Gibbs sampling while Metropolis 

sampling is required for the update of     We collect 190,000 posterior samples after discarding the first 10,000 

draws during the burn in period before convergence.  We then summarize the posterior distributions in order to 

obtain estimates and credible intervals for the parameters.  For point estimates, we rely on the posterior mean 

and median and calculate the posterior standard deviation in order to present a measure of uncertainty for each 

parameter.   

For the global Spectralis CPM1 fit, we display histograms of the posterior distribution for each model 

parameter.  These are the samples that are summarized in order to make proper inference on the parameters.  

Other model fits similarly resulted in samples from the posterior distribution of each model parameter.  

 

 

 

 

 

 



 

 

 

 

 


