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Single-cell sequencing (SCS) has emerged as a powerful new set of technologies for studying rare cells and
delineating complex populations. Over the past 5 years, SCS methods for DNA and RNA have had a broad
impact on many diverse fields of biology, including microbiology, neurobiology, development, tissue mosa-
icism, immunology, and cancer research. In this review, we will discuss SCS technologies and applications,
as well as translational applications in the clinic.
Introduction
The fundamental unit of an organism is a single cell. Homo

sapiens are composed of approximately 3.723 1013 single cells

that live harmoniously in tissues among their neighbors (Bianconi

et al., 2013). However, in diseases such as cancer, the greed and

avarice of a single cell can lead to the downfall of the entire or-

ganism. Despite the complexity of tissues, most genomic

studies to date have focused on analyzing bulk tissue samples,

which are composed of millions of cells. In these averaged

data sets, it is difficult to resolve cell-to-cell variations and iden-

tify rare cells that may play an important role in disease progres-

sion. The recent development of single-cell sequencing (SCS)

methods has led to a paradigm shift in the field of genomics,

away from bulk tissue analysis and toward detailed and compre-

hensive studies of individual cells.

Our fascination with single cells dates back to the invention of

the first microscopes in the 1660s, which allowed early micros-

copists to observed single prokaryotic cells moving around in

droplets of water. Subsequent work by early pathologists,

such as Rudolf Virchow, in the late 1850s established the link

between abnormalities in single cells and human diseases. In

the late 1900s the development of cell-staining techniques

and cytological methods galvanized the field, enabling scien-

tists to directly visualize genetic differences on chromosomes

in single cells. However, many cytogenetic and immunostaining

methods were limited to measuring targeted genes and pro-

teins. In the 1990s quantitative microarray technologies were

developed for measuring genome-wide DNA and RNA informa-

tion but required too much input material for single-cell analysis.

Although PCR methods had been developed, they were only

capable of amplifying small targeted regions of the genome.

To overcome this limitation whole-transcriptome amplification

(WTA) (Van Gelder et al., 1990) and whole-genome-amplifica-

tion (WGA) (Dean et al., 2002; Telenius et al., 1992) methods

were developed to amplify genome-wide DNA and RNA.

Another important milestone occurred in 2005 with the develop-

ment of the first next-generation sequencing (NGS) technolo-

gies, which enabled genome-wide sequencing of DNA and

RNA (Mardis, 2011).
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The culmination of these technologies led to the invention of

the first genome-wide single-cell DNA (Navin et al., 2011) and

RNA (Tang et al., 2009) sequencing methods for mammalian

cells. These initial studies (and work by other groups) led to the

establishment of a new field of biology: single-cell sequencing

(SCS). The field has shown tremendous growth over the last

5 years (Figure 1A) and impacted many diverse areas of biolog-

ical research (Figures 1B and 1C; see Table S1 available online).

In this review, we will discuss the advances and limitations of

SCS technologies, and the myriad of applications that they

have had in biological research and medicine.

Single-Cell Isolation Methods
In order to sequence a single cell, it must first be captured. While

the methods for isolating single cells from abundant populations

have been well established, the isolation of rare single cells

(<1%) remains a formidable technical challenge. To isolate a

single cell randomly from an abundant population, several ap-

proaches can be employed: mouth pipetting, serial dilution, ro-

botic micromanipulation, flow-assisted cell sorting (FACS), and

microfluidic platforms (Table 1). Many of these approaches

require cells or nuclei in suspension and therefore cannot pre-

serve their spatial context in tissues. This limitation can be over-

come using laser-capture-microdissection (LCM), which can

also be used to isolate rare cells. In contrast, the isolation of

rare single cells (<1%) is far more challenging. Many commercial

platforms have been developed for isolating circulating tumor

cells (CTCs), which occur at very low frequencies (1 in 1 million)

in the blood of cancer patients (Cristofanilli et al., 2004). The Cell-

Search system is an FDA approved clinical system that uses

magnets with ferrofluid nanoparticles conjugated to antibodies

for EpCAM and CD45 to isolate CTCs (Yu et al., 2011). Nagrath

et al. developed another method that uses a nanopost microchip

technology with EpCAM antibodies (Nagrath et al., 2007). The

Magsweeper (Illumina Inc.) is a technology that involves dipping

a rotating magnet with EpCAM antibodies to isolate CTCs (Po-

well et al., 2012). Other methods are more generally applicable

to rare cell populations. The DEP-Array system (Silicon Biosci-

ences) uses amicrochip with dielectropheretic cages to navigate
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Figure 1. Timeline of Milestones in Single-
Cell Sequencing
(A) Timeline of SCS milestones.
(B) Histogram of the growing number of publica-
tions in SCS over the past 5 years.
(C) Prevalence of publications categorized by
fields.
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individual cells by charge (Altomare et al., 2003). The CellCelec-

tor (Automated Lab Solutions) uses robotic micromanipulation

capillary system to identify single cells for isolation (Choi et al.,

2010). An alternative approach uses nanofilters to isolate rare

cells by size exclusion rather than surface markers (Adams

et al., 2014). The advantages and limitations of these methods

are summarized in Table 1 and have been reviewed in detail in

other review articles (Navin and Hicks, 2011; Navin, 2014; Sha-

piro et al., 2013).

Single-Cell DNA Sequencing Methods
The development of DNA SCS methods has proven to be more

challenging than RNA. This is due to the fact that a single cell

contains only two copies of each DNA molecule but thousands

of copies of most RNA molecules. The limited amount of input

material for WGA results in a number of technical errors,

including coverage nonuniformity, allelic dropout (ADO) events,

false-positive (FP) errors, and false-negative (FN) errors (Table 2).

The most salient technical errors occur during the initial rounds

of amplification and are subsequently propagated by all

daughter molecules. FP errors accumulate at random sites due

to the infidelity of the WGA polymerase and lead to single nucle-

otide errors (Dean et al., 2002; Lasken, 2007). However, by far

the greatest source of WGA error comes from allelic dropout

events at 10%–50% of the mutation sites (Fiegler et al., 2007;

Hou et al., 2012; Lasken, 2007; Talseth-Palmer et al., 2008;

Zong et al., 2012).

Importantly, WGA is not a single technique, but encom-

passes a wide variety of experimental methods. The most com-

mon WGA methods are degenerative-oligonucleotide-PCR

(DOP-PCR) and multiple-displacement-amplification (MDA)

(Figures 2A and 2B). DOP-PCR generates low physical
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coverage (�10%) of a single-cell

genome but accurately retains copy

number levels during WGA. In the first

SCS method developed for genomic

DNA, DOP-PCR was combined with

flow-sorting of nuclei and NGS to

generate high-resolution copy number

profiles from single mammalian cells

(Baslan et al., 2012; Navin et al., 2011).

However, the low physical coverage of

DOP-PCR makes it a poor approach for

measuring mutations at base pair resolu-

tion. MDA using either the Phi29 or Bst

polymerases has been widely reported

to achieve high physical coverage

(>90%) from a single-cell genome or

exome (Hou et al., 2012; Xu et al.,
2012; Wang et al., 2014; Zong et al., 2012) (Figure 2B). How-

ever, MDA generates nonuniform coverage and causes distor-

tions in read depth, making it a poor method to measure DNA

copy number (Navin, 2014). Phi29 is the ideal polymerase for

MDA reactions, since it has a very low FP error rate (1e-7)

compared to Bst (1e-5), which does not have proofreading ac-

tivity (Dean et al., 2002; Lasken, 2013). Another DNA SCS

method is multiple annealing- and looping-based amplification

cycles (MALBAC), which uses the Bst polymerase to form cir-

cular DNA fragments followed by adaptor ligation PCR (Zong

et al., 2012). This method can obtain both copy number infor-

mation and single nucleotide variants (SNVs), but generates

extremely high FP error rates, making it more suitable for

copy number profiling. Another method, called NUC-SEQ or

single nucleus exome sequencing (SNES) takes advantage of

G2/M nuclei which have duplicated the amount of genomic

DNA in a single cell (12 picograms) prior to MDA, which reduces

many technical error rates during single-cell sequencing of

exomes and genomes (Wang et al., 2014).

After WGA the amplified DNA is used to construct libraries for

NGS. While several sequencing platforms are available, Illumina

has emerged as the primary tools in most studies due to low cost

per base, high throughput, and low error rates. To further save

costs and increase throughput, single-cell libraries are often bar-

coded and pooled together for multiplexed sequencing. In many

studies, the barcoded libraries are used for targeted capture

(exome or gene panels) to sequence only regions of interest

and obtain higher coverage depth in these areas. For a more

comprehensive review of single-cell DNA sequencing methods

please refer to the following articles (Blainey and Quake, 2014;

de Bourcy et al., 2014; Navin and Hicks, 2011; Navin, 2014;

Van Loo and Voet, 2014).
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Table 1. Single-Cell Isolation Methods for Abundant and Rare Populations

Isolation Methods for Abundant Cells

Isolation Methods Description Advantages Disadvantages Cost

Serial dilution serial dilution to about one

cell per microliter

simple approach; low cost high probability of isolating

multiple cells

$

Mouth pipetting isolate single cells with glass

pipettes

simple approach; low cost technically challenging $

Flow sorting microdroplets with single

cells are isolated by electric

charge at high pressure

high-throughput; fluorescent

markers can be used to

isolate subpopulations

expensive equipment;

requires operator

$$

Robotic micromanipulation robotic-controlled

micropipettes isolate

single cells

high accuracy; fluorescence

can be used

low throughput $$$

Microfluid platforms microfluidic chips isolate

single cells in flow channels

high-throughput; reactions

can be performed on-chip;

reduced reagent costs

cell size must be uniform;

expensive consumables

$$$

Isolation Methods for Rare Cells

Isolation Methods Description Advantages Disadvantages Cost

Nanofilters size discrimination on

nanofabricated filters

cells are selected by size

exclusion

cells can adhere to filters

during backwash

$

MagSweeper rotating magnet with EpCAM

antibodies

high enrichment of rare

cells

biased toward markers used

for isolation

$$

Laser-capture microdissection cells are cut from a tissue

section slide with lasers

under a microscope

spatial context is preserved cell slicing; UV damage to

DNA/RNA

$$$

CellSearch magnets with nanoparticles

conjugated to antibodies

enrich surface markers

high throughput biased toward markers used

for isolation

$$$

CellCelector robotic capillary

micromanipulator

high-throughput expensive system and large

footprint

$$$

DEP-Array microchip with

dielectropheretic

cages

high sensitivity for isolating

rare cells

time-consuming; low-throughput;

cells are deposited into large

final volumes

$$$$

This table summarizes the advantages and disadvantages of single-cell isolation methods from abundant populations and rare populations.
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Single-Cell RNA Sequencing Methods
The development of single-cell RNA sequencing methods has

shown considerable progress over the past 5 years. To

sequence a single-cell transcriptome, the RNA must first be

amplified by WTA. This step is necessary because a typical

mammalian cell contains only 10 picograms of total RNA and

0.1 picograms of mRNA. Initial WTA methods utilized the T7

RNA polymerase to perform linear amplification of cDNA by

in vitro transcription (IVT) (Van Gelder et al., 1990). These

methods were further developed using oligo d(T) primers conju-

gated to adaptor sequences for reverse transcription and selec-

tive amplification of polyadenylated mRNA by PCR (Tang et al.,

2009) (Figure 2C). However, these WTA methods were plagued

by strong 30 mRNA bias. To mitigate this bias, a WTA method

called SMART-Seq was developed that amplifies only full-length

mRNA transcripts using an Moloney Murine Leukemia Virus

(MMLV) reverse transcriptase (Ramsköld et al., 2012). MMLV

has both template-switching and terminal transferase activity,

which results in the addition of nontemplated cytosine residues

to the 50 end of the cDNA. By adding a poly(G) template with

an adaptor sequence, MMLV can switch templates and tran-
600 Molecular Cell 58, May 21, 2015 ª2015 Elsevier Inc.
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scribe the other strand, leading to full-length cDNA transcripts

that are amplified by PCR (Figure 2D). Another technical artifact

of single-cell RNA sequencing is amplification bias, in which

mRNAs levels are distorted during WTA. To reduce these errors,

a recent method developed unique molecular indexes (UMIs) to

label the original pool of RNAmolecules prior toWTA (Islam et al.,

2014). After WTA, the resulting cDNA libraries are barcoded and

pooled for multiplexed NGS. For a more detailed discussion of

RNA SCS methods please refer to the following review articles

(Macaulay and Voet, 2014; Saliba et al., 2014; Sandberg, 2014).

Single-Cell Epigenomic Sequencing Methods
Epigenomic profiling of single cells remains one of the greatest

technical challenges in the field. The problem is that standard

epigenomic sequencing methods require a pool of DNA that is

split into two separate fractions for treatment with bisulfide or

methylation restriction enzymes prior to sequencing. The other

technical barrier is that epigenetic DNA modifications cannot

be amplified with DNA polymerases. Despite these technical

hurdles, two recent studies have made initial progress. The

Hi-C approach was recently adapted for single-cell profiling at
4



Table 2. Technical Errors Associated with Single-Cell Sequencing

Technical Artifact Amplification Method Error Type Description

WGA chimeric molecules MDA false-positive inversions 30 and 50 ends of newly

synthesized molecules hybridize

together during MDA leading to

inversions

coverage nonuniformity MDA, DOP-PCR, MALBAC copy number aberrations,

false-negative SNVs

Under and over amplifications

of the genome can lead to

erroneous copy number

abberations and false-negative

SNVs

FP amplification error MDA, DOP-PCR, MALBAC SNV, indel DNA polymerase introduces

random FP errors

allelic dropout MDA, DOP-PCR, MALBAC False-negative errors Heterozygous (AB) variants

undergo dropout during WGA

leading to homozygous (AA or

BB) genotypes

pileup regions DOP-PCR copy number amplifications Massive over-amplifications

of focal genomic regions occur

during DOP-PCR

WTA amplification distortion dt-anchor, Template-Switching erroneous expression values over/under amplification during

WTA leads to erroneous

expression values

transcript dropout dt-anchor, Template-Switching,

UMI

false-negative unexpressed

genes

failure to amplify a transcript

during WTA

30 bias dt-anchors failure of RT polymerase to fully

synthesize the first cDNA strand

strong bias toward amplification

of 30 0 end of RNA transcripts

This table lists the common technical errors that arise during WGA and WTA in single-cell sequencing experiments.
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megabase resolution to identify physical chromatin interactions

in single cells (Nagano et al., 2013). In another study, reduced

single-cell representation bisulfite sequencing (scRRBS) was

developed to measure cytosine methylation modifications at

1.5 million CpG sites in a single cell, which is equivalent to about

10% of the genome (Guo et al., 2013). While these studies are

clearly pioneering, they were also challenged by limited

coverage (2.5% and 10%), low resolution, and many technical

errors. However, future refinement of these technologies is likely

to lead to accurate whole-genome epigenomic profiling of single

cells.

Distinguishing Technical Errors from Biological
Variations
At the current state of technology, most SCS methods introduce

extensive technical errors and variability into data sets. Unfortu-

nately, naive users often interpret these technical errors as

extensive biological heterogeneity. To eliminate these errors

and confirm that a mutation or transcript is truly heterogeneous

in a population of cells, orthogonal validation using a targeted

approach is critical. To validate heterogeneous DNA variants or

mutations, targeted validation can be performed using deep

sequencing with molecular barcodes (Wang et al., 2014) or dig-

ital droplet PCR (Bio-Rad, Raindance Inc.). To validate heteroge-

neous RNA expression changes, targeted validation can be

performed with single-cell RT-qPCR or with digital droplet

PCR. Unfortunately, many published studies to date have incor-

rectly reported extensive biological heterogeneity without
MOLCE
orthogonal validation, which is more likely to be explained by

technical errors.

In summary, there has been tremendous progress in the devel-

opment of single-cell DNA and RNA sequencing methods. How-

ever, all SCSmethods generate technical errors duringWGA and

WTA, and thus orthogonal validation using a targeted approach

is critical at the current state of technology. We now turn to a

detailed discussion of the many broad fields of biology that

have been impacted by SCS methods over the last 5 years

(Figure 3).

Microbiology
A formidable challenge in microbiology has been that over 99%

of microbial species on planet earth cannot be cultured and

expanded in the lab (Ishoey et al., 2008; Lasken and McLean,

2014). Single-cell DNA and RNA sequencing methods provide

a powerful new approach to resolve microbial genomes and

delineate cell-to-cell diversity within diverse populations. How-

ever, bacteria and other microorganisms often have only femto-

grams of DNA and RNA, making it even more challenging to

amplify than mammalian cells (Lasken, 2007). In an early study,

MDA was used to amplify DNA from the marine cyanobacterium

Prochlorococcus for pyrosequencing and de novo assembly

(Rodrigue et al., 2009). In another study, Woyke et al. used

FACS andMDA to perform NGS and assemble twomarine flavo-

bacteria genomes to 90% coverage (Woyke et al., 2009). Blainey

et al. also used MDA to sequence and assemble the genomes of

5 single cells from an Ammonia-oxidizing archaea (Blainey et al.,
Molecular Cell 58, May 21, 2015 ª2015 Elsevier Inc. 601
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Figure 2. WGA and WTA Methods for
Single-Cell Sequencing
(A and B) Whole-genome-amplification methods.
(C and D) Whole-transcriptome amplification
methods.
(A) Degenerative-oligonucleotide-primer PCR.
(B) Multiple displacement amplification.
(C) Oligo dT-anchor approach.
(D) Template switching.
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2011). Another study performed SCS of five segmented filamen-

tous bacterial cells to gain insight into their life cycles (Pamp

et al., 2012).While initial studies were often limited to sequencing

just a few microbial cells, a subsequent large-scale study was

conducted on 201 uncultivated archaeal and bacterial cells

from nine diverse habitats. In this study SCS revealed 29 un-

charted branches of the tree of life, revealing ‘‘microbial dark

matter’’ and challenging the canonical three domains of life

(Rinke et al., 2013). These studies show that SCS is complimen-

tary to metagenomic deep-sequencing methods and can open

up new avenues of investigation into microbial genomes that

cannot be cultured in the lab.

Neurobiology
Neurons represent one of themost morphologically diverse pop-

ulations of cells. Traditional classification has relied mainly on

morphological features (De Carlos and Borrell, 2007); however,

single-cell RNA sequencing provides a powerful unbiased

approach to classify neurons based on their transcriptional pro-

files. In a study by Qiu et al., single neuron RNA sequencing was

combined with electrophysiology to obtain transcriptional pro-

files from embryonic mouse hippocampus and neocortical neu-

rons (Qiu et al., 2012). In another study, single-cell RNA-seq was

performed in situ in spatially defined neuronal regions, which

identified cell-to-cell transcriptional variation in hippocampal

neurons (Lovatt et al., 2014). Pollen et al. used low-coverage sin-

gle-cell RNA sequencing andmicrofluidics to analyze single cells

from 11 brain populations, and identified Notch signaling as an

important regulator of brain development (Pollen et al., 2014).

In another study, Usoskin et al. used single-cell RNA sequencing

to profile 622 sensory neurons in mice, which revealed 11 novel
602 Molecular Cell 58, May 21, 2015 ª2015 Elsevier Inc.
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expression classes of sensory neuron cell

types (Usoskin et al., 2015).

Several studies have also begun to

investigate DNA heterogeneity in neu-

rons. SCS was recently used to study

LINE-1 retrotransposition in the cerebral

cortex (Evrony et al., 2012) and found

that each cortex neuron had an average

of 0.6 somatic insertions events. In

another study, SNS (Baslan et al.,

2012; Navin et al., 2011) was used to

identify copy number variants (CNVs) in

neurons from three normal and two

pathological brain samples (Cai et al.,

2014). The authors reported that large

(>1 mb) clonal CNVs arose in about
5% of neurons during normal development. In contrast,

another study used SNS to profile neuronal copy number di-

versity in the prefrontal cortex of postmortem brains, which

identified many de novo CNVs in neurons that were not clonal

between different single cells (McConnell et al., 2013). In

another study, SCS using microwells identified copy number

changes in a normal postmortem brain and a patient with

Down syndrome (Gole et al., 2013). These initial studies

show that SCS provides a novel approach to classify neuronal

cell types and identify an unexpected amount of DNA diversity

in neuronal populations.

Tissue Mosaicism
The traditional view of somatic tissues is that single normal

cells have identical genomes; however, this dogma is begin-

ning to be challenged by increasing evidence of genetic mosa-

icism in normal tissues that arises during normal development

(Biesecker and Spinner, 2013). To date, most studies have

analyzed bulk tissue samples, and therefore much controversy

exists over the prevalence of mosaic mutations and whether

they can simply be explained by technical error. SCS methods

provide a novel approach to resolve cell-to-cell variations in

normal tissues at an unprecedented genomic resolution. SNS

was recently used to identify de novo CNVs in 13%–41% of

the neurons in the frontal cortex of postmortem brains, sug-

gesting that CNV mosaic events are common in cortical neu-

rons (McConnell et al., 2013). This unexpected amount of

copy number diversity has previously not been appreciated in

the brain. However, a recent study using the same SCS

methods (SNS) challenged these data, by suggesting that so-

matic CNVs are extremely rare in neurons and other normal
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Figure 3. Broad Applications of SCS in
Biological and Biomedical Research
Panels illustrating the diverse fields of biology that
have been impacted by SCS technologies over the
past 5 years. Image credits: neurobiology, Zeynep
Saygin (Cell Picture Show); germline transmission,
Wang and Navin; organogenesis, Mikael Hägg-
ström (Wikimedia Commons); cancer biology, NIH;
clinical diagnostics, Wang and Navin; immu-
nology, Olivier Schwartz and the Electron Micro-
scopy Core Facility, Institut Pasteur (Cell Picture
Show); microbiology, NIAID; tissue mosaicism,
Wang and Navin; embryology, Seth Ruffins, Rus-
sell Jacobs, and the Caltech MRI Atlas of Mouse
Development (Cell Picture Show); prenatal genetic
diagnosis, Shutterstock. All images are used with
permission.
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tissues (Knouse et al., 2014). In this study, 96 single neurons

were sequenced from mice and only a single somatic CNV

was identified in one neuron. The authors also examined 89

single cells from 4 human patients’ frontal lobes, and found

only 2 cells with aneuploid rearrangements (2.2%). In skin,

the authors detected aneuploidy in only 2.7% of mouse kerati-

nocytes and none in human cells. In liver cells they profiled 100

hepatocytes and found only 4% aneuploid cells. Thus, while

both studies showed that copy number mosaicism is likely to

exist in normal tissues, there is much debate regarding the

prevalence of these rearrangements, and whether they might

play an important role in human diseases.

Germline Transmission
Sperm cells and oocytes are single cells that fuse to form a

zygote and transmit genomic material, and evolution has engi-

neered this process to generate genetic variation. Single-cell

DNA sequencing provides a novel approach to study the mech-

anisms that generate germline variation. In one of the first

studies on this topic, single sperm cells were sequenced, which

revealed an average of 22.8 recombination events, 5–15 gene

conversion events, and 25–36 de novo mutations in each sperm

cell (Wang et al., 2012). The authors also calculated copy num-

ber profiles, which showed that 7% of the single sperm cells

had aneuploid genomes. Consistent with this study, another

group used low-coverage whole-genome sequencing to delin-

eate haplotypes in single sperm cells from one individual, which

revealed an average of 25.3 recombination events per cell (Kirk-

ness et al., 2013). In another study, Lu et al. applied MALBAC to

sequence single sperm cells from an Asian individual, in which

they reported aneuploidy in 4% of the cells and 26 recombina-

tion events per single sperm cell (Lu et al., 2012). While most

germline studies have focused on sperm, a recent study used

MALBAC to analyze fertilized oocytes (Hou et al., 2013). In

this study oocytes from 8 individual females were analyzed,

which identified 43 crossover events per oocyte, a recombina-

tion rate that is 1.63 times higher than sperm. Interestingly,

this study also reported a much higher rate of aneuploidy in oo-

cytes (17.6%) compared to sperm (4%–7%). Taken together,

these studies have confirmed previous recombination rates

and revealed a striking amount of genomic diversity that arises

in germ cells during the transmission of genetic material to

offspring.
MOLCE
Embryogenesis
Extensive transcriptional regulation and epigenetic reprogram-

ming occurs during the earliest stages of embryonic develop-

ment, as the zygote forms the three major cell lineages (endo-

derm, ectoderm and mesoderm). The genomic regulation of

these early events and maintenance of pluripotency has been

challenging to study due to the limited amount of input material.

To address this problem, RNA SCS was used to analyze tran-

scriptional reprograming in vitro during the transition from the in-

ner cell mass of blastocysts to pluripotent embryonic stem cells

(Tang et al., 2010). In another study, RNA SCS was used to pro-

file single cells from human pre-implantation embryos and em-

bryonic stem cells which detected over 1,000 heterogeneous

transcripts within the same blastomere (Yan et al., 2013). In

another study, RNA SCS was used to study transcriptome dy-

namics from oocyte to morula development in human and

mouse embryos, which delineated a stepwise progression of

pathways that regulate cell cycle, gene regulation, translation,

and metabolism (Xue et al., 2013). Another study used single-

cell bisulfite sequencing to measure cytosine DNAmodifications

in mouse embryonic stem cells, which showed massive global

demethylation during embryonic development (Guo et al.,

2013). Collectively, these studies have begun to dissect the com-

plex transcriptional regulation and epigenomic reprogramming

that occurs during the earliest stages of embryogenesis.

Organogenesis
In most tissues, traditional classification of cell types has previ-

ously been limited to a few dozen markers that have been

used for decades. RNA SCS methods provide a powerful new

unbiased approach to perform transcriptional profiling and iden-

tify groups of cells that share common expression programs,

representing distinct cell types. In the first study to apply this

approach, RNA SCS was used to analyze lung epithelium devel-

opment (Treutlein et al., 2014). From these data, the develop-

ment of lung progenitor cells was traced as they formed alveolar

air sacs that regulate gas exchange. In this study the authors

identified hundreds of novel markers for distinguishing the four

major cell types and used them to reconstruct cell lineages dur-

ing alveolar sac differentiation. In another study, RNA SCS was

used to analyze gene expression patterns of single cells during

kidney development in mice at E11.5, E12.5, and P4 (Brunskill

et al., 2014). These data revealed a multilineage priming model
Molecular Cell 58, May 21, 2015 ª2015 Elsevier Inc. 603
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in which many genes and pathways were repressed during

nephrogenesis, rather than being activated from a ‘‘blank slate.’’

These initial studies demonstrate the utility of applying unbiased

RNA SCS methods to classify cell types and identify novel

markers of cell lineages during organ development.

Immunology
The immune system is broadly classified into the adaptive and

innate components, which comprise a large variety of cell types

that work together in a concerted fashion to recognize and clear

antigens. Although the major immune cell types have been

known for decades, there is little known about the transcriptional

heterogeneity within cell types in responses to antigens. In one

study, RNA SCS was used to analyze mouse bone-marrow-

derived dendritic cells that were stimulated under different con-

ditions in vitro and found that individual cells show variable

responses that are mediated by interferon paracrine signaling

(Shalek et al., 2014). In another study, RNA SCS was used to

identify bimodal gene expression patterns in bone-marrow-

derived dendritic cells stimulated by lipopolysaccharide that

was modulated through an interferon feedback circuit (Shalek

et al., 2013). Another study performed unbiased RNA SCS to

profile 4,000 single cells from mouse spleen in response to anti-

gen activation with LPS, which revealed seven classes of im-

mune cells and identified 1,575 variable gene responses after

antigen activation (Jaitin et al., 2014). These studies show that

unbiased RNA SCS methods can be used to investigate hetero-

geneous transcriptional responses in immune cells after antigen

activation.

Cancer Research
Tumors evolve from single normal cells. During this process the

cancer cells accumulate mutations and diversify to form distinct

lineages and subpopulations. This intratumor heterogeneity con-

founds the clinical diagnosis and therapeutic treatment of

patients. Clonal diversity is likely to play a key role in tumor pro-

gression during processes such as invasion, clonal evolution and

metastasis by providing fuel for evolution to select upon.

Genomic diversity also enables tumor cell populations to survive

selective pressures in the tumor microenvironment, including

hypoxia, chemotherapy, immune surveillance, and geographic

barriers. However, to date, studying clonal diversity has been

difficult in bulk populations of tumor cells using standard

sequencing methods. DNA and RNA SCS methods provide

powerful new tools for delineating clonal diversity and under-

standing the role of rare cells during cancer progression.

To date, most SCS studies of cancer have focused on intratu-

mor heterogeneity and clonal evolution in primary tumors. The

first study used SNS to investigate aneuploidy evolution in single

cells from patients with triple-negative (ER�/PR�/HER2�)

breast cancers (Navin et al., 2011). These data revealed that

copy number aberrations evolved in punctuated bursts of evolu-

tion, followed by stable clonal expansions to form the tumor

mass. In another study, single-cell exome sequencing (NUC-

SEQ) showed that point mutations evolved gradually over time

generating extensive clonal diversity and many rare (<1%) muta-

tions in the tumor mass (Wang et al., 2014). Single-cell exome

sequencing has also been applied to study clonal diversity in
604 Molecular Cell 58, May 21, 2015 ª2015 Elsevier Inc.
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renal carcinoma (Xu et al., 2012) and a JAK2-positive myelopro-

liferative neoplasm (Hou et al., 2012), which identified a mono-

clonal population of cells that shared a common genetic lineage.

Similarly, single-cell exome sequencing was applied to study a

muscle-invasive bladder cancer (Li et al., 2012), and a colon can-

cer patient (Yu et al., 2014), which identified two distinct subpop-

ulations of cells in each of which tumor diverged, but also shared

a common set of founder mutations. Another study used DNA

SCS to delineate clonal diversity in glioblastoma, which revealed

convergent evolution of EGFR mutations in different subclones

from the same primary tumors (Francis et al., 2014).

DNA SCS has also been used to study clonal evolution in he-

matopoietic cancers. In one study, single cancer cells were

sequenced from three patients diagnosed with MDS-derived

secondary AML to reconstruct mutational chronology (Hughes

et al., 2014). In another study 1,479 single cells were sequenced

from six acute lymphoblastic leukemia (ALL) patients using tar-

geted panels, which identified the presence of multiple clonal

subpopulations in many AML patients. Clonal dynamics have

also been investigated in xenografts, which showed extensive

selection in the first transplantation passages, followed by clonal

dominance (Eirew et al., 2015). Collectively, these studies pro-

vide strong evidence for clonal evolution in many human tumors

(Campbell and Polyak, 2007; Greaves and Maley, 2012; Navin

and Hicks, 2010) by showing that single cells can continue to ac-

quire newmutations and evolve to form the primary tumor mass.

Recent work has begun to use SCS to investigate metastatic

dissemination and circulating tumor cells (CTCs) in the blood.

In one study, RNA SCS was used to profile CTCs in the blood

of melanoma patients (Ramsköld et al., 2012). In another study,

DNA SCS was used to analyze CTCs from six patients with met-

astatic colon cancer, showing that many of the driver mutations

in the primary tumor could be detected in theCTCs (Heitzer et al.,

2013). In another study, MALBAC was used to perform exome

sequencing and copy number profiling of single CTCs from

seven metastatic lung adenocarcinoma cancer patients (Ni

et al., 2013). In another study, single-cell exome sequencing

was applied to a patient with metastatic prostate cancer, which

identified 51% of the mutations in the primary and metastatic tu-

mors in the CTC populations (Lohr et al., 2014). RNA SCS was

also recently used to investigate CTC clusters in metastatic

seeding in breast cancer (Aceto et al., 2014). Another study

applied SNS and morphometric imaging to investigate copy

number evolution in response to Abiraterone therapy in metasta-

tic prostate cancer (Dago et al., 2014). Collectively, these studies

have improved our understanding of CTCs andmetastasis in hu-

man cancers.

RNA SCS has also been used to study cell plasticity and can-

cer stem cells in human tumors. An unbiased study of hundreds

of single-cell transcriptomes in five glioblastoma patients

showed that cancer cells displayed a large range of intermediate

phenotypes that do not fall into distinct classes of epithelial or

mesenchymal cell types. In summary, SCS methods have

already had a large impact on improving our fundamental under-

standing of intratumor heterogeneity, clonal evolution, and met-

astatic dissemination in human cancers. For a more detailed

review on SCS applications in cancer research, please refer to

the review articles Navin (2014) and Van Loo and Voet (2014).
4



Molecular Cell

Review
Clinical Applications
SCS methods have direct translational applications in cancer

treatment and prenatal genetic diagnosis (PGD). In cancer

research, intratumor heterogeneity presents a major challenge

for clinical diagnostics, because single samples may not repre-

sent the tumor as a whole. While regional sequencing and

deep sequencing can resolve some clonal substructure, they

cannot fully delineate the clonal substructure of a tumor and

are inherently unable to determine which combination of muta-

tions occur in each clone. SCS provides a powerful tool for

resolving intratumor heterogeneity, and guiding targeted therapy

toward the most malignant clones. SCS can also be used to

calculate a diversity index for each cancer patient, which may

have prognostic utility for predicting poor survival and poor

response to chemotherapy. SCS technologies will also have

direct applications for noninvasive monitoring, by sequencing

single CTCs in the blood to track mutations in the primary and

metastatic tumors. Several studies have already shown that

over 50% of the mutations in the primary and metastatic tumors

can be detected in CTCs of lung cancer (Ni et al., 2013), prostate

cancer (Lohr et al., 2014) and colon cancer patients (Heitzer

et al., 2013). By sequencing CTCs at multiple time-points over

the course of therapy, oncologists can trackmutational evolution

and make rapid changes to their therapeutic strategies before

resistance emerges. SCSmethodswill also have clinical applica-

tions in the early detection of tumor cells in bodily fluids (urine,

sputum, blood) and fine-needle-aspirates samples.

Another major area of clinical utility is preimplantation genetic

diagnosis (PGD) and in vitro fertilization (IVF). During this proce-

dure a biopsy of a single cell is collected from a set of blasto-

meres for DNA SCS to screen for genetic disorders prior to

implantation into the uterus. In the past, these methods have

traditionally been limited to cytogenetic analysis and single-cell

PCR. SCS provides the advantage of being able to profile thou-

sands of mutations and copy number changes associated with

diseases that can be screened fromone cell using a single assay.

In a proof-of-concept study, SCS was used to profile genomic

copy number and structural variants in single cells from blasto-

meres derived from a human zygote after IVF (Voet et al.,

2013). In another study, MALBAC was used to sequence polar

bodies to identify copy number changes and point mutations

prior to implantation (Hou et al., 2013). These preliminary PGD

studies demonstrate the technical feasibility of screening

oocytes andblastomeres toavoid thegenetic transmissionof dis-

eases, paving the way for future clinical trials. For a comprehen-

sive review on this topic, please refer to Van der Aa et al. (2013).

Computational Methods
While SCS methods are generating torrents of large-scale

genomic data sets, the computational methods for analyzing

these data are severely lacking. SCS data are distinct from stan-

dard NGS data and their analysis tools, due to inherent technical

errors and noise, including coverage nonuniformity, sparse data,

false-positive errors, amplification biases, and allelic dropout

events. Some of the first SCS analysis methods focused on

quantifying single-cell copy number profiles from read count

data. To calculate SCS copy number profiles, a variable-binning

algorithm was developed that normalizes errors in mappability in
MOLCE
the human genome, by adjusting genomic intervals based on the

expected number of reads (Baslan et al., 2012; Navin et al.,

2011). This processing pipeline was developed into a user-

friendly web server platform with impressive visualization tools

called Ginkgo. Another copy number method uses SCS read

count data generated from DOP-PCR that corrects for GC bias

and performs binary segmentation followed by dynamic thresh-

olding (Zhang et al., 2013).

Several computational methods have also been developed for

analyzing RNA SCS data sets to mitigate technical error. In one

method, RNA spike-in controls were used to quantify technical

noise during WTA (Katayama et al., 2013). In another method,

uniquemolecular identifiers (UMI) were used to label RNA before

WTA and sequencing, to eliminate amplification bias (Islam et al.,

2014). Computational methods have also been developed to

model noise in RNA SCS data using a low-magnitude Poisson

processes (Brennecke et al., 2013). Another RNA SCS method

called Monocle represents each cell as a point in a high-dimen-

sion space, and uses dimensionality reduction to extract essen-

tial features over time (Trapnell et al., 2014). Another study devel-

oped a latent variable model for single-cell RNA data to reduce

technical noise from over amplification and cell cycle genes

(Buettner et al., 2015). Several algorithms have also been devel-

oped for assembly of microbial genomes from single cells. One

method, called E+V-SC, uses lower initial coverage cutoff and

then progressively increases the cutoff to incorporate more ba-

ses (Chitsaz et al., 2011). Another method, called IDBA-UD,

uses similar filtering with progressive coverage thresholds strat-

egy and error correction (Peng et al., 2012). A third method,

SPAdes, tackled the uneven coverage problem by constructing

paired assembly graphs utilizing read pairs (Bankevich et al.,

2012). In summary, while some initial tools have been developed,

new quantitative methods are still urgently needed for analyzing

DNA and RNA SCS data sets.

Alternatives to Single-Cell Sequencing
SCS is not the appropriate technology to address every question

in biology. In many studies, alternative approaches will provide

more powerful tools for investigating population diversity and

identifying rare mutations. Methods such as deep sequencing

(Shah et al., 2012) or multiregion sequencing (Gerlinger et al.,

2012) provide a more economical approach for resolving com-

plex population substructure and have the advantage of

providing genotyping information on thousands of cells. In cases

where living tissue or cells are available, single cells can be

subcloned to generate isogenic cell lines or organoids that act

as proxies for single cells (Boj et al., 2015; Sachs and Clevers,

2014). These systems have the advantage of providing an unlim-

ited amount of genetic material for analysis and can be used for

functional assays. However, a notable limitation is thatmost cells

are not capable of expanding in culture, which can introduce a

strong bias in the representation of the final cells that are derived

from a population. Furthermore, as cells adapt to the cell culture

environment, they may alter transcriptional or epigenetic pro-

grams. In conclusion, alternative methods to SCS may be a bet-

ter choice when functional studies are required, or when very

rare cells must be detected in a population (without prior isola-

tion or enrichment).
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Conclusions and Future Directions
SCSmethods have provided great insight into our understanding

of biological diversity and rare cells that have previously been

difficult to resolve in genomic data from bulk tissue samples.

These tools have had a broad impact on many diverse fields of

biology over the past 5 years, and several common applications

have emerged: (1) delineating population diversity, (2) tracing cell

lineages, (3) classifying cell types, and (4) genomic profiling of

rare cells. While many initial studies have been published, there

are still many applications that remain unexplored. In microbi-

ology, SCS methods have yet to be applied to study viruses in

single host cells, to understand how they infect and replicate

differently in certain cell types. In neurobiology, SCS methods

can provide important information on transcriptional programs

in response to stimuli, including auditory, sensory, and visual

stimulation. In development, single-cell RNA sequencing can

be used to study cell lineages in many organ systems to identify

new markers and cell types. In tissue mosaicism, future studies

should be directed at investigating the diversity of point muta-

tions and indels in different tissue types which are likely to

show even more diversity than copy number variations. Cancer

immunotherapy is another exciting application, where SCS tools

have great potential for illuminating phenomenon such as immu-

noediting and antigenicity in the context of intratumor heteroge-

neity. In cancer research, SCS can also help to understand the

role of clonal diversity in complex biological processes, such

as transformation, invasion, and the evolution of chemoresist-

ance (Navin, 2014; Van Loo and Voet, 2014).

Future efforts in technology development should focus on

in situ SCS methods that can measure genomic data on single

cells while preserving their spatial context in tissues (Crosetto

et al., 2015). Future technologies should also be directed at link-

ing phenotypes and genotypes in single cells, by combining

methods such as live-cell imaging with SCS methods. Forth-

coming technologies should also focus on collecting combina-

tions of genomic information from the same single cell in parallel

(for example, DNA and RNA, or RNA and epigenomic modifica-

tions). Some progress was recently made in this area, by demon-

strating the feasibility of measuring both copy number states and

RNA expression profiles in the same single cells (Dey et al.,

2015). Another important area of technology development is

highly multiplexed single-cell DNA and RNA sequencing, to

enable the profiling of thousands of single cells in parallel, at a

substantially lower cost. A recent technique using microwells

and DNA beads with barcodes shows promise for enabling the

profiling 10,000–100,000 single cells in parallel (Fan et al.,

2015). Several companies (Fluidigm, Wafergen, and Cellular

Research) are also focusing their efforts on developing higher-

throughput single-cell RNA and DNA sequencing methods,

which are expected to come to market soon. While most SCS

studies are still cost prohibitive, we expect that this barrier will

largely be dissolved over the next few years, as the costs of

NGS technologies (Illumina, Life Technologies) continues to

plummet through new technical innovations and fierce industrial

competition.

In closing, while the SCS field is still relatively new, it has

already made a large impact on many diverse fields of biology

and has led to great improvements to our fundamental under-
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MOLCEL 544
standing of human diseases. We expect that the demand and

application of SCS tools will continue to grow tremendously in

the coming years, as these methods become more refined,

high throughput, inexpensive, and easier to use in standard

research and clinical laboratories.
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Ramsköld, D., Luo, S., Wang, Y.C., Li, R., Deng, Q., Faridani, O.R., Daniels,
G.A., Khrebtukova, I., Loring, J.F., Laurent, L.C., et al. (2012). Full-length
mRNA-Seq from single-cell levels of RNA and individual circulating tumor
cells. Nat. Biotechnol. 30, 777–782.

Rinke, C., Schwientek, P., Sczyrba, A., Ivanova, N.N., Anderson, I.J., Cheng,
J.F., Darling, A., Malfatti, S., Swan, B.K., Gies, E.A., et al. (2013). Insights
into the phylogeny and coding potential of microbial dark matter. Nature
499, 431–437.

Rodrigue, S., Malmstrom, R.R., Berlin, A.M., Birren, B.W., Henn, M.R., and
Chisholm, S.W. (2009). Whole genome amplification and de novo assembly
of single bacterial cells. PLoS ONE 4, e6864.

Sachs, N., and Clevers, H. (2014). Organoid cultures for the analysis of cancer
phenotypes. Curr. Opin. Genet. Dev. 24, 68–73.
608 Molecular Cell 58, May 21, 2015 ª2015 Elsevier Inc.

MOLCEL 544
Saliba, A.E., Westermann, A.J., Gorski, S.A., and Vogel, J. (2014). Single-cell
RNA-seq: advances and future challenges. Nucleic Acids Res. 42, 8845–8860.

Sandberg, R. (2014). Entering the era of single-cell transcriptomics in biology
and medicine. Nat. Methods 11, 22–24.

Shah, S.P., Roth, A., Goya, R., Oloumi, A., Ha, G., Zhao, Y., Turashvili, G., Ding,
J., Tse, K., Haffari, G., et al. (2012). The clonal and mutational evolution spec-
trum of primary triple-negative breast cancers. Nature 486, 395–399.

Shalek, A.K., Satija, R., Adiconis, X., Gertner, R.S., Gaublomme, J.T., Ray-
chowdhury, R., Schwartz, S., Yosef, N., Malboeuf, C., Lu, D., et al. (2013).
Single-cell transcriptomics reveals bimodality in expression and splicing in im-
mune cells. Nature 498, 236–240.

Shalek, A.K., Satija, R., Shuga, J., Trombetta, J.J., Gennert, D., Lu, D., Chen,
P., Gertner, R.S., Gaublomme, J.T., Yosef, N., et al. (2014). Single-cell RNA-
seq reveals dynamic paracrine control of cellular variation. Nature 510,
363–369.

Shapiro, E., Biezuner, T., and Linnarsson, S. (2013). Single-cell sequencing-
based technologies will revolutionize whole-organism science. Nat. Rev.
Genet. 14, 618–630.

Talseth-Palmer, B.A., Bowden, N.A., Hill, A., Meldrum, C., and Scott, R.J.
(2008). Whole genome amplification and its impact on CGH array profiles.
BMC Res. Notes 1, 56.

Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X.,
Bodeau, J., Tuch, B.B., Siddiqui, A., et al. (2009). mRNA-Seq whole-transcrip-
tome analysis of a single cell. Nat. Methods 6, 377–382.

Tang, F., Barbacioru, C., Bao, S., Lee, C., Nordman, E., Wang, X., Lao, K., and
Surani, M.A. (2010). Tracing the derivation of embryonic stem cells from the in-
ner cell mass by single-cell RNA-Seq analysis. Cell Stem Cell 6, 468–478.

Telenius, H., Carter, N.P., Bebb, C.E., Nordenskjöld, M., Ponder, B.A., and
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