Luo et al., http://www.jcb.org/cgi/content/full/jcb.201409142/DC1

Figure S1. **Tkv functions in ECs.** (A) Western blotting results show that *tkv* shRNA (based on the construct used in BL40937) effectively knocked down the WT (left) but not the off-target (right) Tkv variant in S2 cells. (B) A tkv^i (v105834) germarium exhibits more spectrosome-containing cells. (C) A germarium carrying ECs mutant for tkv^4 (arrows) exhibits more spectrosome-containing cells. (C') A cartoon illustrating positions of mutant ECs (blue). (D) A Tkv^{K16713} reporter is expressed in ECs. (E and F) Tkv is strongly expressed in ECs of the WT germarium (E, arrowheads) but not of the tkv^i (v105834) germarium (F). (G and H) Tkv is strongly detected in ECs (two ECs marked by arrowheads) of the $tkv^8/+$ germarium, but strongly reduced in ECs (arrowheads) mutant for tkv^8 . Bars, 10 µm.

0 0

0

m

Ц Ш

Figure S2. **Tkv functions independently of the canonical Dpp signaling pathway.** (A–D) Germaria with compromised canonical Dpp signaling components including Put (A, BL-35195]), Sax (B, BL-36131), Mad (C, Bl-31315), and Med (D, v16988) in ECs do not exhibit more spectrosome-containing cells. (E) Statistical data for spectrosome counts in these backgrounds. (F) A germarium containing ECs mutant for *mad*¹² (arrowheads) does not exhibit more spectrosome-containing cells. Genotype: *c587.UAS-flp; FRT40A.ubi-GFP/FRT40A.mad*¹². (G) A germarium with ectopic Tkv^{DN} expression in the ECs does not exhibit more spectrosome-containing cells (see E for statistical data). Bars, 10 µm.

Figure S3. **EC-expressed Tkv restricts germline proliferation.** (A) A control (*Pbam-GFP/+*) germarium showing Pbam-GFP expression in the CB (arrow) and cyst. (B) A WT germarium showing Bam expression in the cyst. (C) A *tkv* (BL40937) germarium contains many cells with low/no Pbam-GFP expression. (D) A *tkv* (v3059) germarium exhibits ectopic spectrosome-containing cells that do not express Bam. (E and F) Some of the ectopic spectrosome-containing cells in *tkv* (v3059) germarium are positive for EdU (E, arrow) or anti-phosphorylated Histone 3 (pH3; F, arrows). (G and H) Ectopic Bam expression in *tkv* germarium (G) promotes the differentiation of spectrosome-containing cells (H). Bars, 10 µm.

Figure S4. Wnt signaling modulates Tkv expression in ECs. (A-E) Knockdown of Wnt signaling components, including Dsh (A and B, BL-31306), Pygo (C, NIG-11518R-1), and Lgs (D, Bl-37476), in the ECs leads to the formation of ectopic spectrosome-containing cells and the down-regulation of tkv^{K16713} reporter expression (compared with Fig. S1 D). (E) Statistical analyses of spectrosome-containing cell number in py-go' or *lgs'* germaria. (F) The overexpression of Arm^{S10} in the ECs of a dshⁱ (BL-31316) germarium suppresses the formation of ectopic spectrosome-containing cells. (G) A armⁱ (v107344) germarium showing ectopic low levels of Pbam-GFP-expressing cells. (H) Bam is not detected in the ectopic spectrosome-containing cells in a pygo' (NIG-11518R-1) germarium. (I) A pygoⁱ (BL-38208) germarium showing that dpp mRNA is detected only in the cap cells. (J) Quantitation of dpp mRNA level in *bam¹⁸⁶* and *pygo';bam¹⁸⁶* germaria. (K and L) knockdown of Dpp in the ECs of *arm*ⁱ (BL-35004) germarium does not suppress the formation of ectopic spectrosome-containing cells. (M-P) knockdown of Put in the germline in Igs' (BL-37476) germarium suppresses the formation of ectopic spectrosome-containing cells. (Q) dpERK is detected in the ECs (arrows) of a dshⁱ (BL-31306) germarium, similar to WT germarium (Fig. 3 A). (R-S) dally (shown by in situ hybridization and reporter expression) is normally expressed in a pygo' (NIG-11518R-1) germarium (arrows indicate cap cells). (T) Knocking down Dally in the ECs of a pygoⁱ (NIG-11518R-1) germarium does not suppress the formation of ectopic spectrosome-containing cells. (U and V) tkv mRNA is down-regulated in pygoⁱ (U, NIG-11518R-1) and dshⁱ (V, BL-31316) germaria. (W) Tkv is reduced in the dshi (BL-31316) germarium. (X–Z) The expression of Tkv in ECs of the pygoⁱ (NIG-11518R-1) germarium strongly suppresses the formation of ectopic spectrosome-containing cells. Error bars represent SEM. ***, P < 0.001. Bars, 10 µm.

Figure S5. **The function of Wnts in the germarium.** Knockdown of Wg (A, v104579), Wnt2 (B, v104338), or Wnt4 (C, BL-29442) using *c587;bab1-gal4* does not result in the formation of ectopic spectrosome-containing cells. (D) Removing Wnt6 (BL-30493) from cap cells and ECs leads to a slight increase in the number of spectrosomes. (E) Statistical analyses of the number of spectrosomes in A–D. (F–G) *tkv* mRNA is down-regulated in the ECs (arrows) of a germarium with compromised Wg and Wnt6 functions in cap cells and ECs. (H and I) The P2-lacZ reporter is down-regulated in the ECs of *armⁱ* (F, BL-35004) and *pygoⁱ* (G, BL-38208) germaria. ***, P < 0.001. Bars, 10 µm.

Table S1. Primers used to generate tkv reporter lines

Name	Location	Primers
P1	2L:5231kb5237kb	5'-tggatgcgctcgggagaacaggag-3' 5'-ctggagatgctgcttacagcagag-3'
P2	2L:5237kb5245kb	5'-ggatgggattgtatggacggagtg-3' 5'-atccgcagttaaggcatatcctgtg-3'

Table S2. Primers for ChIP experiment

Name	Forward primer	Reverse primer
1	5'-tcctgtgtgtttctggttgtt-3'	5'-gcatcaacggcaatctatagt-3'
2	5'-tcttcttggctctctccctt-3'	5'-gcactgcgatgctaactcaa-3'
3	5'-actcctggcattaaaaacgca-3'	5'-tttaagttcgggaggcataga-3'
4	5'-tcggggtctgctctgcttt-3'	5'-tcagcagccacatccacaat-3'
5	5'-tacaatatactgtggcggcta-3'	5'-ctgtcaatttctcaagcgtag-3'
6	5'-aggttgattctagccatacata-3'	5'-tggatggaatagtgttcccc-3'
7	5'-gtgttgttgggtgtgtgtaaa-3'	5'-tgcaaaagtgtgcaagaacga-3'
8	5'-aggcgcgtcaaacataatttg-3'	5'-tccctcctttggcattaagtt-3'
9	5'-ggggatactaaccactatact-3'	5'-aacttatgatcataacactcgg-3'
10	5'-caaaaaagggagagcgggt-3'	5'-tatttcaggcgcccgacaaa-3'
11	5'-aaaggggttaggcctcctg-3'	5'-agcgccaaccactttttctg-3'
12	5'-gtgtaaattatgggaaaccgc-3'	5'-aggcactttcagctaacaaata-3'
13	5'-atgtgggtgcagccaaagaa-3'	5'-agccaatttgcacgtgctcc-3'
14	5'-tgacagtttaacagccgcca-3'	5'-tgggctgcacggtgttctt-3'
15	5'-gattgtaaagtcaaggcatgc-3'	5'-cagaccacacccaattgattt-3'
16	5'-gttgtgggttcgggttcata-3'	5'-agaaacgtgtgacttaccgaa-3'
17	5'-gttttgaaactgggtcgtcg-3'	5'-ctatttttgagtggccaatgc-3'
18	5'-gcatcggcgtgtgaacatta-3'	5'-cgcgtaggcagaatgtgtaa-3'
-1	5'-aacatgaagaaggattgtc-3'	5'-gataacctattcattgcaagct-3'
-2	5'-tgggtaagaactggtaagatc-3'	5'-agggctttaagcagatactatt-3'
-3	5'-tgacttttaccatcgcagcc-3'	5'-ctactttttggctccaacctt-3'
-4	5'-cctggactttgccaccattt-3'	5'-cccaaagtcagtcgaaatgg-3'
N4	5'-tcaatcagacgtcagaggtaccg-3'	5'-ctgatggaagaaccgtgttgg-3'

Table S3. Primers used for quantitative real-time PCR

Name	Forward primer	Reverse primer
dpp	5'-ccgctcctgttcacctacac-3'	5'-ggtgtcgtcgtggttgttg-3'
actin 5c	5'-ggatctccaagcaggagtacg-3'	5'-tcctccagcagaatcaagacc-3'

Table S4. Primers used for in situ experiments

Name	Forward primer	Reverse primer
wnt2	5'-tacatccgtcatgctctgtgg-3'	5'-gacttcgctcgcagtagttgg-3'
wnt4	5'-aatgctggtcaggtggtgaac-3'	5'-cgtgcttcagattgtcattgc-3'
wnt5	5'-ttgcacaacatgaccaagacc-3'	5'-cgtgacggatgtgttgttctc-3'
wnt6	5'-caccaacatccttctcgatcc-3'	5'-cttcagccagcaggtcttcac-3'
wnt10	5'-ctccaagctcttcctcgactg-3'	5'-ttcttatgcatgtggctgagg-3'
wg	5'-ggctcgaaggaccttgtctatc-3'	5'-atgcaagcagttcaagcagtg-3'
tkv	5'-ctacaagcgacgcgagaagctgc-3'	5'-gagacccactgaatacatatcag-3'
dally	5'-cgtgtgtgccagtgtgtgt-3'	5'-taatacgactcactatagggcgccgcctgtgtatctatg-3'
dpp	5'-aggacgatctggatctagatcggt-3'	5'-actttggtcgttgagatagagcat-3'

Table S5. Primers used for generating constructs of luciferase assay

Name	Forward primer	Reverse primer
#1	5'-tttctgtttgccccgtaggt-3'	5'-caatccgcagttaaggcatat-3'
#2	5'-ccacccagcaatttgcaatc-3'	5'-gcactgttcccctcgaaatt-3'
#3	5'-tggatgggattgtatggacg-3'	5'-acgcaatgagcgcgacttga-3'

Table S6. Primers used for antibody generation

Name	Forward primer	Reverse primer
Tkv	5'-caccatggccgccgccgctttgagtggc-3'	5'-tcagttgcagaagtcctccttgtcgcagc-3'
α -Spectrin	5'-gtgaagatcctcgagacagtcgag-3'	5'-tgcaggtagtaggactcatc-3'