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1 Data

Data was used from three different sources: the World Bank [1, 2], which includes 45
cities, with data referring approximately to the year 2005, the Global Energy Assessment,
GEA [3], which includes 225 cities, with data approximately referring to the year 2000,
and the International Association of Public Transport, UITP [4], which includes 100
cities, and data from 1995. Cities are approximately representative of cities world wide
in terms of population size (Fig. S1), demonstrating a log-log-linearly with population
size. The slope between log city rank and log city size is −1.07, and the 95% confidence
interval is between −1.21 and −0.93, including the value −1. Only those cities from the
World Bank database were used where emissions due to aviation and marine could be
separated; this yielded 26 cities. From the UITP database, we only used cities, which had
a complete dataset on energy use, which was 87. All three databases include population
data. UITP includes over 200 indicators on traffic, but used were only the metropolitan
GDP per capita, population, population density and transport energy use to avoid over-
fitting in the regression analysis. The GEA database provides GDP per capita (PPP)
data from Eurostat (2008) and PriceWaterhouseCoopers (2007). The GDP per capita
data (PPP) for World Bank cities are from GEA, PriceWaterhouseCoopers (2009) [5]
and Urban Audit [6]. We added to all three datasets data on heating and cooling degree
days [7], a binary proxy variable for coastal location (researched), diesel and gasoline
prices [8], household sizes [6], and the “Centers of Commerce Index” [9]. Urban pop-
ulation densities for World Bank and GEA observations were obtained from individual
municipal sources. The latter data were not all consistent in terms of the definition of
municipal boundaries, but were included nonetheless as a crude indication of population
density. For complete statistics and description of the data used see Dataset S1.
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Figure S1: Rank-size statistics of cities analyzed. The sample includes cities of varying
sizes, including global cities, and represent 21% of the global urban population.
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2 Correlation analysis

Tab. 1 displays the Pearson’s correlation coefficient between two variables X and Y
defined as

ρ(X, Y ) =
cov(X, Y )√

var(X)var(Y )
.

Where cov(X, Y ) represents the covariance, var(X) the variance of X and var(Y ) the
variance of Y . The Pearson correlation coefficient measures the linear relationship be-
tween two datasets, assuming that each dataset be normally distributed. −1 or +1 imply
an exact linear relationship. Positive correlations indicate that as x increases, so does
y, while negative correlations indicate that as x increases, y decreases. The p-value can
be interpreted as the probability of an uncorrelated system producing datasets that have
a Pearson correlation at least as large in magnitude as the one computed from these
datasets. Partial correlation denotes the degree of association between two random vari-
ables, with the effect of a set of controlling random variables removed, in this case the
respective other independent variables. To test for significance across all data sets and
to synthesize heterogeneous research, we performed a meta-analysis, which essentially
calculates the weighted average of the effect sizes of a group of studies, relying on the
random effect DerSimonian-Laird (DSL) approach (see meta-analysis).

Table S1 presents the correlations statistics underlying Figure 1 in the main body text.

Table S2 provides cross correlation coefficients between transport costs and density
metrics, indicating that transport costs could be a driving factor of urban form, and that
thus gasoline prices not only have a direct influence but also an indirect influence on
urban energy use.
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Table S2: Cross correlation coefficients between transport costs metrics and density
metrics. Linear population density is defined as the urban population divided by the
square root of the municipal area. The cross correlations indicate that causally transport
costs could be the primary driver of lower energy use (in transport), and population
density is possibly only intermediate. Significance levels: ***p<0.01; **p<0.05; *p<0.1.

Gasoline
price vs.
population
density

Gasoline
price vs.
linear pop-
ulation
density

gasoline
price/GDP
vs. pop-
ulation
density

World
Bank

0.52** 0.55**

GEA - 0.35***
UITP 0.34**
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3 Discussion of the emission and energy use elastic-

ities

The regression analysis results presented in Table 1 (main text) demonstrates that urban
energy use and/or GHG emissions change considerably with changes in the determinants.
The results suggest that every 1% increase in GDP corresponds to a statistically signifi-
cant increase of urban energy use and related emissions by 0.4%. Globally, the elasticity
of CO2 emissions with respect to GDP has an estimated value of 0.81 [10]. The differ-
ence between these two values suggests that direct urban energy use is considerably less
sensitive to increases in economic activity then overall energy use of economies, such as
production activities in non-urban areas and energy use induced by consumption. An-
other explanation is that cities use their energy more efficiently than rural areas making
use of economies of scale in transport networks, infrastructures and housing [11]. Every
1% increase in population density corresponds statistically to a decrease of emissions
of about 0.1–0.3%, possibly up to 0.6% in the case of transport energy use. The high
elasticity of transport energy use, as reported by the UITP data set, needs to be put into
context. First, the elasticity results are due to differences in urban form and transport
energy use in different world regions [12]. Especially in North America, the elasticity
of population density has been estimated to be considerably lower [13]. Second, popu-
lation density may be a proxy for other characteristics of urban form such as land use
mix, accessibility, or compactness [14]. In fact, when controlling for vehicle ownership,
a likely driver of fuel consumption, the direct effect of population density on transport
energy use is reduced [15]. The total effect of HDD on energy consumption and GHG
emissions is considerable and highly significant and consistent across data sets. Every
1% increase in HDD corresponds to 0.3–0.5% increase in energy use or GHG emissions.
Gasoline prices impact energy consumption and GHG emissions of cities to a high degree.
Every 1% increase in gasoline price corresponds statistically to a decrease of emissions
or energy use in the range of 0.4–0.8%. The elasticity of transport energy use with re-
spect to gasoline prices (0.56) is consistent with the long-term fuel demand elasticity
with respect to transport prices, observed in transport studies [16]. But total urban
energy/GHG emissions change with gasoline price not only in the transportation sector.
A possible explanation is that with higher transport prices, individuals will live closer to
the city center, and that the higher density reduces energy demand for heating [17]. An-
other explanation is self-selection: choice about residential location is based on individual
preferences. Thus, those who wish to behave environmentally and save energy move to
cities that have features that enable alternative modes of transportation. While the sec-
ond hypothesis cannot be excluded, the first hypothesis is supported by the observation
that correlations between population density and transport costs metrics are significant,
suggesting that transport cost is the primary factor, and population density is an inter-
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mediate, secondary outcome (Tab. S2). Similarly, while household size is not significant
in the regression model, household size correlates significantly (p < 0.01) with gasoline
prices (normalized per GDP) in all three data sets. Hence fuel price reduces emissions
from transport directly, but, when combined with reduced per capita floor space, also
reduces emissions from housing (heating/electricity). CDD, population size, coastal city
location, and household size are non significant in the regression analysis. Notably, this
means that the efficiency effect of population size, relevant in the correlation analysis,
can possibly be explained by other variables, such as population density.

4 Emission/Energy-driven top-down clustering

The reported analysis focused on clustering cities by their explanatory variables. To sub-
stantiate results, cities were also clustered by their emissions/energy use to group them
into high, medium, and low emitters (Table S3). The city clusters can be character-
ized by underlying attributes that are statistically distinct for each city class (ANOVA
test used for statistical significance; Table S3). High-emissions cities are consistently
associated with high economic activity and low population density and to lesser degree
with high HDD and low gasoline prices. Low-emissions cities display high population
density and low economic activity and tentatively less HDD and higher gasoline prices.
Table S3 demonstrates that GDP, population density, and to lesser degree HDD and
gasoline prices are statistical predictors of emission/energy usage. In the two data sets
with larger number of case studies, GEA and UITP, low emission/energy cities are sys-
tematically associated with low GDP, but this relationship is not significant between
high/medium emitters and high/medium GDP. This suggests that among cities within
an income above $10k various emission and energy usage trajectories are possible - in-
dependent of economic activity. Low emission cities are also correlated with population
density in two of three databanks. But the inverse is only partially true: low density
seems to be most relevant for transport-related energy use (UITP) and less so for overall
energy consumption and emissions. Altogether, the top-down emission-ranking method
reconfirms the results from bottom-up, driver-based, clustering.

S8



Table S3: Emission/energy driven clustering of cities, and its statistically significant
properties. Metrics that distinguish a category from both others are denoted in bold
letters, those who only distinguish a category from one other are denoted with in normal
letters.

World Bank GEA UITP

High emitters high GDP med.-high GDP med.-high GDP
med.-low density med.-high HDD low density
high HDD med.-high HDD
low gasoline price

Medium emitters med.-low GDP med.-high GDP med.-high GDP
med.-low density med.-high HDD med. density

Low emitters med.-low GDP low GDP low GDP
high density low HDD high density
low HDD
high gasoline price

S9



5 Regression with quadratic income term

Table S4 shows the results of including a squared term in GDP per capita in the rela-
tionship between energy consumption and its determinants for the WB, GEA, and UITP
data. The estimated coefficient for the squared GDP per capita term is negative for GEA
and UITP, but is statistically significant only for the latter. This could be interpreted
as lending some support to the so-called Environmental Kuznets curve hypothesis that
posits the existence of an inverted-U relationship between environmental impact and
GDP, originally proposed by [18]. However, the estimated turning points for GEA and
UITP data, above which increases in income result in emission reductions, would fall well
outside the range of observed income values to be of practical significance (about 665,500
and 150,300 more than 10 and almost 3 times more than the maximum for GEA and
UITP GDP per capita, respectively). These findings are also consistent with the tree
regression and threshold estimation nonparametric approach that does not find, even for
the higher income group cities, any subsample with a negatively sloped GDP per capita
income term.



Table S4: Regression with Quadratic GDP Term

Dataset:
WB GEA UITP

GDP pc −3.700 1.358∗ 1.502∗∗∗

(5.366) (0.704) (0.468)

Density −0.378∗∗ −0.070∗∗∗ −0.551∗∗∗

(0.151) (0.026) (0.050)

HDD15.5 0.134∗∗ 0.065∗∗ −0.019
(0.063) (0.025) (0.019)

Gasoline −0.621 −0.377∗∗∗ −0.323∗∗∗

(0.440) (0.127) (0.078)

(GDP pc)2 0.195 −0.051 −0.063∗∗

(0.269) (0.037) (0.026)

Constant 21.238 −3.916 3.337
(26.577) (3.321) (2.053)

Observations 24 223 64
R2 0.724 0.360 0.892
Adjusted R2 0.647 0.345 0.881

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
Variables are in logs.
To interpret the impact of GDP per capita in the presence of nonlinear terms we need to take the
partial derivative of consumption w.r.t GDP pc. Evaluated at the mean level of GDP pc, they
are .27, .37, and .30, respectively for the WB, GEA, and UITP datasets.



6 Splitting and threshold estimation tree-based method

In this paper we use the recursive data partitioning algorithm developed by [19] known as
GUIDE, which stands for Generalized, Unbiased, Interaction Detection and Estimation.
GUIDE is an extension of the well known classification and regression trees (CART)
algorithms developed by [20] that repeatedly splits the data into increasingly homoge-
neous groups by fitting constant models and defining a simple rule based on a single
explanatory variable until it becomes infeasible to continue. At each split the avail-
able sample is partitioned into two groups, obeying different linear models, based on a
single best predictor variable, the variable that minimizes the sum of squared residuals
from regression over all possible splits for all available independent variables. It then
applies the same splitting procedure on each of the subset areas separately. The output
can be represented as a binary tree with branches and terminal nodes. The predicted
value at each terminal node is the average at that node. The goal is to partition the
data into homogeneous group whilst simultaneously preventing the tree form getting too
large. Typically a large tree is “grown” first which is then reduced in size by a suitable
“pruning” procedure. CART’s recursive approach is particularly well suited when there
is a complex interaction structure among the explanatory variables, such as dependen-
cies that may be hierarchical, nonlinear, or of higher order in nature. CART can also
deal with missing values. CART type models can be viewed as parsimonious strategies
for a fully nonparametric estimation of a regression model. Regression-tree methods are
known to be consistent in the sense that, under standard statistical assumptions, the
predicted values converge to the unknown nonlinear regression function values pointwise
[21]. GUIDE improves on its predecessors by minimizing potential biases in variable se-
lection and interaction detection and by allowing to fit a linear model at each node. This
approach has been shown to improve the prediction accuracy of the resulting tree and
its interpretability [22, 23]. More importantly, this approach grounds our classification
to the theoretical relationship between relevant variables.

Table S5 reports the regression results and city membership for each node in Fig. 2.
Estimation was performed using Loh’s GUIDE software, available at http://www.stat.
wisc.edu/~loh/guide.html (last accessed September 2014).
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ö
p
in

g
,

Ö
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7 Cross-validation analysis to select the size of the

tree

Another concern is the problem of over- or under-fitting the data with nodes. Tree
structure, including the number of nodes, and therefore the classification of cities is
determined by the data rather than specified a priory. Specifically, we used an established
cross-validation methodology to determine the optimal size of trees that minimizes miss-
classification errors.

The methodology is called cost-complexity pruning, first introduced by [20] to de-
termine the optimal size of trees that minimizes miss-classification errors. Following
best practice [see, e.g., 24] we split the training set of cities into 10 roughly equally
sized parts. We can then use 9 parts to grow the tree and test it on the tenth. This
can be done in 10 ways, and we can average the results. This is known as (10-fold)
cross-validation. Figure S2 show the results of the cross-validation analysis of selec-
tion of the size of the tree based on miss-classification rate. To minimize the impact
of outliers and non-normality we used both the mean and median bootstrap square
error estimates. The figure show that optimal number of terminal nodes is between
8 and 9. Estimation was also performed using Loh’s GUIDE software, available at
http://www.stat.wisc.edu/~loh/guide.html (last accessed September 2014).
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Figure S2: Plot of deviance (prediction error based on median and mean measured by
the bootstrap squared difference between the observed and predicted values) versus the
size (number of terminal nodes) of subtrees of the unpruned 16 terminal nodes tree. The
results are based on pruning based on 10-fold cross-validation. Split values based on
exhaustive search. Max number of split levels = 5. Minimum node size = 5. Number of
SE’s for pruned tree = 0.5
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8 Confidence interval estimation for threshold values

One limitation of the tree regression approach is lack of asymptotic distribution theory
useful for inference on splitting variables and split values [20]. [25] developed a threshold
estimation testing procedure with accompanying distribution theory that addresses this
issue. The procedure is widely used in economics and energy studies. We used the
Hansen threshold regression approach to cross-validate our results and obtain confidence
intervals for the main splits (compare with [22], [23]). The confidence intervals provide a
measure of uncertainty in the classification of cities to specific types. In this section we
briefly introduce the threshold estimation and testing procedure developed in [25] and
[26] used to validate the tree regression results and to estimate confidence intervals for
the main splits.

Let {yi,xi, qi} be an observed sample, where yi, qi ∈ R and xi = (1, xi2, · · · , xik)T .
The threshold variable qi, which can be an element of xi, is assumed to have a continuous
distribution. The threshold regression model

yi = ϑ′xi + ei, qi ≤ τ (S1)

yi = θ′xi + ei, qi > τ (S2)

where ϑ = (ϑ1, ϑ2, . . . , ϑn)T and θ = (θ1, θ2, . . . , θn)T . After defining the dummy variable,

di(γ) = 1{qi≤τ},

the model (S1)-(S2), can be written as one equation

yi = θTxi + δTxidi(τ) + ei, (S3)

where δ = (δ1, δ2, · · · , δn)T . Equation (S3) allows all parameters to differ across regimes.
Keeping γ fixed, (S3) is linear in θ and δ and can be estimated by OLS. γ̂ can be defined
as

γ̂ = arg min
τ∈Gn

Sn(γ).

where Gn is a suitably bounded set and Sn (concentrated) sum of squared error. [26]
showed that, under some regularity conditions, the distribution of γ̂ is nonstandard but
free of nuisance parameters.

To test the hypothesis H0 : γ = γ0, a likelihood ratio approach can be employed with
test statistic

LRn = n
Sn(γ)− Sn(γ̂)

Sn(γ̂)
(S4)

For large values of the statistic (S4) the null H0 is rejected. [26] determines its asymptotic
distribution.
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Confidence regions based on the likelihood ratio statistic can be obtained by inverting
the likelihood ratio test of H0: τ = τ0. Denoting with c the relevant critical value for the
distribution of the threshold, the confidence set is defined as

T̂ = {γ|LRn ≤ c} . (S5)

Hansen also provides the heteroskedasticity-robust asymptotic confidence set for γ, T̂∗,
based on a scaled version of the likelihood (denoted as LR∗), that are used in this paper.
The main limitation of this approach is that it is limited to one threshold variable, one
threshold value. See [26] and [23] for details.

The confidence intervals and their constructions presented in Figure 2 in the paper
are reported in Figures S3a, S3b, S4a, S4b, S5a S5b, and S6a, for nodes 1, 2, 3, 4, 5, 6,
and 7, respectively. Figure S6b shows the confidence interval construction for the GDP
per capita split in UITP data presented in Figure S7. The asymptotic 95 % confidence
set, T̂∗ which is given in the graph by the levels where the LR∗n(γ) sequence crosses
the dashed line. Whenever there is only one value below the dashed line, to avoid the
problem caused by the low number of observations (for example in node 4 and 7), we
provide a conservative estimate of the 95%CI by reporting the “bracketing” values of γ
adjacent to the minimum. Estimation was performed using Hansen’s code available at
http://www.ssc.wisc.edu/~bhansen/progs/ecnmt_00.html (last accessed September
2014).
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Figure S3: Confidence interval construction for nodes 1 and 3
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(a) Node 1. GDP sample split for
the GEA data. The graph shows the
heteroskedasticity-robust likelihood ratio
sequence LR∗n(γ) against the threshold in
natural log of GDP. The least square esti-
mate of γ is the value that minimizes the
curve, which occurs at about γ̂ = $9, 700.
The 95 % critical value of 7.35 is also plot-
ted (dashed line). The asymptotic 95 %
confidence set is T̂∗ = [$9, 500, $13, 000],
which in the graph is given by the lev-
els where the LR∗n(γ) sequence crosses the
dashed line. The result shows strong evi-
dence for a GDP split confirming the tree
regression results.
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(b) Node 3. Gasoline price sample split
for the GEA data. The graph shows
the heteroskedasticity-robust likelihood ra-
tio sequence LR∗n(γ) against the threshold
in natural log of gasoline price. The least
square estimate of γ is the value that min-
imizes the curve, which occurs at about
γ̂ = 1.2 $/l. The 95 % critical value of
7.35 is also plotted (dashed line). The
asymptotic 95 % confidence set is T̂∗ =
[1.07 $/l, 1.23 $/l], which in the graph is
given by the levels where the LR∗n(γ) se-
quence crosses the dashed line. The result
shows strong evidence for a price split for
”high” income cities confirming the tree re-
gression results.
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Figure S4: Confidence interval construction for nodes 2 and 4
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(a) Node 2. Density sample split for
the GEA data. The graph shows the
heteroskedasticity-robust likelihood ratio
sequence LR∗n(γ) against the threshold in
natural log of the density. The least square
estimate of γ is the value that minimizes
the curve, which occurs at about γ̂ =
210 pop/km2. The 95% critical value of
7.35 is also plotted (dashed line). The
asymptotic 95% confidence set is T̂∗ =
[200 pop/km2, 300 pop/km2], which in the
graph is given by the levels where the
LR∗n(γ) sequence crosses the dashed line.
The result shows strong evidence for a den-
sity split for ”low” income cities confirming
the tree regression results.
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(b) Node 4. HDD sample split for
the GEA data. The graph shows the
heteroskedasticity-robust likelihood ratio
sequence LR∗n(γ) against the threshold in
natural log of HDD. The least square esti-
mate of γ is the value that minimizes the
curve, which occurs at γ̂ = 94 HDD. The
95% critical value of 7.35 is also plotted
(dashed line). The asymptotic 95% confi-
dence set is T̂∗ = [70, 670] HDD, because
of the sparcity of the data, is given by the
values of γ adjacent to the minimum. See
detail in the text. which in the graph is
given by the levels where the LR∗n(γ) se-
quence crosses the dashed line. The result
shows strong evidence for an HDD split for
lower density node 2 cities.
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Figure S5: Confidence interval construction for nodes 5 and 6
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(a) Node 5. HDD sample split for
the GEA data. The graph shows the
heteroskedasticity-robust likelihood ratio
sequence LR∗n(γ) against the threshold in
natural log of HDD. The least square esti-
mate of γ is the value that minimizes the
curve, which occurs at γ̂ = 1261 HDD. The
95 % critical value of 7.35 is also plotted
(dashed line). The asymptotic 95 % con-
fidence set is T̂∗ = [719 HDD, 2450 HDD],
which in the graph is given by the lev-
els where the LR∗n(γ) sequence crosses the
dashed line. The result shows strong evi-
dence for an HDD split for higher density
node 3 cities.
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(b) Node 6. Density sample split for
the GEA data. The graph shows the
heteroskedasticity-robust likelihood ratio
sequence LR∗n(γ) against the threshold in
natural log of density. The least square
estimate of γ is the value that mini-
mizes the curve, which occurs at γ̂ =
454 pop/km2. The 95 % critical value of
7.35 is also plotted (dashed line). The
asymptotic 95 % confidence set is T̂∗ =
[453 pop/km2, 460 pop/km2], which in the
graph is given by the levels where the
LR∗n(γ) sequence crosses the dashed line.
The result shows strong evidence for an
density split.
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Figure S6: Confidence interval construction for nodes 7 and the UITP GDP split
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(a) Node 7. HDD sample split for
the GEA data The graph shows the
heteroskedasticity-robust likelihood ratio
sequence LR∗n(γ) against the threshold in
natural log of HDD. The least square esti-
mate of γ is the value that minimizes the
curve, which occurs at γ̂ = 2840 HDD. The
95 % critical value of 7.35 is also plotted
(dashed line). The asymptotic 95% con-
fidence set is T̂∗ = [2752, 3211] HDD, be-
cause of the sparcity of the data, is given by
the values of γ adjacent to the minimum.
See detail in the text.
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(b) GDP sample split for the UITP data.
The graph shows the heteroskedasticity-
robust likelihood ratio sequence LR∗n(γ)
against the threshold in natural log of GDP
pc.. The least square estimate of γ is the
value that minimizes the curve, which oc-
curs at about γ̂ = $29,300. The 95% crit-
ical value of 7.35 is also plotted (dashed
line). The asymptotic 95% confidence set
is T̂∗ = [$22,400, $33,000], which in the
graph is given by the levels income where
the LR∗n(γ) sequence crosses the dashed
line. The result shows strong evidence for
a GDP split.
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9 Peak urban travel

We applied the GUIDE algorithm (see below) to the UITP data and found a threshold
regression value at GDP/cap at $29,300 with the confidence interval (CI) ranging at the
95% confidence level from $22, 400 until $33,000 (detail on the construction of the CI
are provided in Section 8 and Figure S6b). This is visualized in Figure S7. Transport
energy use decreases under certain conditions with increasing economic activity within
the high economic activity (affluent) segment. Transport energy use decreases with GDP
for affluent cities in OECD90 countries below 2 million inhabitants. Cities with larger
population density (size of circles), and with higher gasoline price tend to be associated
with lower energy consumption. Both x-axis and y-axis display logarithmic scales. The
elasticity of energy consumption at the lowest GDP per capita of $400 is 0.9; the elasticity
at average GDP per capita of $21,400 is −0.5, and the elasticity at highest GDP per
capita of $55,000 is −0.9. The group of cities smaller than 2 million inhabitants and
from OECD90 countries, as defined in the UITP data set [4], display significant decrease
of urban transport energy use with income at p < 0.01. The significance increases to
p < 0.05 if the outlier, Denver, is excluded from this analysis. As discussed in the main
body text, this effect is closely associated with a continental distribution of cities.

10 Calculating the urbanization wedge

First, energy use of cities in the five world regions was scaled with expected population
growth to 2050 (Tab. S4). Additional energy use was assumed to come from growth in
economic activity per capita. In the median scenario (see below for uncertainty analysis),
the GDP growth in the world regions was estimated to follow the B1 SRES scenario of
the IPCC [27]. The GDP growth was translated by the GDP/cap elasticity (0.66 as long
as GDP/cap< $9,700; 0.33 otherwise; calculated by regressions on node 2 and node 3
statistics in Figure 2), resulting in a global energy consumption of 731 EJ in 2050. Sec-
ond, gasoline price was assumed to grow to $1.6 in terms of 2005 $ worldwide. This would
translate into little change in some OECD countries but tremendous change in countries
that currently subsidize fuels. The gasoline price elasticity (0.46; for regression on node
3, valid for GDP/cap> $9,700) was applied then to the difference in gasoline prices be-
tween 2005 and 2050. Finally, the population density is expected to grow proportionally
to half of the population growth in each world region. In other words, already urbanized
world regions gasoline price increase, this results into global urban energy consumption
are expected to display relatively little potential for densification, a conservative assump-
tion. The population density elasticity (0.09; for regression on node 3 cities, valid for
GDP/cap> $9,700) was applied on this additional population density. Combined with
the change due to of 540 EJ in 2050. To represent the underlying parameter uncertainty
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Figure S7: Urban peak travel (UITP data). Transport energy use decreases under certain
conditions with increasing income within the high-income segment. Transport energy use
decreases with GDP for high-income cities in developing countries below 2 million inhab-
itants. Cities with larger population density (size of circles), and with higher gasoline
price tend to be associated with lower energy consumption.
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(Fig. 5B), we performed a Monte Carlo simulation on sensitive parameters. Specifically,
we draw randomly from a uniform distribution of GDP growth rates (globally: 1.7%–
3.7% but weighted across world regions, taken from the SRES scenarios (18)); and from
Gaussian distributions of the elasticities derived from the threshold regression (GDP:
0.67 (mean) ±0.26 (standard deviation) if GDP/cap < $9,700; 0.30± 0.07 else; gasoline
price: 0.46± 0.11; population density: 0.09± 0.03).
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