Supporting Information

Hoepker et al. 10.1073/pnas.1424021112

Fig. S1. Fluorescence intensity and anisotropy image of unlabeled agarose beads with 10 μM His-tagged LUMP in buffer at 20 °C. (A) Fluorescence intensity image of unlabeled agarose bead showing no intensity at the bead. (B) FA image obtained from P- and S-polarized images with a G-factor of 0.78. (C) Anisotropy distribution of Box c in B. The anisotropy of 0.185 matches the anisotropy obtained from SLM-AB2 fluorometer measurement of His-LUMP. For comparison, LUMP without the His-tag measures 0.166, as referenced earlier. (D) Anisotropy distribution of Box d in B.

Fig. S2. Peak-normalized absorption spectrum of Venus (green trace) superimposed on fluorescence emission spectrum of LUMP (blue trace) in aqueous buffer [20 mM Hepes (pH 7.9), 150 mM NaCl] at 20 °C. The shaded area indicates the overlap integral $J(\lambda)$ that is used to calculate the Förster radius R₀ with a MATLAB (MathWorks) routine from Fluortools.com. The maximum absorbance of Venus is set at its extinction coefficient: 92,200 M⁻¹·cm⁻¹. The maximum emission of LUMP is normalized at 100 au.

Table S1. Amino acid sequences of LUMP constructs

PNAS PNAS

Protein	Amino acid sequence
LUMP	MGSSHHHHHHDYDIPTTENLYFQ//GHMFRGIVQGRGVIRSISKSEDSQRHGIAFPEGMFQLVDVDTVMLVNGCSLTVVRILGDMVYFDIDQALGT- TTFDGLKEGDQVNLEIHPKFGEVVGRGGLTGNIKGTALVAAIEENDAGFSVLIDIPKGLAENLTVKDDIGIDGISLPITDMSDSIITLNYSRDLLASTN- IASLAKDVKVNVEILNEW
LUMP-GBD	MGSSHHHHHHHDYDIPTTENLYFQ//GHMGLSAQDISQPLQNSFIHTGHGDSDPRHCWGFPDRIDELYLGNGSGSASFRGIVQGRGVIRSISKSEDSQR-DAVE AND
	HGIAFPEGMFQLVDVDTVMLVNGCSLTVVRILGDMVYFDIDQALGTTTFDGLKEGDQVNLEIHPKFGEVVGRGGLTGNIKGTALVAAIEENDAGF-
	SVLIDIPKGLAENLTVKDDIGIDGISLPITDMSDSIITLNYSRDLLASTNIASLAKDVKVNVEILNEW
Venus-LUMP	MGSSHHHHHHDYDIPTTENLYFQ//GHMVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFGYGLM-
	CFARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIK-
	VNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSYQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYKASFRGIVQGRGVIRSISKS-
	EDSQRHGIAFPEGMFQLVDVDTVMLVNGCSLTVVRILGDMVYFDIDQALGTTTFDGLKEGDQVNLEIHPKFGEVVGRGGLTGNIKGTALVAAIE-
	ENDAGFSVLIDIPKGLAENLTVKDDIGIDGISLPITDMSDSIITLNYSRDLLASTNIASLAKDVKVNVEILNEW
Venus-	MGSSHHHHHHDYDIPTTENLYFQ//GHMVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFGYGLMC-
thrombin-	FARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKV-
LUMP	NFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSYQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYKASLVPRGSRGSFRGIVQGRG-
	VIRSISKSEDSQRHGIAFPEGMFQLVDVDTVMLVNGCSLTVVRILGDMVYFDIDQALGTTTFDGLKEGDQVNLEIHPKFGEVVGRGGLTGNIKGT-
	ALVAAIEENDAGFSVLIDIPKGLAENLTVKDDIGIDGISLPITDMSDSIITLNYSRDLLASTNIASLAKDVKVNVEILNEW

All proteins were purified with the affinity tag removed with TEV protease. The cut site is denoted by the symbol //.

Table S2. Fluorescence lifetime measurements

Protein	A ₁	τ_1 (ns)	A ₂	τ_2 (ns)
LUMP	0.28 ± 0.011	6.3 ± 0.2	0.65 ± 0.01	14.91 ± 0.09
LUMP-GBD	0.37 ± 0.007	6.0 ± 0.1	0.55 ± 0.01	13.15 ± 0.06
Venus-LUMP	0.93 ± 0.002	4.17 ± 0.01	0.04 ± 0.002	12.9 ± 0.3

Pre-exponential factor A and fluorescence lifetime τ with SEs. The average fluorescence lifetimes are calculated from the two fluorescent components above as described in *Methods*.

Table S3. Average fluorescence lifetimes ($\tau_{avg}s$)

$ au_{avg}$ (ns)
13.6
11.5
5.20
6.64